Skip to main content
Erschienen in: Allergy, Asthma & Clinical Immunology 1/2014

Open Access 01.12.2014 | Review

The potential mechanistic link between allergy and obesity development and infant formula feeding

verfasst von: Bodo C Melnik

Erschienen in: Allergy, Asthma & Clinical Immunology | Ausgabe 1/2014

Abstract

This article provides a new view of the cellular mechanisms that have been proposed to explain the links between infant formula feeding and the development of atopy and obesity. Epidemiological evidence points to an allergy- and obesity-preventive effect of breastfeeding. Both allergy and obesity development have been traced back to accelerated growth early in life. The nutrient-sensitive kinase mTORC1 is the master regulator of cell growth, which is predominantly activated by amino acids. In contrast to breastfeeding, artificial infant formula feeding bears the risk of uncontrolled excessive protein intake overactivating the infant’s mTORC1 signalling pathways. Overactivated mTORC1 enhances S6K1-mediated adipocyte differentiation, but negatively regulates growth and differentiation of FoxP3+ regulatory T-cells (Tregs), which are deficient in atopic individuals. Thus, the “early protein hypothesis” not only explains increased mTORC1-mediated infant growth but also the development of mTORC1-driven diseases such as allergy and obesity due to a postnatal deviation from the appropriate axis of mTORC1-driven metabolic and immunologic programming. Remarkably, intake of fresh unpasteurized cow’s milk exhibits an allergy-preventive effect in farm children associated with increased FoxP3+ Treg numbers. In contrast to unprocessed cow’s milk, formula lacks bioactive immune-regulatory microRNAs, such as microRNA-155, which plays a major role in FoxP3 expression. Uncontrolled excessive protein supply by formula feeding associated with the absence of bioactive microRNAs and bifidobacteria in formula apparently in a synergistic way result in insufficient Treg maturation. Treg deficiency allows Th2-cell differentiation promoting the development of allergic diseases. Formula-induced mTORC1 overactivation is thus the critical mechanism that explains accelerated postnatal growth, allergy and obesity development on one aberrant pathway.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1710-1492-10-37) contains supplementary material, which is available to authorized users.

Competing interests

The author declared that he has no competing interests.
Abkürzungen
AKT
Akt kinase (protein kinase B)
BMI
Body mass index
4-EBP1
Eukaryotic translation initiation factor 4E-binding protein 1
FoxP3
Forkhead box P3 (scurfin)
IgE
Immunoglobulin E
IGF-1
Insulin-like growth factor-1
IGF1R
IGF-1 receptor
IL-4
Interleukin 4
IR
Insulin receptor
IRS-1
Insulin receptor substrate-1
LC
Long-chain
mTORC1
Mechanistic target of rapamycin complex 1
PI3K
Phosphoinositol-3 kinase
PUFA
Polyunsaturated fatty acid
RAG
RAS-related GTP-binding protein
RHEB
RAS-homolog enriched in brain
S6K1
Ribosomal protein S6 kinase, 70-KD (RPS6KB1)
SOCS1
Suppressor of cytokine signalling 1
STAT5
Signal transducer and activator of transcription 5
TCR
T-cell receptor
TGFβ
Transforming growth factor-beta
Treg
regulatory T-cell
TSC1
Hamartin
TSC2
Tuberin.

Introduction

Allergy and obesity are common diseases of developed countries. Epidemiological evidence points to an allergy-preventive effect of breastfeeding [1, 2]. The widespread use of artificial infant formula feeding is the most recent nutritional change introduced by industrialized societies a century ago, a time when milk has been misinterpreted as just food[3, 4]. American paediatricians of the 1930’s were convinced that it should be perfectly possible to prepare an artificial formula that meets all the nutritional requirements of a growing infant[3, 4]. Notably, formula feeding has been introduced straight into infant nutrition without any prior knowledge of mechanistic target of rapamycin complex 1 (mTORC1) signalling, a novel field of molecular biology that evolved after the discovery of the natural mTORC1-inhibitor rapamycin. This immunosuppressive natural product of Streptomyces hygroscopicus was found on Easter Island (Rapa Nui) and has been characterized in 1975 [5, 6]. This finding initiated modern mTOR biology that followed 45 years after the introduction of artificial formula feeding in the 1930’s.
Based on translational research, this review links recent insights into mTORC1 regulation to postnatal infant growth and aberrant developmental programming of the immune system and adipocyte differentiation.

Review

mTORC1: the cell’s master regulator of cell growth

In the last decade, the nutrient-sensitive kinase mTORC1 has been extensively studied and appreciated as the cell’s master regulator orchestrating cell growth, cell proliferation and autophagy [710]. mTORC1 senses multiple internal and external signals such as cellular energy status, the growth factors insulin and insulin-like growth factor-1 (IGF-1), and most importantly amino acid availability [710]. mTORC1 is activated at the lysosomal membrane in the presence of amino acids, especially by leucine and glutamine, which play a predominant role for mTORC1 activation [1117]. Thus, there is a direct link between amino acid availability and mTORC1-driven cell growth.

Infant weight gain and allergy risk

The milk protein content of a mammalian species highly correlates with its postnatal growth rate [18]. For instance, rats with a milk protein concentration of approx. 11 g/dL double birth weight after 4 days, cats and dogs with 8 to 9 g/dL after 10 days, cows with 3.5 g/dL after 40 days, and humans with 1.2 g/dL after 180 days, respectively [18]. Thus, Homo sapiens exhibits the slowest postnatal growth rate of all mammals, most likely representing an important privilege of evolution promoting brain maturation and cognitive functions. Notably, rapid weight gain in infancy has been linked to an increased risk of asthma [19, 20]. Lower birth weight (small for gestational age) was associated with an increased risk of asthma hospitalization in term children [21]. Notably, increased postnatal catch-up growth in small for gestational age infants is associated with increased postnatal mTORC1 signalling and increased childhood asthma risk [22]. Moreover, excessive postnatal protein intake by formula feeding increases weight gain, total body fat mass and increases the risk of childhood obesity [2325], which has been linked to increased amino acid-mediated mTORC1-signalling [26].
Epidemiological studies clearly confirm the intraindividual association between allergy and obesity [20, 2729]. Prospective cohort studies and two recently published meta-analyses found an association between overweight, especially obesity, and asthma in the appropriate temporal sequence and in a dose–response manner [30]. Children with a pronounced weight gain slope in early life were particularly at risk for asthma within the first 6 years of life. The gain in body mass index (BMI) over time during infancy thus appears to be a more important predictor for asthma in childhood than excess weight at any specific age (Figure 1) [30].

mTORC1 and T-cell activation

The metabolic demands of T-cells are extraordinary [31]. Naïve T-cells are catabolic and exhibit low levels of mTORC1 activity [32]. However, activation and effector generation for both CD4+ and CD8+ T-cells results in tremendous metabolic demands and a switch from catabolism to anabolism associated with an increase in mTORC1 activity [32]. The immunosuppressive natural mTOR-inhibitor rapamycin downregulates T-cell anabolism and induces T-cell autophagy thereby suppressing T-cell effector function [32]. The differentiation of helper T-cells is regulated through the selective activation of mTORC1 and mTORC2 [33]. Only mTORC1 integrates environmental cues such as amino acids, energy, and growth factors [32]. Amino acid abundance in the postnatal period by excess protein intake due to artifical formula feeding may thus overstimulate mTORC1 of various immune cells. On the other hand, amino acid deprivation inactivates mTORC1 and T-helper cell activity and induces T-cell anergy [34, 35]. Recent evidence confirms that mTORC1 signalling plays a critical role during the early phases of allergic asthma [36, 37], consistent with studies showing a role for mTORC1 in early activation and differentiation events of immune cells [33]. Thus, exaggerated mTORC1 signalling by high protein formula feeding may disturb early postnatal mTORC1-mediated immune cell programming.

Insulin, IGF-1, AKT and regulatory T-cells

The amino acids leucine, glutamate, and isoleucine are potent insulin secretagogues [38, 39]. Excessive uptake of amino acids by formula feeding explains enhanced insulin secretion in comparison to breastfeeding [4042]. Axelsson et al. [40] determined the urinary C-peptide concentration, a measure of insulin secretion, in breastfed versus formula-fed infants. Whereas breastfeeding exhibited the lowest urinary C-peptide levels (2.2 ± 2.1 nmol/L), feeding low protein formula (1.3 g protein/100 mL) resulted in 32% increased C-peptide levels (2.9 ± 1.9 nmol/L). Notably, high protein formula (1.8 g protein/100 mL) feeding induced 218% elevated urinary C-peptide concentrations (7.0 ± 4.8 nmol/L). Protein-dependent insulinotropic effects of formula feeding have recently been confirmed by a multicentre study of the European Childhood Obesity Trial Study Group (Figure 2B) [41].
The insulinotropic amino acid leucine stimulates insulin synthesis and insulin secretion of pancreatic β-cells [38], and activates the translational regulators 4E-BP1 and the kinase S6K1 in an mTORC1-dependent manner [43]. Furthermore, the glutaminolysis pathway plays a pivotal role for insulin secretion. In comparison to breast milk, glutamate, the principal precursor of the glutaminolysis pathway [39], is increased by 60% in lower protein- and 164% in higher protein infant formula [41]. Of key regulatory function for the glutaminolysis pathway is the enzyme glutamate dehydrogenase (GDH), which catalyses the oxidative deamination of glutamate to α-ketoglutarate. The later is a substrate of the Krebs cycle that generates ATP required for insulin secretion. Notably, leucine acts as an allosteric activator of GDH that contributes to leucine sensing involved in the upregulation of mTORC1 [44, 45]. The combination of glutamine and leucine, which maximizes the flux through GDH, is most effective in phosphorylation of S6K1 in β-cells [43]. Taken together, leucine and glutamine in a synergistic fashion activate mTORC1 promoting insulin synthesis and secretion of β-cells [46].
The majority of circulating IGF-1 is produced in the liver (Figure 2). Insulin and amino acids independently stimulate hepatic IGF-1 synthesis [47]. Amino acid availability of hepatocytes is essential for IGF-1 gene expression [48]. In rat hepatocytes, amino acid excess increased IGF-1 expression [49]. In ovine hepatocytes, growth hormone and amino acids synergistically enhanced IGF-1 production. Thus, amino acid excess by formula feeding may overstimulate hepatic IGF-1 synthesis. In fact, Socha et al.[41] demonstrated that breastfeeding results in much lower total serum IGF-1 levels of 14.1 ng/mL than formula feeding. Infant formula with lower protein content (2.2 g protein/100 kcal) induced IGF-1 serum levels of 34.7 ng/mL (+146%), whereas high protein formula (4.4 g protein/100 kcal) raised IGF-1 serum concentrations to 48.4 ng/mL (+243%) in infants at the age of 6 months. Furthermore, increased plasma levels of insulin and IGF-1 have recently been reported in formula-fed Rhesus monkeys that received increased amounts of protein (1.83 g/dL) in comparison to Rhesus milk (1.16 g/dL) [42].
Taken together, high protein infant formula feeding overstimulates insulin and IGF-1 production, which both stimulate the downstream kinase AKT [50] that finally activates mTORC1 (Figure 2) [710]. Intriguingly, AKT-mediated phosphorylation of FoxO transcription factors leads to their nuclear extrusion into the cytoplasm. Notably, a FoxO3a-binding motif is present in the proximal region of the Foxp3 promoter [51]. Both FoxO1 and FoxO3a exert stimulatory effects on FoxP3 expression, the key transcription factor of regulatory T-cells (Tregs) [51]. There is convincing evidence that enhanced AKT-mTORC1 signalling suppresses de novo differentiation of FoxP3+ Tregs in the thymus [52, 53]. In summary, exaggerated insulin/IGF-1 signalling, a characteristic endocrine feature of recent formula feeding impairs Treg maturation.

Amino acids, mTORC1, and regulatory T-cells

Effector T-cell differentiation requires the integration of multiple signals. Recent evidence underlines that mTOR signalling dictates the outcome of Treg lineage commitment [54]. Under normal activating conditions, T-cells lacking mTOR differentiate into FoxP3+ Tregs [32, 54]. Given that essential amino acids are important nutrient signals activating mTORC1 [1517], it could be expected that amino acid abundance suppresses the differentiation of Tregs. On the other hand, amino acid deprivation should attenuate mTORC1 signalling. Indeed, Cobbold et al. [35] demonstrated that T-cells failed to proliferate in response to antigen, when one or more essential amino acids were limited, which was associated with reduced mTORC1 signalling. Importantly, inhibition of mTORC1 by limiting essential amino acids induced FoxP3 expression [35]. There is convincing evidence that the AKT-mTORC1 signalling axis negatively regulates de novo differentiation of CD4+FoxP3+ Tregs in the thymus [52, 53]. Overactivated mTORC1 downregulates the expression of FoxP3, the key transcription factor of Tregs [55]. In nasal polyps, whose association with allergy is still controversial [56], significantly increased infiltration of mTOR-activated inflammatory cells and decreased infiltration of FoxP3+ Tregs have been detected [57]. Excess protein intake by formula feeding may thus overstimulate mTORC1 signalling compromising Treg differentiation. On the other hand, mTORC1 activity is necessary to maintain Treg function partly through inhibiting the mTORC2 pathway [58]. In mice, TSC1 has been shown to play an important role in regulating thymic CD4+CD25+Foxp3+ nTreg-cell development via a rapamycin-resistant and mTORC2-dependent signaling pathway [59].

Regulatory T-cell deficiency in atopy

Tregs are essential for the maintenance of immune homeostasis and inhibit the differentiation of Th2-cells, suppress the production of IL-4, block the migration of effector T-cells into inflamed tissue, suppress the production of immunoglobulin E (IgE), induce IgG4 in B cells and limit Th17-mediated inflammation [60, 61]. Tregs have been identified as key players that prevent allergy development and are the target of immune therapy in the treatment of allergic diseases [6164]. Tregs are decreased in plasma and sputum of asthma patients and plasma of children with asthma, atopic dermatitis and food allergy [65, 66]. In atopic children, Treg deficiency was linearly related to increased IgE serum levels [65].

IL-4 increase in formula-fed Rhesus monkeys

Excessive protein intake with exaggerated mTORC1 signalling during a most vulnerable period of postnatal Treg maturation may result in deficient Treg-mediated suppression of Th2-cell differentiation increasing the production of IL-4, the signature cytokine of Th2-driven IgE responses. Intriguingly, formula-fed Rhesus monkeys, that received excess amounts of protein (1.83 g/dL) in comparison to Rhesus milk (1.16 g/dL) exhibited significantly increased serum levels of IL-4 associated with accelerated growth in the first month of life [42].

Bifidobacteria and inducible regulatory T-cells

Tregs are not only generated in the thymus (nTregs), but are also induced in the periphery (iTregs) such as the intestine [58]. Formula feeding in comparison to breastfeeding compromises the development of the physiological gut microbiome. In breastfed Rhesus infants Bifidobacteria and Lactobacillus predominated, whereas in formula-fed infants Ruminococcus was predominant [42]. Breastfed human infants harbor a fecal microbiota more than twice increased in Bifidobacterium numbers compared to formula-fed infants [67]. After formula feeding, Atopobium was found in significant counts and the numbers of Bifidobacteria dropped followed by increasing numbers of Bacteroides population [67]. Remarkably, breast milk is a natural source of bifidobacteria, which play an important role for infant gut development and maturation [68, 69]. Complex oligosaccharides in breast milk support the establishment of bifidobacteria in the neonatal gut, which finally stimulate iTreg development [70]. In fact, oral consumption of Bifidobacterium infantis 35624 is associated with enhanced FoxP3 expression in human peripheral blood cells pointing to the immune-stimulatory effect of bifidobacteria on FoxP3+ iTreg induction [71, 72]. It has recently been demonstrated that bifidobacteria stimulate transforming growth factor-β (TGFβ), which contributes to Treg differentiation [73]. Taken together, the probiotic effect of bifidobacteria in the prevention of atopic diseases appears to be related to their capability to generate FoxP3+ iTregs. In contrast, infant formula, that lacks bifidobacteria, may impair appropriate intestinal generation of FoxP3+ iTregs.

Immune-regulating microRNA deficiency in infant formula

Early-life consumption of unboiled cow’s milk has been characterized in several studies of human infants to be a protective factor for the development of atopy [7483]. Indeed, farm milk exposure has been associated with increased numbers of CD4+CD25+FoxP3+ Tregs, lower atopic sensitization and asthma in 4.5-year-old children [84].
The heat-sensitive atopy-preventive factor in fresh unboiled cow’s milk has not yet been identified. Nevertheless, human and bovine milk contain substantial amounts of exosomal microRNAs, which have been postulated to be involved in postnatal immune regulation [8590]. Milk microRNAs are transported by membranous microvesicles, called exosomes that play a pivotal role for horizontal microRNA transfer [91]. Raposo et al. [92] provided first evidence for exosome-mediated immune cell communication. Unidirectional transfer of microRNA-loaded exosomes from T-cells to antigen-presenting cells has recently been confirmed [93]. For immune cell-cell interactions exosome transport exchanging genetic messages over distances has been appreciated [94, 95]. Human and bovine milk contain high amounts of exosomal microRNA-155 [86, 87, 96, 97]. Admyre et al. [88] showed that incubation of human peripheral blood mononuclear cells with isolated human milk exosomes increased the number of CD4+CD25+FoxP3+ Tregs in a dose-dependent manner. Substantial evidence underlines that the ancient immune-regulatory microRNA-155 is required for the development of Tregs [98]. Notably, microRNA-155-deficient mice have reduced numbers of Tregs both in the thymus and in the periphery [98]. FoxP3 binds to the promoter of bic, the gene encoding microRNA-155 [99101]. T-cell receptor (TCR) and Notch signalling upregulate the IL-2R α-chain (CD25), rendering thymocytes receptive to subsequent cytokine signals that foster their development into fully functional FoxP3+ Tregs [102104]. IL-2 is capable of transducing signals in CD4+FoxP3+ Tregs as determined by phosphorylation of signal transducer and activator of transcription 5 (STAT5) [104]. Deletion of microRNA-155 results in limited IL-2/STAT5 signalling, which reduced Treg numbers [105]. Remarkably, microRNA-155 enhances FoxP3 expression by targeting suppressor of cytokine signalling 1 (SOCS1), an important negative regulator of IL-2R/STAT5 signalling [105].
Boiling of farm milk abolishes the atopy-preventive effect of cow’s milk [7483]. Boiling of cow’s milk degrades milk-derived bioactive microRNAs [90]. It has been shown that exosome membrane integrity is essential for the uptake of milk microRNAs into cultured cells [96]. The boiling process may disrupt the exosome lipid bilayer thus exposing the microRNA cargo to rapid RNase-mediated degradation. These observations support the recent concept that milk’s exosomal microRNAs may be involved in the maturation of Tregs and provide a potential signalling network of fresh milk that controls adequate maturation of Tregs preventing allergic immune deviations [106]. Indeed, exosomes have been detected in the intestine [107], and in the human and murine thymus [108, 109], where they induce Tregs [108]. It is thus conceivable that during the postnatal period, a time with higher intestinal permeability, immune-regulating exosomal microRNAs may pass the intestinal permeability barrier and traffic to the thymus or peripheral lympoid organs to promote Treg maturation [110]. Whereas raw unprocessed cow’s milk contains the highest amounts of bioactive microRNAs of all known body fluids, pasteurized milk contains much lower levels and milk powder commonly used for infant formula production only exhibits trace amounts of RNAs [86, 87]. The absence of bioactive microRNA-155 in infant formula may lead to inappropriate intestinal or thymic Treg maturation providing a further argument for the allergy-promoting effect of formula feeding and for the atopy-preventive effect of raw cow’s milk consumption early in life [106].

Breast milk n-3 polyunsaturated fatty acids and Treg maturation

Maternal long-chain polyunsaturated fatty acid (LC-PUFA) intake impacts their delivery to the infant either via the placenta or breast milk [111]. Supplementation of pregnant women with n-3 PUFAs has been reported in some studies to decrease sensitization to common food allergens and to lower the prevalence and severity of atopic dermatitis in the first year of life [112, 113]. There appears to be an effect of n-3 PUFAs in early life programming of the immune system [114]. In a murine model of cow’s milk allergy it could be demonstrated that allergy prevention by n-3 LC-PUFA was mediated by the induction of Tregs [115, 116]. Yasuda et al. [117] recently demonstrated that fatty acids have a profound impact on mTORC1 regulation. Whereas the saturated fatty acid palmitate activated mTORC1 by enhancing the translocation of mTORC1 to the lysosome, the unsaturated n-3 fatty acid eicosapentaenoic acid inhibited saturated fatty acid-induced translocation of mTORC1 to the lysosome and its subsequent activation [118]. n-3-fatty acid-mediated attenuation of mTORC1 activity may thus increase the maturation and function of Tregs. Breast milk-derived n-3 LC-PUFAs may represent another milk-derived control layer regulating Treg maturation.

Conclusions

Milk is the species-specific, genetically highly conserved end product of lactation that ensures the appropriate magnitude of mTORC1 activity of the milk recipient, which plays a fundamental role in adipocyte and Treg maturation [26, 106, 110]. The vector system milk exhibits a hardware, primarily represented by essential branched-chain amino acids and glutamine for appropriate mTORC1-dependent maturation of FoxP3+ Tregs [106, 110]. Milk’s software appears to be represented by the delivery of exosomal immune-regulatory microRNAs [8590]. Especially the ancient microRNA-155 appears to play a crucial role for FoxP3 expression [98, 105]. The relevance of iTregs to the development of atopy in the first year of life is less clear. However, the probiotic system of milk featured by milk-derived bifidobacteria regulates the appropriate development of the infant’s gut microbiome by providing bifidobacteria as well as bacterial nursing factors such as oligosaccharides of human milk [118121]. The appropriate composition of milk fatty acids may have further impacts on mTORC1-mediated Treg differentiation [115117].
Thus, at least five interacting signalling networks of milk control the induction of FoxP3 and Treg maturation: 1) amino acid-mediated regulation of mTORC1, 2) milk exosomal microRNA-mediated FoxP3 expression, 3) milk-derived bifidobacteria and their growth-promoting glycobiome, 4) fatty acid-mediated modulation of mTORC1-dependent Treg maturation, and 5) the least characterized role of milk-derived stem cells with the potential of multilineage differentiation [122, 123] (Table 1).
Table 1
Effectors of postnatal feeding regulating FoxP3 + Treg differentiation
Effectors
Mechanisms of FoxP3-induction
Amount of protein influx (Excessive by formula feeding)
Protein and amino acids regulate the magnitude of AKT- and mTORC1-activity that controls the expression of FoxP3.
Exosomal microRNA (Absent in artificial formula)
Exosomal microRNA-155 enhances the expression of FoxP3, which promotes microRNA-155 expression.
Bifidobacteria (Absent in artificial formula)
Breast milk delivers bifidobacteria and milk-derived oligosaccharides that promote bacterial growth in the gut. Bifidobacteria induce intestinal generation of FoxP3+ iTregs.
Polyunsaturated fatty acids (Not adequately provided by formula feeding)
n-3-Polyunsaturated fatty acids inhibit mTORC1 activation, thus promote FoxP3 expression, whereas saturated fatty acids activate mTORC1, thus attenuate FoxP3 expression.
Mammalian lactation exhibits a highly sophisticated growth-promoting, immune-regulating, and adipocyte differentiating signalling network donated by mammary glands secretory end product milk, which is obviously not just food as misinterpreted in the early 1930’s [3, 4].At the molecular level, both the development of allergy and childhood obesity can be traced back to exaggerated mTORC1 signalling during a vulnerable window of postnatal programming. Accelerated postnatal growth and weight gain just reflect overstimulated mTORC1 signalling during a sensitive period of human nutrition, a period of life, in which the nutritional route is used for lifelong metabolic and immunologic programming (Figure 1).
The vigorous change from this evolutionarily developed and genetically highly conserved system of breastfeeding to an artificial programming procedure apparently represents the most serious error of modern medicine laying the foundation for the worldwide epidemics of allergy and obesity. This man-made disturbance of early mTORC1-programming explains the comorbidity of allergy and obesity.
It has to be kept in mind that not only the postnatal period plays a fundamental role in metabolic and immunological programming but also fetal development [124]. Maternal obesity has been related to fetal overgrowth and high birth weight. The later has been linked to obesity and type 2-diabetes later in life [125, 126]. In contrast, rapid catch-up growth after intraunterine growth restriction has been associated with the development of asthma [21, 127]. Placental nutrient transport is controlled by insulin/IGF-1 and mTORC1 signalling and is upregulated in fetal overgrowth [128, 129]. Notably, regular cow’s milk consumption increases both insulin/IGF-1- and mTORC1 signalling [110]. It is thus not surprising that milk consumption during pregnancy increased fetal growth, infant size at birth and birth weight [130, 131]. In terms of evolutionary biology, regular cow’s milk consumption is a very recent behavorial change, which may have adverse long-term health effects in humans [132]. During the last century, due to the implementation of widespread cooling technology milk and other dairy products became alvailable on a large scale and cow’s milk-based artificial infant feeding have been introduced into human biology. Both, cow’s milk consumption during pregnancy and artificial infant feeding practices may contribute to aberrant perinatal metabolic and immunologic programming. Future research has to clarify which periods of perinatal life are most vulnerbale for aberrations of nutritional mTORC1-mediated programming. Rowe et al. [133] demonstrated that priming of Th2 responses associated with persistent house dust mite (HDM)-IgE production occurs entirely postnatally, as HDM reactivity in cord blood seems nonspecific and was unrelated to subsequent development of allergen-specific Th2 memory or IgE. These observations underline the importance of the postnatal period, which physiologically depends on the programming effects of breastfeeding. Only breastfeeding guarantees the species-specific mTORC1-signalling axis controlled by the human lactation genome that developed during millions of years of mammalian evolution. After one century of formula feeding it is time to remember the words of Dr Truby King who stated in 1913 in his book Feeding and Care of the Baby that the natural food direct from the mother’s breast is the child’s birth right [3, 134].
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​4.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Competing interests

The author declared that he has no competing interests.
Anhänge

Authors’ original submitted files for images

Below are the links to the authors’ original submitted files for images.
Literatur
1.
Zurück zum Zitat Ip S, Chung M, Raman G, Chew P, Magula N, DeVine D, Trikalinos T, Lau J: Breastfeeding and maternal and infant health outcomes in developed countries. Evid Report Technol Assess. 2007, 153: 1-186. Ip S, Chung M, Raman G, Chew P, Magula N, DeVine D, Trikalinos T, Lau J: Breastfeeding and maternal and infant health outcomes in developed countries. Evid Report Technol Assess. 2007, 153: 1-186.
2.
Zurück zum Zitat Fleischer DM, Spergel JM, Assa’ad AH, Pongracic JA: Primary prevention of allergic disease through nutritional interventions. J Allergy Clin Immunol Pract. 2013, 1: 29-36.PubMedCrossRef Fleischer DM, Spergel JM, Assa’ad AH, Pongracic JA: Primary prevention of allergic disease through nutritional interventions. J Allergy Clin Immunol Pract. 2013, 1: 29-36.PubMedCrossRef
3.
Zurück zum Zitat Bryder L: From breast to bottle: a history of modern infant feeding. Endeavour. 2009, 33: 54-59.PubMedCrossRef Bryder L: From breast to bottle: a history of modern infant feeding. Endeavour. 2009, 33: 54-59.PubMedCrossRef
4.
Zurück zum Zitat Marriott WM, Schoenthal L: An experimental study of the use of unsweetened evaporated milk for the preparation of infant feeding formulas. Arch Pediatr. 1929, 46: 135-148. Marriott WM, Schoenthal L: An experimental study of the use of unsweetened evaporated milk for the preparation of infant feeding formulas. Arch Pediatr. 1929, 46: 135-148.
5.
Zurück zum Zitat Brown EJ, Albers MW, Shin TB, Ichikawa K, Keith CT, Lane WS, Schreiber SL: A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature. 1994, 369: 756-758.PubMedCrossRef Brown EJ, Albers MW, Shin TB, Ichikawa K, Keith CT, Lane WS, Schreiber SL: A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature. 1994, 369: 756-758.PubMedCrossRef
6.
Zurück zum Zitat Vézina C, Kudelski A, Sehgal SN: Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot. 1975, 28: 721-726.PubMedCrossRef Vézina C, Kudelski A, Sehgal SN: Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot. 1975, 28: 721-726.PubMedCrossRef
7.
8.
9.
11.
Zurück zum Zitat Avruch J, Long X, Ortiz-Vega S, Rapley J, Papageorgiou A, Dai N: Amino acid regulation of TOR complex 1. Am J Physiol Endocrinol Metab. 2009, 296: 592-602.CrossRef Avruch J, Long X, Ortiz-Vega S, Rapley J, Papageorgiou A, Dai N: Amino acid regulation of TOR complex 1. Am J Physiol Endocrinol Metab. 2009, 296: 592-602.CrossRef
12.
Zurück zum Zitat Kim J, Guan KL: Amino acid signaling in TOR activation. Annu Rev Biochem. 2011, 80: 1001-1032.PubMedCrossRef Kim J, Guan KL: Amino acid signaling in TOR activation. Annu Rev Biochem. 2011, 80: 1001-1032.PubMedCrossRef
13.
Zurück zum Zitat Efeyan A, Zoncu R, Sabatini DM: Amino acids and mTORC1: from lysosomes to disease. Trend Mol Med. 2012, 18: 524-533.CrossRef Efeyan A, Zoncu R, Sabatini DM: Amino acids and mTORC1: from lysosomes to disease. Trend Mol Med. 2012, 18: 524-533.CrossRef
16.
Zurück zum Zitat Dodd KM, Tee AR: Leucine and mTORC1: a complex relationship. Am J Physiol Endocrinol Metab. 2012, 302: E1329-E1342.PubMedCrossRef Dodd KM, Tee AR: Leucine and mTORC1: a complex relationship. Am J Physiol Endocrinol Metab. 2012, 302: E1329-E1342.PubMedCrossRef
17.
Zurück zum Zitat Durán RV, Oppliger W, Robitaille AM, Heiserich L, Skendaj R, Gottlieb E, Hall MN: Glutaminolysis activates Rag-mTORC1 signaling. Mol Cell. 2012, 47: 349-358.PubMedCrossRef Durán RV, Oppliger W, Robitaille AM, Heiserich L, Skendaj R, Gottlieb E, Hall MN: Glutaminolysis activates Rag-mTORC1 signaling. Mol Cell. 2012, 47: 349-358.PubMedCrossRef
18.
Zurück zum Zitat Bounous G, Kongshavn PA, Taveroff A, Gold P: Evolutionary traits in human milk proteins. Med Hypotheses. 1988, 27: 133-140.PubMedCrossRef Bounous G, Kongshavn PA, Taveroff A, Gold P: Evolutionary traits in human milk proteins. Med Hypotheses. 1988, 27: 133-140.PubMedCrossRef
19.
Zurück zum Zitat Litonjua AA, Gold DR: Asthma and obesity: common early-life influences in the inception of disease. J Allergy Clin Immunol. 2008, 121: 1075-1084.PubMedCrossRef Litonjua AA, Gold DR: Asthma and obesity: common early-life influences in the inception of disease. J Allergy Clin Immunol. 2008, 121: 1075-1084.PubMedCrossRef
20.
Zurück zum Zitat Paul IM, Camera L, Zeiger RS, Guilbert TW, Bacharier LB, Taussig LM, Morgan WJ, Covar RA, Krawiec M, Bloombrg GR, Mauger DT, Childhood Asthma Research and Education (CARE) Network: Relationship between infant weight gain and later asthma. Pediatr Allergy Immunol. 2010, 21: 82-89.PubMedCentralPubMedCrossRef Paul IM, Camera L, Zeiger RS, Guilbert TW, Bacharier LB, Taussig LM, Morgan WJ, Covar RA, Krawiec M, Bloombrg GR, Mauger DT, Childhood Asthma Research and Education (CARE) Network: Relationship between infant weight gain and later asthma. Pediatr Allergy Immunol. 2010, 21: 82-89.PubMedCentralPubMedCrossRef
21.
Zurück zum Zitat Liu X, Olsen J, Agerbo E, Yuan W, Cnattingius S, Gissler M, Li J: Birth weight, gestational age, fetal growth and childhood asthma hospitalization. Allergy Asthma Clin Immunol. 2014, 10: 13-PubMedCentralPubMedCrossRef Liu X, Olsen J, Agerbo E, Yuan W, Cnattingius S, Gissler M, Li J: Birth weight, gestational age, fetal growth and childhood asthma hospitalization. Allergy Asthma Clin Immunol. 2014, 10: 13-PubMedCentralPubMedCrossRef
22.
Zurück zum Zitat Sonnenschein-van der Voort AM, Arends LR, de Jongste JC, Annesi-Maesano I, Arshad SH, Barros H, Basterrechea M, Bisgaard H, Chatzi L, Corpeleijn E, Correia S, Craig LC, Devereux G, Dogaru C, Dostal M, Duchen K, Eggesbø M, van der Ent CK, Fantini MP, Forastiere F, Frey U, Gehring U, Gori D, van der Gugten AC, Hanke W, Henderson AJ, Heude B, Iñiguez C, Inskip HM, Keil T: Preterm birth, infant weight gain, and childhood asthma risk: A meta-analysis of 147,000 European children. J Allergy Clin Immunol. 2014, 133: 1317-1329.PubMedCentralPubMedCrossRef Sonnenschein-van der Voort AM, Arends LR, de Jongste JC, Annesi-Maesano I, Arshad SH, Barros H, Basterrechea M, Bisgaard H, Chatzi L, Corpeleijn E, Correia S, Craig LC, Devereux G, Dogaru C, Dostal M, Duchen K, Eggesbø M, van der Ent CK, Fantini MP, Forastiere F, Frey U, Gehring U, Gori D, van der Gugten AC, Hanke W, Henderson AJ, Heude B, Iñiguez C, Inskip HM, Keil T: Preterm birth, infant weight gain, and childhood asthma risk: A meta-analysis of 147,000 European children. J Allergy Clin Immunol. 2014, 133: 1317-1329.PubMedCentralPubMedCrossRef
23.
Zurück zum Zitat Koletzko B, von Kries R, Closa R, Escribano J, Scaglioni S, Giovannini M, Beyer J, Demmelmair H, Gruszfeld D, Dobrzanska A, Sengier A, Langhendries JP, Rolland Cachera MF, Grote V, European Childhood Obesity Trial Study Group: Lower protein in infant formula is associated with lower weight up to age 2 y: a randomized clinical trial. Am J Clin Nutr. 2009, 89: 1836-1845.PubMedCrossRef Koletzko B, von Kries R, Closa R, Escribano J, Scaglioni S, Giovannini M, Beyer J, Demmelmair H, Gruszfeld D, Dobrzanska A, Sengier A, Langhendries JP, Rolland Cachera MF, Grote V, European Childhood Obesity Trial Study Group: Lower protein in infant formula is associated with lower weight up to age 2 y: a randomized clinical trial. Am J Clin Nutr. 2009, 89: 1836-1845.PubMedCrossRef
24.
Zurück zum Zitat Escribano J, Luque V, Ferre N, Mendez-Riera G, Koletzko B, Grote V, Demmelmair H, Bluck L, Wright A, Closa-Monasterolo R, European Childhood Obesity Trial Study Group: Effect of protein intake and weight gain velocity on body fat mass at 6 months of age: the EU Childhood Obesity Programme. Int J Obes. 2012, 36: 548-553.CrossRef Escribano J, Luque V, Ferre N, Mendez-Riera G, Koletzko B, Grote V, Demmelmair H, Bluck L, Wright A, Closa-Monasterolo R, European Childhood Obesity Trial Study Group: Effect of protein intake and weight gain velocity on body fat mass at 6 months of age: the EU Childhood Obesity Programme. Int J Obes. 2012, 36: 548-553.CrossRef
25.
Zurück zum Zitat Weber M, Grote V, Closa-Monasterolo R, Escribano J, Langhendries JP, Dain E, Giovannini M, Verduci E, Gruszfeld D, Socha P, Koletzko B, European Childhood Obesity Trial Study Group: Lower protein content in infant formula reduces BMI and obesity risk at school age: follow-up of a randomized trial. Am J Clin Nutr. 2014, 99: 1-11.CrossRef Weber M, Grote V, Closa-Monasterolo R, Escribano J, Langhendries JP, Dain E, Giovannini M, Verduci E, Gruszfeld D, Socha P, Koletzko B, European Childhood Obesity Trial Study Group: Lower protein content in infant formula reduces BMI and obesity risk at school age: follow-up of a randomized trial. Am J Clin Nutr. 2014, 99: 1-11.CrossRef
26.
Zurück zum Zitat Melnik BC: Excessive leucine-mTORC1-signalling of cow milk-based infant formula: the missing link to understand early childhood obesity. J Obes. 2012, 2012: 197653-PubMedCentralPubMedCrossRef Melnik BC: Excessive leucine-mTORC1-signalling of cow milk-based infant formula: the missing link to understand early childhood obesity. J Obes. 2012, 2012: 197653-PubMedCentralPubMedCrossRef
27.
Zurück zum Zitat Hersoug LG, Linneberg A: The link between the epidemics of obesity and allergic diseases: does obesity induce decreased immune tolerance?. Allergy. 2007, 62: 1205-1213.PubMedCrossRef Hersoug LG, Linneberg A: The link between the epidemics of obesity and allergic diseases: does obesity induce decreased immune tolerance?. Allergy. 2007, 62: 1205-1213.PubMedCrossRef
28.
Zurück zum Zitat Gorgievska-Sukaroovska B, Lipozencic J, Susac A: Obesity and allergic diseases. Acta Dermatovenerol Croat. 2008, 16: 231-235. Gorgievska-Sukaroovska B, Lipozencic J, Susac A: Obesity and allergic diseases. Acta Dermatovenerol Croat. 2008, 16: 231-235.
29.
30.
Zurück zum Zitat Brüske I, Flexeder C, Heinrich J: Body mass index and the incidence of asthma in children. Curr Opin Allergy Clin Immunol. 2014, 14: 155-160.PubMedCrossRef Brüske I, Flexeder C, Heinrich J: Body mass index and the incidence of asthma in children. Curr Opin Allergy Clin Immunol. 2014, 14: 155-160.PubMedCrossRef
31.
Zurück zum Zitat Fox CJ, Hammerman PS, Thompson CB: Fuel feeds function: energy metabolism and the T-cell response. Nat Rev Immunol. 2005, 5: 844-852.PubMedCrossRef Fox CJ, Hammerman PS, Thompson CB: Fuel feeds function: energy metabolism and the T-cell response. Nat Rev Immunol. 2005, 5: 844-852.PubMedCrossRef
32.
Zurück zum Zitat Powell JD, Delgoffe GM: The mammalian target of rapamycin: linking T cell differentiation, function, and metabolism. Immunity. 2010, 33: 301-311.PubMedCentralPubMedCrossRef Powell JD, Delgoffe GM: The mammalian target of rapamycin: linking T cell differentiation, function, and metabolism. Immunity. 2010, 33: 301-311.PubMedCentralPubMedCrossRef
33.
Zurück zum Zitat Delgoffe GM, Pollizzi KN, Waickman AT, Heikamp E, Meyers DJ, Horton MR, Xiao B, Worley PF, Powell JD: The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat Immunol. 2011, 12: 295-303.PubMedCentralPubMedCrossRef Delgoffe GM, Pollizzi KN, Waickman AT, Heikamp E, Meyers DJ, Horton MR, Xiao B, Worley PF, Powell JD: The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat Immunol. 2011, 12: 295-303.PubMedCentralPubMedCrossRef
34.
Zurück zum Zitat Fumarola C, La Monica S, Guidotti GG: Amino acid signaling through the mammalian target of rapamycin (mTOR) pathway: role of glutamine and of cell shrinkage. J Cell Physiol. 2005, 204: 155-165.PubMedCrossRef Fumarola C, La Monica S, Guidotti GG: Amino acid signaling through the mammalian target of rapamycin (mTOR) pathway: role of glutamine and of cell shrinkage. J Cell Physiol. 2005, 204: 155-165.PubMedCrossRef
35.
Zurück zum Zitat Cobbold SP, Adams E, Farquhar CA, Nolan KF, Howie D, Lui KO, Fairchild PJ, Mellor AL, Ron D, Waldmann H: Infectious tolerance via the consumption of essential amino acids and mTOR signaling. Proc Natl Acad Sci U S A. 2009, 106: 12055-12060.PubMedCentralPubMedCrossRef Cobbold SP, Adams E, Farquhar CA, Nolan KF, Howie D, Lui KO, Fairchild PJ, Mellor AL, Ron D, Waldmann H: Infectious tolerance via the consumption of essential amino acids and mTOR signaling. Proc Natl Acad Sci U S A. 2009, 106: 12055-12060.PubMedCentralPubMedCrossRef
36.
Zurück zum Zitat Mushaben EM, Kramer EL, Brandt EB, Khurana Hershey GK, Le Cras TD: Rapamycin attenuates airway hyperreactivity, goblet cells, and IgE in experimental allergic asthma. J Immunol. 2011, 187: 5756-5763.PubMedCentralPubMedCrossRef Mushaben EM, Kramer EL, Brandt EB, Khurana Hershey GK, Le Cras TD: Rapamycin attenuates airway hyperreactivity, goblet cells, and IgE in experimental allergic asthma. J Immunol. 2011, 187: 5756-5763.PubMedCentralPubMedCrossRef
37.
Zurück zum Zitat Mushaben EM, Brandt EB, Hershey GK, Le Cras TD: Differential effects of rapamycin and dexamethasone in mouse models of established allergic asthma. PLoS One. 2013, 8: e54426-PubMedCentralPubMedCrossRef Mushaben EM, Brandt EB, Hershey GK, Le Cras TD: Differential effects of rapamycin and dexamethasone in mouse models of established allergic asthma. PLoS One. 2013, 8: e54426-PubMedCentralPubMedCrossRef
38.
Zurück zum Zitat McDaniel ML, Marshall CA, Pappan KL, Kwon G: Metabolic and autocrine regulation of the mammalian target of rapamycin by pancreatic β-cells. Diabetes. 2002, 51: 2877-2885.PubMedCrossRef McDaniel ML, Marshall CA, Pappan KL, Kwon G: Metabolic and autocrine regulation of the mammalian target of rapamycin by pancreatic β-cells. Diabetes. 2002, 51: 2877-2885.PubMedCrossRef
39.
Zurück zum Zitat Nair KS, Short KR: Hormonal and signaling role of branched-chain amino acids. J Nutr. 2005, 135: 1547S-1552S.PubMed Nair KS, Short KR: Hormonal and signaling role of branched-chain amino acids. J Nutr. 2005, 135: 1547S-1552S.PubMed
40.
Zurück zum Zitat Axelsson IE, Ivarsson SA, Räihä NC: Protein intake in early infancy: effects on plasma amino acid concentrations, insulin metabolism, and growth. Pediatr Res. 1989, 26: 614-617.PubMedCrossRef Axelsson IE, Ivarsson SA, Räihä NC: Protein intake in early infancy: effects on plasma amino acid concentrations, insulin metabolism, and growth. Pediatr Res. 1989, 26: 614-617.PubMedCrossRef
41.
Zurück zum Zitat Socha P, Grote V, Gruszfeld D, Janas R, Demmelmair H, Closa-Monasterolo R, Subías JE, Scaglioni S, Verduci E, Dain E, Langhendries JP, Perrin E, Koletzko B, European Childhood Obesity Trial Study Group: Milk protein intake, the metabolic-endocrine response, and growth in infancy: data from a randomized clinical trial. Am J Clin Nutr. 2011, 94: 1776-1784.CrossRef Socha P, Grote V, Gruszfeld D, Janas R, Demmelmair H, Closa-Monasterolo R, Subías JE, Scaglioni S, Verduci E, Dain E, Langhendries JP, Perrin E, Koletzko B, European Childhood Obesity Trial Study Group: Milk protein intake, the metabolic-endocrine response, and growth in infancy: data from a randomized clinical trial. Am J Clin Nutr. 2011, 94: 1776-1784.CrossRef
42.
Zurück zum Zitat O’Sullivan A, He X, McNiven EM, Haggarty NW, Lönnerdal B, Slupsky CM: Early diet impacts infant Rhesus gut microbiome, immunity, and metabolism. J Proteome Res. 2013, 12: 2833-2845.PubMedCrossRef O’Sullivan A, He X, McNiven EM, Haggarty NW, Lönnerdal B, Slupsky CM: Early diet impacts infant Rhesus gut microbiome, immunity, and metabolism. J Proteome Res. 2013, 12: 2833-2845.PubMedCrossRef
43.
Zurück zum Zitat Xu G, Kwon G, Cruz WS, Marshall CA, McDaniel ML: Metabolic regulation by leucine of translation initiation through the mTOR-signaling pathway by pancreatic beta-cells. Diabetes. 2001, 50: 353-360.PubMedCrossRef Xu G, Kwon G, Cruz WS, Marshall CA, McDaniel ML: Metabolic regulation by leucine of translation initiation through the mTOR-signaling pathway by pancreatic beta-cells. Diabetes. 2001, 50: 353-360.PubMedCrossRef
44.
Zurück zum Zitat Li M, Li C, Allen A, Stanley CA, Smith TJ: The structure and allosteric regulation of mammalian glutamate dehydrogenase. Arch Biochem Biophys. 2012, 519: 69-80.PubMedCentralPubMedCrossRef Li M, Li C, Allen A, Stanley CA, Smith TJ: The structure and allosteric regulation of mammalian glutamate dehydrogenase. Arch Biochem Biophys. 2012, 519: 69-80.PubMedCentralPubMedCrossRef
45.
Zurück zum Zitat Lorin S, Tol MJ, Bauvy C, Strijland A, Poüs C, Verhoeven AJ, Codogno P, Meijer AJ: Glutamate dehydrogenase contributes to leucine sensing in the regulation of autophagy. Autophagy. 2013, 9: 850-860.PubMedCentralPubMedCrossRef Lorin S, Tol MJ, Bauvy C, Strijland A, Poüs C, Verhoeven AJ, Codogno P, Meijer AJ: Glutamate dehydrogenase contributes to leucine sensing in the regulation of autophagy. Autophagy. 2013, 9: 850-860.PubMedCentralPubMedCrossRef
47.
Zurück zum Zitat Thissen JP, Ketelslegers JM, Underwood LE: Nutritional regulation of the insulin-like growth factors. Endocr Rev. 1994, 15: 80-101.PubMed Thissen JP, Ketelslegers JM, Underwood LE: Nutritional regulation of the insulin-like growth factors. Endocr Rev. 1994, 15: 80-101.PubMed
48.
Zurück zum Zitat Ketelslegers JM, Maiter D, Maes M, Underwood LE, Thissen JP: Nutritional regulation of the insulin- like growth factor-I. Metabolism. 1995, 44: 50-57.PubMedCrossRef Ketelslegers JM, Maiter D, Maes M, Underwood LE, Thissen JP: Nutritional regulation of the insulin- like growth factor-I. Metabolism. 1995, 44: 50-57.PubMedCrossRef
49.
Zurück zum Zitat Thissen JP, Pucilowska JB, Underwood LE: Differential regulation of the insulin-like growth factor I (IGF-I) and IGF binding protein-1 messenger ribonucleic acids by amino acid availability and growth hormone in rat hepatocyte primary culture. Endocrinology. 1994, 134: 1570-1576.PubMed Thissen JP, Pucilowska JB, Underwood LE: Differential regulation of the insulin-like growth factor I (IGF-I) and IGF binding protein-1 messenger ribonucleic acids by amino acid availability and growth hormone in rat hepatocyte primary culture. Endocrinology. 1994, 134: 1570-1576.PubMed
50.
Zurück zum Zitat Sen P, Mukherjee S, Ray D, Raha S: Involvement of the Akt/PKB signaling pathway with disease processes. Mol Cell Biochem. 2003, 253: 241-246.PubMedCrossRef Sen P, Mukherjee S, Ray D, Raha S: Involvement of the Akt/PKB signaling pathway with disease processes. Mol Cell Biochem. 2003, 253: 241-246.PubMedCrossRef
51.
Zurück zum Zitat Harada Y, Harada Y, Elly C, Ying G, Paik JH, DePinho RA, Liu YC: Transcription factors Foxo3a and Foxo1 couple the E3 ligase Cbl-b to the induction of Foxp3 expression in induced regulatory T cells. J Exp Med. 2010, 207: 1381-1391.PubMedCentralPubMedCrossRef Harada Y, Harada Y, Elly C, Ying G, Paik JH, DePinho RA, Liu YC: Transcription factors Foxo3a and Foxo1 couple the E3 ligase Cbl-b to the induction of Foxp3 expression in induced regulatory T cells. J Exp Med. 2010, 207: 1381-1391.PubMedCentralPubMedCrossRef
52.
53.
Zurück zum Zitat Sauer S, Bruno L, Hertweck A, Finlay D, Leleu M, Spivakov M, Knight ZA, Cobb BS, Cantrell D, O’Connor E, Shokat KM, Fisher AG, Merkenschlager M: T cell receptor signaling controls FoxP3 expression via PI3K, Akt, and mTOR. Proc Natl Acad Sci U S A. 2008, 105: 7797-7802.PubMedCentralPubMedCrossRef Sauer S, Bruno L, Hertweck A, Finlay D, Leleu M, Spivakov M, Knight ZA, Cobb BS, Cantrell D, O’Connor E, Shokat KM, Fisher AG, Merkenschlager M: T cell receptor signaling controls FoxP3 expression via PI3K, Akt, and mTOR. Proc Natl Acad Sci U S A. 2008, 105: 7797-7802.PubMedCentralPubMedCrossRef
54.
Zurück zum Zitat Delgoffe GM, Kole TP, Zheng Y, Zarek PE, Matthews KL, Xiao B, Worley PF, Kozma SC, Powell JD: The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity. 2009, 30: 832-844.PubMedCentralPubMedCrossRef Delgoffe GM, Kole TP, Zheng Y, Zarek PE, Matthews KL, Xiao B, Worley PF, Kozma SC, Powell JD: The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity. 2009, 30: 832-844.PubMedCentralPubMedCrossRef
55.
Zurück zum Zitat Josefowicz SZ, Lu LF, Rudensky AY: Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol. 2012, 30: 531-564.PubMedCrossRef Josefowicz SZ, Lu LF, Rudensky AY: Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol. 2012, 30: 531-564.PubMedCrossRef
56.
Zurück zum Zitat Wilson KF, McMains KC, Orlandi RR: The association between allergy and chronic rhinosinusitis with and without nasal polyps: an evidence-based review with recommendations. Int Forum Allergy Rhinol. 2014, 4: 93-103.PubMedCrossRef Wilson KF, McMains KC, Orlandi RR: The association between allergy and chronic rhinosinusitis with and without nasal polyps: an evidence-based review with recommendations. Int Forum Allergy Rhinol. 2014, 4: 93-103.PubMedCrossRef
57.
Zurück zum Zitat Xu G, Xia J, Hua X, Zhou H, Yu C, Liu Z, Cai K, Shi J, Li H: Activated mammalian target is associated with T regulatory cell insufficiency in nasal polyps. Respir Res. 2009, 10: 13-PubMedCentralPubMedCrossRef Xu G, Xia J, Hua X, Zhou H, Yu C, Liu Z, Cai K, Shi J, Li H: Activated mammalian target is associated with T regulatory cell insufficiency in nasal polyps. Respir Res. 2009, 10: 13-PubMedCentralPubMedCrossRef
58.
Zurück zum Zitat Zeng H, Yang K, Cloer C, Neale G, Vogel P, Chi H: mTORC1 couples immune signals and metabolic programming to establish T(reg)-cell function. Nature. 2013, 499: 485-490.PubMedCentralPubMedCrossRef Zeng H, Yang K, Cloer C, Neale G, Vogel P, Chi H: mTORC1 couples immune signals and metabolic programming to establish T(reg)-cell function. Nature. 2013, 499: 485-490.PubMedCentralPubMedCrossRef
59.
Zurück zum Zitat Chen H, Zhang L, Zhang H, Xiao Y, Shao L, Li H, Yin H, Wang R, Liu G, Corley D, Yang Z, Zhao Y: Disruption of TSC1/2 signaling complex reveals a checkpoint governing thymic CD4+ CD25+ Foxp3+ regulatory T-cell development in mice. FASEB J. 2013, 27: 3979-3990.PubMedCrossRef Chen H, Zhang L, Zhang H, Xiao Y, Shao L, Li H, Yin H, Wang R, Liu G, Corley D, Yang Z, Zhao Y: Disruption of TSC1/2 signaling complex reveals a checkpoint governing thymic CD4+ CD25+ Foxp3+ regulatory T-cell development in mice. FASEB J. 2013, 27: 3979-3990.PubMedCrossRef
60.
61.
Zurück zum Zitat Akdis CA, Akdis M: Mechanisms and treatment of allergic disease in the big picture of regulatory T cells. J Allergy Clin Immunol. 2009, 123: 735-746.PubMedCrossRef Akdis CA, Akdis M: Mechanisms and treatment of allergic disease in the big picture of regulatory T cells. J Allergy Clin Immunol. 2009, 123: 735-746.PubMedCrossRef
62.
Zurück zum Zitat Palomares O, Yaman G, Azkur A, Akkoc T, Akdis M, Akdis CA: Role of Treg in immune regulation of allergic diseases. Eur J Immunol. 2010, 40: 1232-1240.PubMedCrossRef Palomares O, Yaman G, Azkur A, Akkoc T, Akdis M, Akdis CA: Role of Treg in immune regulation of allergic diseases. Eur J Immunol. 2010, 40: 1232-1240.PubMedCrossRef
63.
Zurück zum Zitat Ostroukhova M, Ray A: CD25+ T cells and regulation of allergen-induced responses. Curr Allergy Asthma Rep. 2005, 5: 35-41.PubMedCrossRef Ostroukhova M, Ray A: CD25+ T cells and regulation of allergen-induced responses. Curr Allergy Asthma Rep. 2005, 5: 35-41.PubMedCrossRef
64.
Zurück zum Zitat Fujita H, Meyer N, Akdis M, Akdis CA: Mechanisms of immune tolerance to allergens. Chem Immunol Allergy. 2012, 96: 30-38.PubMedCrossRef Fujita H, Meyer N, Akdis M, Akdis CA: Mechanisms of immune tolerance to allergens. Chem Immunol Allergy. 2012, 96: 30-38.PubMedCrossRef
65.
Zurück zum Zitat Stelmaszczyk-Emmel A, Zawadzka-Krajewska A, Szypowska MK, Demkow R: Frequency and activation of CD4+CD25highFoxP3+ regulatory T cells in peripheral blood from children with atopic allergy. Int Arch Allergy Immunol. 2013, 162: 16-24.PubMedCrossRef Stelmaszczyk-Emmel A, Zawadzka-Krajewska A, Szypowska MK, Demkow R: Frequency and activation of CD4+CD25highFoxP3+ regulatory T cells in peripheral blood from children with atopic allergy. Int Arch Allergy Immunol. 2013, 162: 16-24.PubMedCrossRef
66.
Zurück zum Zitat Kawayama T, Matsunaga K, Kaku Y, Yamaguchi K, Kinoshita T, O’Byrne PM, Hoshino T: Decreased CTLA4+ and Foxp3+ CD25highCD4+ cells in induced sputum from patients with mild atopic asthma. Allergol Int. 2013, 62: 203-213.PubMedCrossRef Kawayama T, Matsunaga K, Kaku Y, Yamaguchi K, Kinoshita T, O’Byrne PM, Hoshino T: Decreased CTLA4+ and Foxp3+ CD25highCD4+ cells in induced sputum from patients with mild atopic asthma. Allergol Int. 2013, 62: 203-213.PubMedCrossRef
67.
Zurück zum Zitat Bezirtzoglou E, Tsiotsias A, Welling GJ: Microbiota profile in feces of breast- and formula-fed newborns by using in situ hybridization (FISH). Anaerobe. 2011, 17: 478-482.PubMedCrossRef Bezirtzoglou E, Tsiotsias A, Welling GJ: Microbiota profile in feces of breast- and formula-fed newborns by using in situ hybridization (FISH). Anaerobe. 2011, 17: 478-482.PubMedCrossRef
68.
Zurück zum Zitat Gueimonde M, Laitinen K, Salminen S, Isolauri E: Breast milk: a source of bifidobacteria for infant gut development and maturation?. Neonatology. 2007, 92: 64-66.PubMedCrossRef Gueimonde M, Laitinen K, Salminen S, Isolauri E: Breast milk: a source of bifidobacteria for infant gut development and maturation?. Neonatology. 2007, 92: 64-66.PubMedCrossRef
69.
Zurück zum Zitat Solís G, de Los Reyes-Gavilan CG, Fernández N, Margolles A, Gueimonde M: Establishment and development of lactic acid bacteria and bifidobacteria microbiota in breast-milk and the infant gut. Anaerobe. 2010, 16: 307-310.PubMedCrossRef Solís G, de Los Reyes-Gavilan CG, Fernández N, Margolles A, Gueimonde M: Establishment and development of lactic acid bacteria and bifidobacteria microbiota in breast-milk and the infant gut. Anaerobe. 2010, 16: 307-310.PubMedCrossRef
70.
Zurück zum Zitat Heine RG: Preventing atopy and allergic disease. Nestle Nutr Inst Workshop Ser. 2014, 78: 141-153.PubMedCrossRef Heine RG: Preventing atopy and allergic disease. Nestle Nutr Inst Workshop Ser. 2014, 78: 141-153.PubMedCrossRef
71.
72.
Zurück zum Zitat Konieczna P, Groeger D, Ziegler M, Frei R, Ferstl R, Shanahan F, Quigley EM, Kiely B, Akdis CA, O’Mahony L: Bifidobacterium infantis 35624 administration induces Foxp3 T regulatory cells in human peripheral blood: potential role for myeloid and plasmacytoid dendritic cells. Gut. 2012, 61: 354-366.PubMedCrossRef Konieczna P, Groeger D, Ziegler M, Frei R, Ferstl R, Shanahan F, Quigley EM, Kiely B, Akdis CA, O’Mahony L: Bifidobacterium infantis 35624 administration induces Foxp3 T regulatory cells in human peripheral blood: potential role for myeloid and plasmacytoid dendritic cells. Gut. 2012, 61: 354-366.PubMedCrossRef
73.
Zurück zum Zitat Donkor ON, Ravikumar M, Proudfoot O, Day SL, Apostolopoulos V, Paukovics G, Vasiljevic T, Nutt SL, Gill H: Cytokine profile and induction of T helper type 17 and regulatory T cells by human peripheral mononuclear cells after microbial exposure. Clin Exp Immunol. 2012, 167: 282-295.PubMedCentralPubMedCrossRef Donkor ON, Ravikumar M, Proudfoot O, Day SL, Apostolopoulos V, Paukovics G, Vasiljevic T, Nutt SL, Gill H: Cytokine profile and induction of T helper type 17 and regulatory T cells by human peripheral mononuclear cells after microbial exposure. Clin Exp Immunol. 2012, 167: 282-295.PubMedCentralPubMedCrossRef
74.
Zurück zum Zitat von Mutius E, Vercelli D: Farm living: effects on childhood asthma and allergy. Nat Rev Immunol. 2010, 10: 861-868.PubMedCrossRef von Mutius E, Vercelli D: Farm living: effects on childhood asthma and allergy. Nat Rev Immunol. 2010, 10: 861-868.PubMedCrossRef
75.
Zurück zum Zitat Perkin MR, Strachan DP: Which aspects of the farming lifestyle explain the inverse association with childhood allergy?. J Allergy Clin Immunol. 2006, 117: 1374-1381.PubMedCrossRef Perkin MR, Strachan DP: Which aspects of the farming lifestyle explain the inverse association with childhood allergy?. J Allergy Clin Immunol. 2006, 117: 1374-1381.PubMedCrossRef
76.
Zurück zum Zitat Loss G, Apprich S, Waser M, Kneifel W, Genuneit J, Büchele G, Weber J, Sozanska B, Danielewicz H, Horak E, van Neerven RJ, Heederik D, Lorenzen PC, von Mutius E, Braun-Fahrländer C, GABRIELA study group: The protective effect of farm milk consumption on childhood asthma and atopy: the GABRIELA study. J Allergy Clin Immmunol. 2011, 128: 766-773.CrossRef Loss G, Apprich S, Waser M, Kneifel W, Genuneit J, Büchele G, Weber J, Sozanska B, Danielewicz H, Horak E, van Neerven RJ, Heederik D, Lorenzen PC, von Mutius E, Braun-Fahrländer C, GABRIELA study group: The protective effect of farm milk consumption on childhood asthma and atopy: the GABRIELA study. J Allergy Clin Immmunol. 2011, 128: 766-773.CrossRef
77.
Zurück zum Zitat Braun-Fahrländer C, von Mutius E: Can farm milk consumption prevent allergic diseases?. Clin Exp Allergy. 2011, 41: 29-35.PubMedCrossRef Braun-Fahrländer C, von Mutius E: Can farm milk consumption prevent allergic diseases?. Clin Exp Allergy. 2011, 41: 29-35.PubMedCrossRef
78.
Zurück zum Zitat Illi S, Depner M, Genuneit J, Horak E, Loss G, Strunz-Lehner C, Büchele G, Boznanski A, Danielewicz H, Cullinan P, Heederik D, Braun-Fahrländer C, von Mutius E, GABRIELA Study Group: Protection from childhood asthma and allergy in Alpine farm environments – the GABRIEL Advanced Studies. J Allergy Clin Immunol. 2012, 129: 1470-1477.PubMedCrossRef Illi S, Depner M, Genuneit J, Horak E, Loss G, Strunz-Lehner C, Büchele G, Boznanski A, Danielewicz H, Cullinan P, Heederik D, Braun-Fahrländer C, von Mutius E, GABRIELA Study Group: Protection from childhood asthma and allergy in Alpine farm environments – the GABRIEL Advanced Studies. J Allergy Clin Immunol. 2012, 129: 1470-1477.PubMedCrossRef
79.
Zurück zum Zitat Loss G, Bitter S, Wohlgensinger J, Frei R, Roduit C, Genuneit J, Pekkanen J, Roponen M, Hirvonen MR, Dalphin JC, Dalphin ML, Riedler J, von Mutius E, Weber J, Kabesch M, Michel S, Braun-Fahrländer C, Lauener R, PASTURE study group: Prenatal and early-life exposures alter expression of innate immunity genes: the PASTURE cohort study. J Allergy Clin Immunol. 2012, 130: 523-530.PubMedCrossRef Loss G, Bitter S, Wohlgensinger J, Frei R, Roduit C, Genuneit J, Pekkanen J, Roponen M, Hirvonen MR, Dalphin JC, Dalphin ML, Riedler J, von Mutius E, Weber J, Kabesch M, Michel S, Braun-Fahrländer C, Lauener R, PASTURE study group: Prenatal and early-life exposures alter expression of innate immunity genes: the PASTURE cohort study. J Allergy Clin Immunol. 2012, 130: 523-530.PubMedCrossRef
80.
Zurück zum Zitat von Mutius E: Maternal farm exposure/ingestion of unpasteurized cow’s milk and allergic disease. Current Opin Gastroenterol. 2012, 28: 570-576.CrossRef von Mutius E: Maternal farm exposure/ingestion of unpasteurized cow’s milk and allergic disease. Current Opin Gastroenterol. 2012, 28: 570-576.CrossRef
81.
Zurück zum Zitat Wlasiuk G, Vercelli D: The farm effect, or: when, what and how a farming environment protects from asthma and allergic disease. Curr Opin Allergy Clin Immunol. 2012, 12: 461-466.PubMedCrossRef Wlasiuk G, Vercelli D: The farm effect, or: when, what and how a farming environment protects from asthma and allergic disease. Curr Opin Allergy Clin Immunol. 2012, 12: 461-466.PubMedCrossRef
82.
Zurück zum Zitat Lluis A, Schaub B: Lessons from the farm environment. Curr Opin Allergy Clin Immunol. 2012, 12: 158-163.PubMedCrossRef Lluis A, Schaub B: Lessons from the farm environment. Curr Opin Allergy Clin Immunol. 2012, 12: 158-163.PubMedCrossRef
83.
Zurück zum Zitat Sozanska B, Pearce N, Dudek K, Cullinan P: Consumption of unpasteurized milk and its effects on atopy and asthma in children and adult inhabitants in rural Poland. Allergy. 2013, 68: 644-650.PubMedCrossRef Sozanska B, Pearce N, Dudek K, Cullinan P: Consumption of unpasteurized milk and its effects on atopy and asthma in children and adult inhabitants in rural Poland. Allergy. 2013, 68: 644-650.PubMedCrossRef
84.
Zurück zum Zitat Lluis A, Depner M, Gaugler B, Saas P, Casaca VI, Raedler D, Michel S, Tost J, Liu J, Genuneit J, Pfefferle P, Roponen M, Weber J, Braun-Fahrländer C, Riedler J, Lauener R, Vuitton DA, Dalphin JC, Pekkanen J, von Mutius E, Schaub B, Protection Against Allergy: Study in Rural Environments Study Group: Increased regulatory T-cell numbers are associated with farm milk exposure and lower atopic sensitization and asthma in childhood. J Allergy Clin Immunol. 2014, 133: 551-559.PubMedCrossRef Lluis A, Depner M, Gaugler B, Saas P, Casaca VI, Raedler D, Michel S, Tost J, Liu J, Genuneit J, Pfefferle P, Roponen M, Weber J, Braun-Fahrländer C, Riedler J, Lauener R, Vuitton DA, Dalphin JC, Pekkanen J, von Mutius E, Schaub B, Protection Against Allergy: Study in Rural Environments Study Group: Increased regulatory T-cell numbers are associated with farm milk exposure and lower atopic sensitization and asthma in childhood. J Allergy Clin Immunol. 2014, 133: 551-559.PubMedCrossRef
85.
Zurück zum Zitat Hata T, Murakami K, Nakatani H, Yamamoto Y, Matsuda T, Aoki N: Isolation of bovine milk-derived microvesicles carrying mRNAs and microRNAs. Biochem Biophys Res Commun. 2010, 396: 528-533.PubMedCrossRef Hata T, Murakami K, Nakatani H, Yamamoto Y, Matsuda T, Aoki N: Isolation of bovine milk-derived microvesicles carrying mRNAs and microRNAs. Biochem Biophys Res Commun. 2010, 396: 528-533.PubMedCrossRef
86.
Zurück zum Zitat Chen X, Gao C, Li H, Huang L, Sun Q, Dong Y, Tian C, Gao S, Dong H, Guan D, Hu X, Zhao S, Li L, Zhu L, Yan Q, Zhang J, Zen K, Zhang CY: Identification and characterization of microRNAs in raw milk during different periods of lactation, commercial fluid, and powdered milk products. Cell Res. 2010, 20: 1128-1137.PubMedCrossRef Chen X, Gao C, Li H, Huang L, Sun Q, Dong Y, Tian C, Gao S, Dong H, Guan D, Hu X, Zhao S, Li L, Zhu L, Yan Q, Zhang J, Zen K, Zhang CY: Identification and characterization of microRNAs in raw milk during different periods of lactation, commercial fluid, and powdered milk products. Cell Res. 2010, 20: 1128-1137.PubMedCrossRef
87.
Zurück zum Zitat Izumi H, Kosaka N, Shimizu T, Sekine K, Ochiya T, Takase M: Bovine milk contains microRNA and messenger RNA that are stable under degradative conditions. J Dairy Sci. 2012, 95: 4831-4841.PubMedCrossRef Izumi H, Kosaka N, Shimizu T, Sekine K, Ochiya T, Takase M: Bovine milk contains microRNA and messenger RNA that are stable under degradative conditions. J Dairy Sci. 2012, 95: 4831-4841.PubMedCrossRef
88.
Zurück zum Zitat Admyre C, Johansson SM, Qazi KR, Filén JJ, Lahesmaa R, Norman M, Neve EP, Scheynius A, Gabrielsson S: Exosomes with immune modulatory features are present in human breast milk. J Immunol. 2007, 179: 1969-1978.PubMedCrossRef Admyre C, Johansson SM, Qazi KR, Filén JJ, Lahesmaa R, Norman M, Neve EP, Scheynius A, Gabrielsson S: Exosomes with immune modulatory features are present in human breast milk. J Immunol. 2007, 179: 1969-1978.PubMedCrossRef
90.
Zurück zum Zitat Zhou Q, Li M, Wang X, Li Q, Wang T, Zhu Q, Zhou X, Wang X, Gao X, Li X: Immune-related microRNAs are abundant in breast milk exosomes. Int J Biol Sci. 2012, 8: 118-123.PubMedCentralPubMedCrossRef Zhou Q, Li M, Wang X, Li Q, Wang T, Zhu Q, Zhou X, Wang X, Gao X, Li X: Immune-related microRNAs are abundant in breast milk exosomes. Int J Biol Sci. 2012, 8: 118-123.PubMedCentralPubMedCrossRef
91.
Zurück zum Zitat Chen X, Liang H, Zhang J, Li Q, Wang T, Zhu Q, Zhou X, Wang X, Gao X, Li X: Horizontal transfer of microRNAs: molecular mechansism and clinical applications. Protein Cell. 2012, 3: 28-37.PubMedCrossRef Chen X, Liang H, Zhang J, Li Q, Wang T, Zhu Q, Zhou X, Wang X, Gao X, Li X: Horizontal transfer of microRNAs: molecular mechansism and clinical applications. Protein Cell. 2012, 3: 28-37.PubMedCrossRef
92.
Zurück zum Zitat Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV, Melief CJ, Geuze HJ: B lymphocytes secrete antigen-presenting vesicles. J Exp Med. 1996, 183: 1161-1172.PubMedCrossRef Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV, Melief CJ, Geuze HJ: B lymphocytes secrete antigen-presenting vesicles. J Exp Med. 1996, 183: 1161-1172.PubMedCrossRef
93.
Zurück zum Zitat Mittelbrunn M, Guitiérrez-Vásquez C, Villarroya-Beltri C, González S, Sánchez-Cabo F, González MÁ, Bernad A, Sánchez-Madrid F: Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun. 2011, 2: 282-PubMedCentralPubMedCrossRef Mittelbrunn M, Guitiérrez-Vásquez C, Villarroya-Beltri C, González S, Sánchez-Cabo F, González MÁ, Bernad A, Sánchez-Madrid F: Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun. 2011, 2: 282-PubMedCentralPubMedCrossRef
94.
Zurück zum Zitat Mittelbrunn M, Sanchez-Madrid F: Intercellular communication: diverse structures for exchange of genetic information. Nat Rev Mol Cell Biol. 2012, 13: 328-335.PubMedCentralPubMed Mittelbrunn M, Sanchez-Madrid F: Intercellular communication: diverse structures for exchange of genetic information. Nat Rev Mol Cell Biol. 2012, 13: 328-335.PubMedCentralPubMed
95.
Zurück zum Zitat Gutiérrez-Vázquez C, Villarroya-Beltri C, Mittelbrunn M, Sánchez-Madrid F: Transfer of extracellular vesicles during immune cell-cell interactions. Immunol Rev. 2013, 251: 125-142.PubMedCentralPubMedCrossRef Gutiérrez-Vázquez C, Villarroya-Beltri C, Mittelbrunn M, Sánchez-Madrid F: Transfer of extracellular vesicles during immune cell-cell interactions. Immunol Rev. 2013, 251: 125-142.PubMedCentralPubMedCrossRef
96.
Zurück zum Zitat Sun Q, Chen X, Yu J, Zen K, Zhang CY, Li L: Immune modulatory function of abundant immune-related microRNAs in microvesicles from bovine colostrum. Protein Cell. 2013, 4: 197-210.PubMedCrossRef Sun Q, Chen X, Yu J, Zen K, Zhang CY, Li L: Immune modulatory function of abundant immune-related microRNAs in microvesicles from bovine colostrum. Protein Cell. 2013, 4: 197-210.PubMedCrossRef
97.
Zurück zum Zitat Munch EM, Harris AA, Mohammad M, Benham AL, Pejerrey SM, Showalter L, Hu M, Shope CD, Maningat PD, Gunaratne PH, Haymond M, Aagaard K: Transcriptome profiling of microRNA by next-Gen deep sequencing reveals known and novel species in the lipid fraction of human breast milk. PLoS One. 2013, 8: e50564-PubMedCentralPubMedCrossRef Munch EM, Harris AA, Mohammad M, Benham AL, Pejerrey SM, Showalter L, Hu M, Shope CD, Maningat PD, Gunaratne PH, Haymond M, Aagaard K: Transcriptome profiling of microRNA by next-Gen deep sequencing reveals known and novel species in the lipid fraction of human breast milk. PLoS One. 2013, 8: e50564-PubMedCentralPubMedCrossRef
98.
Zurück zum Zitat Kohlhaas S, Garden OA, Scudamore C, Turner M, Okkenhaug K, Vigorito E: Cutting edge: the FoxP3 target miR-155 contributes to the development of regulatory T cells. J Immunol. 2009, 182: 2578-2582.PubMedCrossRef Kohlhaas S, Garden OA, Scudamore C, Turner M, Okkenhaug K, Vigorito E: Cutting edge: the FoxP3 target miR-155 contributes to the development of regulatory T cells. J Immunol. 2009, 182: 2578-2582.PubMedCrossRef
99.
Zurück zum Zitat Marson A, Kretschmer K, Frampton GM, Jacobsen ES, Polansky JK, MacIsaac KD, Levine SS, Fraenkel E, von Boehmer H, Young RA: Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature. 2007, 445: 931-935.PubMedCentralPubMedCrossRef Marson A, Kretschmer K, Frampton GM, Jacobsen ES, Polansky JK, MacIsaac KD, Levine SS, Fraenkel E, von Boehmer H, Young RA: Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature. 2007, 445: 931-935.PubMedCentralPubMedCrossRef
100.
Zurück zum Zitat Cobb BS, Hertweck A, Smith J, O’Connor E, Graf D, Cook T, Smale ST, Sakaguchi S, Livesey FJ, Fisher AG, Merkenschlager M: A role for Dicer in immune regulation. J Exp Med. 2006, 203: 2519-2527.PubMedCentralPubMedCrossRef Cobb BS, Hertweck A, Smith J, O’Connor E, Graf D, Cook T, Smale ST, Sakaguchi S, Livesey FJ, Fisher AG, Merkenschlager M: A role for Dicer in immune regulation. J Exp Med. 2006, 203: 2519-2527.PubMedCentralPubMedCrossRef
101.
Zurück zum Zitat Zheng Y, Josefowicz SZ, Kas A, Chu TT, Gavin MA, Rudensky AY: Genome-wide analysis of FoxP3 target genes in developing and mature regulatory T cells. Nature. 2007, 445: 936-940.PubMedCrossRef Zheng Y, Josefowicz SZ, Kas A, Chu TT, Gavin MA, Rudensky AY: Genome-wide analysis of FoxP3 target genes in developing and mature regulatory T cells. Nature. 2007, 445: 936-940.PubMedCrossRef
103.
Zurück zum Zitat Burchill MA, Yang J, Vang KB, Moon JJ, Chu HH, Lio CW, Vegoe AL, Hsieh CS, Jenkins MK, Farrar MA: Linked T cell receptor and cytokine signaling govern the development of the regulatory T cell repertoire. Immunity. 2008, 28: 112-121.PubMedCentralPubMedCrossRef Burchill MA, Yang J, Vang KB, Moon JJ, Chu HH, Lio CW, Vegoe AL, Hsieh CS, Jenkins MK, Farrar MA: Linked T cell receptor and cytokine signaling govern the development of the regulatory T cell repertoire. Immunity. 2008, 28: 112-121.PubMedCentralPubMedCrossRef
104.
Zurück zum Zitat Vang KB, Yang J, Mahmud SA, Burchill MA, Vegoe AL, Farrar MA: IL-2, -7, and -15 but not stromal lymphopoetin, redundantly govern CD4 + FoxP3+ regulatory T cell development. J Immunol. 2008, 181: 3285-3290.PubMedCentralPubMedCrossRef Vang KB, Yang J, Mahmud SA, Burchill MA, Vegoe AL, Farrar MA: IL-2, -7, and -15 but not stromal lymphopoetin, redundantly govern CD4 + FoxP3+ regulatory T cell development. J Immunol. 2008, 181: 3285-3290.PubMedCentralPubMedCrossRef
105.
Zurück zum Zitat Lu LF, Thai TH, Calado D, Chaudhry A, Kubo M, Tanaka K, Loeb GB, Lee H, Yoshimura A, Rajewsky K, Rudensky AY: Foxp3-dependent microRNA155 confers competitive fitness to regulatory T cells by targeting SOCS1 protein. Immunity. 2009, 30: 80-91.PubMedCentralPubMedCrossRef Lu LF, Thai TH, Calado D, Chaudhry A, Kubo M, Tanaka K, Loeb GB, Lee H, Yoshimura A, Rajewsky K, Rudensky AY: Foxp3-dependent microRNA155 confers competitive fitness to regulatory T cells by targeting SOCS1 protein. Immunity. 2009, 30: 80-91.PubMedCentralPubMedCrossRef
106.
Zurück zum Zitat Melnik BC, John SM, Schmitz G: Milk: an exosomal microRNA transmitter promoting thymic regulatory T cell maturation preventing the development of atopy?. J Transl Med. 2014, 12: 43-PubMedCentralPubMedCrossRef Melnik BC, John SM, Schmitz G: Milk: an exosomal microRNA transmitter promoting thymic regulatory T cell maturation preventing the development of atopy?. J Transl Med. 2014, 12: 43-PubMedCentralPubMedCrossRef
107.
Zurück zum Zitat van Niel G, Raposo G, Candalh C, Boussac M, Hershberg R, Cerf-Bensussan N, Heyman M: Intestinal epithelial cells secrete exosome-like vesicles. Gastroenterology. 2001, 121: 337-349.PubMedCrossRef van Niel G, Raposo G, Candalh C, Boussac M, Hershberg R, Cerf-Bensussan N, Heyman M: Intestinal epithelial cells secrete exosome-like vesicles. Gastroenterology. 2001, 121: 337-349.PubMedCrossRef
108.
Zurück zum Zitat Wang GJ, Liu Y, Qin A, Shah SV, Deng ZB, Xiang X, Cheng Z, Liu C, Wang J, Zhang L, Grizzle WE, Zhang HG: Thymus exosomes-like particles induce regulatory T cells. J Immunol. 2008, 181: 5242-5248.PubMedCentralPubMedCrossRef Wang GJ, Liu Y, Qin A, Shah SV, Deng ZB, Xiang X, Cheng Z, Liu C, Wang J, Zhang L, Grizzle WE, Zhang HG: Thymus exosomes-like particles induce regulatory T cells. J Immunol. 2008, 181: 5242-5248.PubMedCentralPubMedCrossRef
109.
Zurück zum Zitat Skogberg G, Gudmundsdottir J, van der Post S, Sandström K, Bruhn S, Benson M, Mincheva-Nilsson L, Baranov V, Telemo E, Ekwall O: Characterization of human thymic exosomes. PLoS One. 2013, 8: e67554-PubMedCentralPubMedCrossRef Skogberg G, Gudmundsdottir J, van der Post S, Sandström K, Bruhn S, Benson M, Mincheva-Nilsson L, Baranov V, Telemo E, Ekwall O: Characterization of human thymic exosomes. PLoS One. 2013, 8: e67554-PubMedCentralPubMedCrossRef
110.
Zurück zum Zitat Melnik BC, John SM, Schmitz G: Milk is not just food but most likely a genetic transfection system activating mTORC1 signaling for postnatal growth. Nutr J. 2013, 12: 103-PubMedCentralPubMedCrossRef Melnik BC, John SM, Schmitz G: Milk is not just food but most likely a genetic transfection system activating mTORC1 signaling for postnatal growth. Nutr J. 2013, 12: 103-PubMedCentralPubMedCrossRef
111.
Zurück zum Zitat Brenna JT, Lapillonne A: Background paper on fat and fatty acid requirements during pregnancy and lactation. Ann Nutr Metab. 2009, 55: 97-122.PubMedCrossRef Brenna JT, Lapillonne A: Background paper on fat and fatty acid requirements during pregnancy and lactation. Ann Nutr Metab. 2009, 55: 97-122.PubMedCrossRef
112.
Zurück zum Zitat Miles EA, Clader PC: Omega-6 amd omega-3 polyunsaturated fatty acids and allergic diseases in infancy and childhood. Curr Pharm Des. 2014, 20: 946-953.PubMedCrossRef Miles EA, Clader PC: Omega-6 amd omega-3 polyunsaturated fatty acids and allergic diseases in infancy and childhood. Curr Pharm Des. 2014, 20: 946-953.PubMedCrossRef
113.
Zurück zum Zitat Hageman JH, Hooyenga P, Diersen-Schade DA, Scalabrin DM, Wichers HJ, Birch EE: The impact of dietary long-chain polyunsaturated fatty acids on respiratory illness in infants and children. Curr Allergy Asthma Rep. 2012, 12: 564-573.PubMedCentralPubMedCrossRef Hageman JH, Hooyenga P, Diersen-Schade DA, Scalabrin DM, Wichers HJ, Birch EE: The impact of dietary long-chain polyunsaturated fatty acids on respiratory illness in infants and children. Curr Allergy Asthma Rep. 2012, 12: 564-573.PubMedCentralPubMedCrossRef
114.
Zurück zum Zitat Calder PC, Kremmyda LS, Vlachava M, Noakes PS, Miles EA: Is there a role for fatty acids in early life programming of the immune system. Proc Nutr Soc. 2010, 69: 373-380.PubMedCrossRef Calder PC, Kremmyda LS, Vlachava M, Noakes PS, Miles EA: Is there a role for fatty acids in early life programming of the immune system. Proc Nutr Soc. 2010, 69: 373-380.PubMedCrossRef
115.
Zurück zum Zitat van den Elsen LW, van Esch BC, Hofman GA, Kant J, van de Heijning BJ, Garssen J, Willemsen LE: Dietary long chain n-3 polyunsaturated fatty acids prevent allergic sensitization to cow’s milk protein in mice. Clin Exp Allergy. 2013, 43: 798-810.PubMedCrossRef van den Elsen LW, van Esch BC, Hofman GA, Kant J, van de Heijning BJ, Garssen J, Willemsen LE: Dietary long chain n-3 polyunsaturated fatty acids prevent allergic sensitization to cow’s milk protein in mice. Clin Exp Allergy. 2013, 43: 798-810.PubMedCrossRef
116.
Zurück zum Zitat van den Elsen LW, Meulenbroek LA, van Esch BC, Hofman GA, Boon L, Garssen J, Willemsen LE: CD25+ regulatory T cells transfer n-3 long chain polyunsaturated fatty acids-induced tolerance in mice allergic to cow’s milk protein. Allergy. 2013, 68: 1562-1570.PubMedCrossRef van den Elsen LW, Meulenbroek LA, van Esch BC, Hofman GA, Boon L, Garssen J, Willemsen LE: CD25+ regulatory T cells transfer n-3 long chain polyunsaturated fatty acids-induced tolerance in mice allergic to cow’s milk protein. Allergy. 2013, 68: 1562-1570.PubMedCrossRef
117.
Zurück zum Zitat Yasuda M, Tanak Y, Kume S, Morita Y, Chin-Kanasaki M, Araki H, Isshiki K, Araki S, Koya D, Haneda M, Kashiwagi A, Maegawa H, Uzu T: Fatty acids are novel nutrient factors to regulate mTORC1 lysosomal localization and apotosis in podocytes. Biochim Biophys Acta. 1842, 2014: 1097-1108. Yasuda M, Tanak Y, Kume S, Morita Y, Chin-Kanasaki M, Araki H, Isshiki K, Araki S, Koya D, Haneda M, Kashiwagi A, Maegawa H, Uzu T: Fatty acids are novel nutrient factors to regulate mTORC1 lysosomal localization and apotosis in podocytes. Biochim Biophys Acta. 1842, 2014: 1097-1108.
118.
Zurück zum Zitat Zivkovic AM, German JB, Lebrilla CB, Mills DA: Human milk glycobiome and its impact on the infant gastrointestinal microbiota. Proc Natl Acad Sci U S A. 2011, 108 (Suppl 1): 4653-4658.PubMedCentralPubMedCrossRef Zivkovic AM, German JB, Lebrilla CB, Mills DA: Human milk glycobiome and its impact on the infant gastrointestinal microbiota. Proc Natl Acad Sci U S A. 2011, 108 (Suppl 1): 4653-4658.PubMedCentralPubMedCrossRef
119.
Zurück zum Zitat Sela DA, Mills DA: Nursing our microbiota: molecular linkages between bifidobacteria and milk oligosaccharides. Trends Microbiol. 2010, 18: 298-307.PubMedCentralPubMedCrossRef Sela DA, Mills DA: Nursing our microbiota: molecular linkages between bifidobacteria and milk oligosaccharides. Trends Microbiol. 2010, 18: 298-307.PubMedCentralPubMedCrossRef
120.
Zurück zum Zitat Garrido D, Bariel D, Mills DA: A molecular basis for bifidobacterial enrichment in the infant gastrointestinal tract. Adv Nutr. 2012, 3: 415S-421S.PubMedCentralPubMedCrossRef Garrido D, Bariel D, Mills DA: A molecular basis for bifidobacterial enrichment in the infant gastrointestinal tract. Adv Nutr. 2012, 3: 415S-421S.PubMedCentralPubMedCrossRef
121.
Zurück zum Zitat Garrido D, Ruiz-Moyano S, Jimenez-Espinoza R, Eom HJ, Block DE, Mills DA: Utilization of galactooligosaccarides by Bifidobacterium longum subsp. infantis isolates. Food Microbiol. 2013, 33: 262-270.PubMedCentralPubMedCrossRef Garrido D, Ruiz-Moyano S, Jimenez-Espinoza R, Eom HJ, Block DE, Mills DA: Utilization of galactooligosaccarides by Bifidobacterium longum subsp. infantis isolates. Food Microbiol. 2013, 33: 262-270.PubMedCentralPubMedCrossRef
122.
Zurück zum Zitat Hassiotou F, Beltran A, Chetwynd E, Stuebe AM, Twigger AJ, Metzger P, Trengove N, Lai CT, Filgueira L, Blancafort P, Hartmann PE: Breastmilk is a novel source of stem cells with multilineage differentiation potential. Stem Cells. 2012, 30: 2164-2174.PubMedCentralPubMedCrossRef Hassiotou F, Beltran A, Chetwynd E, Stuebe AM, Twigger AJ, Metzger P, Trengove N, Lai CT, Filgueira L, Blancafort P, Hartmann PE: Breastmilk is a novel source of stem cells with multilineage differentiation potential. Stem Cells. 2012, 30: 2164-2174.PubMedCentralPubMedCrossRef
123.
Zurück zum Zitat Indumathi S, Dhanasekaran M, Rajkumar JS, Sudarsanam D: Exploring the stem cell and non-stem cell constituents of human breast milk. Cytotechnology. 2013, 65: 385-393.PubMedCentralPubMedCrossRef Indumathi S, Dhanasekaran M, Rajkumar JS, Sudarsanam D: Exploring the stem cell and non-stem cell constituents of human breast milk. Cytotechnology. 2013, 65: 385-393.PubMedCentralPubMedCrossRef
124.
Zurück zum Zitat Sibley CP, Brownbill , Dilworth M, Glazier JD: Review: adaptation in placental nutrient supply to meet fetal growth demand: implications for programming. Placenta. 2010, 31: 70-74.CrossRef Sibley CP, Brownbill , Dilworth M, Glazier JD: Review: adaptation in placental nutrient supply to meet fetal growth demand: implications for programming. Placenta. 2010, 31: 70-74.CrossRef
125.
Zurück zum Zitat Boney CM, Verma A, Tucker R, Vohr BR: Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes mellitus. Pediatrics. 2005, 115: e290-e296.PubMedCrossRef Boney CM, Verma A, Tucker R, Vohr BR: Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes mellitus. Pediatrics. 2005, 115: e290-e296.PubMedCrossRef
126.
Zurück zum Zitat Harder T, Rodekamp E, Schellong K, Dudenhausen JW, Plagemann A: Birth weigth and subsequent risk of type 2 diabetes: a meta-analysis. Am J Epidemiol. 2007, 165: 849-857.PubMedCrossRef Harder T, Rodekamp E, Schellong K, Dudenhausen JW, Plagemann A: Birth weigth and subsequent risk of type 2 diabetes: a meta-analysis. Am J Epidemiol. 2007, 165: 849-857.PubMedCrossRef
127.
129.
Zurück zum Zitat Jansson N, Rosario FJ, Gaccioli F, Lager S, Jones HN, Roos S, Jansson T, Powell TL: Activation of placental mTOR singaling and amino acid transporters in obese women giving birth to large babies. J Clin Endocrinol Metab. 2013, 98: 105-113.PubMedCentralPubMedCrossRef Jansson N, Rosario FJ, Gaccioli F, Lager S, Jones HN, Roos S, Jansson T, Powell TL: Activation of placental mTOR singaling and amino acid transporters in obese women giving birth to large babies. J Clin Endocrinol Metab. 2013, 98: 105-113.PubMedCentralPubMedCrossRef
130.
Zurück zum Zitat Olsen SF, Halldorsson TI, Willett WC, Knudsen VK, Gillman MW, Mikkelsen TB, Olsen J, and the NUTRIX Consortium: Milk consumption during pregnancy is associated with increased infant size at birth: prospective cohort sudy. Am J Clin Nutr. 2007, 86: 1104-1110.PubMed Olsen SF, Halldorsson TI, Willett WC, Knudsen VK, Gillman MW, Mikkelsen TB, Olsen J, and the NUTRIX Consortium: Milk consumption during pregnancy is associated with increased infant size at birth: prospective cohort sudy. Am J Clin Nutr. 2007, 86: 1104-1110.PubMed
131.
Zurück zum Zitat Heppe DH, van Dam RM, Willemsen SP, den Breeijen H, Raat H, Hofman A, Steegers EA, Jaddoe VW: Maternal milk consumption, fetal growth, and the risks of neonatal complications: the Generation R Study. Am J Clin Nutr. 2011, 94: 501-509.PubMedCrossRef Heppe DH, van Dam RM, Willemsen SP, den Breeijen H, Raat H, Hofman A, Steegers EA, Jaddoe VW: Maternal milk consumption, fetal growth, and the risks of neonatal complications: the Generation R Study. Am J Clin Nutr. 2011, 94: 501-509.PubMedCrossRef
132.
Zurück zum Zitat Wiley AS: Cow milk consumption, insulin-like growth factor-I, and human biology: a life history approach. Am J Hum Biol. 2012, 24: 130-138.PubMedCrossRef Wiley AS: Cow milk consumption, insulin-like growth factor-I, and human biology: a life history approach. Am J Hum Biol. 2012, 24: 130-138.PubMedCrossRef
133.
Zurück zum Zitat Rowe J, Kusel M, Holt BJ, Suriyaarachchi D, Serralha M, Hollams E, Yerkovich ST, Subrata LS, Ladyman C, Sadowska A, Gillett J, Fisher E, Loh R, Soderstrom L, Ahlstedt S, Sly PD, Holt PG: Prenatal versus postnatal sensitization to environmental allergens in a high-risk birth cohort. J Allergy Clin Immunol. 2007, 119: 1164-1173.PubMedCrossRef Rowe J, Kusel M, Holt BJ, Suriyaarachchi D, Serralha M, Hollams E, Yerkovich ST, Subrata LS, Ladyman C, Sadowska A, Gillett J, Fisher E, Loh R, Soderstrom L, Ahlstedt S, Sly PD, Holt PG: Prenatal versus postnatal sensitization to environmental allergens in a high-risk birth cohort. J Allergy Clin Immunol. 2007, 119: 1164-1173.PubMedCrossRef
134.
Zurück zum Zitat King FT: Feeding and Care of the Baby. 1913, London: Macmillan King FT: Feeding and Care of the Baby. 1913, London: Macmillan
Metadaten
Titel
The potential mechanistic link between allergy and obesity development and infant formula feeding
verfasst von
Bodo C Melnik
Publikationsdatum
01.12.2014
Verlag
BioMed Central
Erschienen in
Allergy, Asthma & Clinical Immunology / Ausgabe 1/2014
Elektronische ISSN: 1710-1492
DOI
https://doi.org/10.1186/1710-1492-10-37

Weitere Artikel der Ausgabe 1/2014

Allergy, Asthma & Clinical Immunology 1/2014 Zur Ausgabe

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

HNO-Op. auch mit über 90?

16.04.2024 HNO-Chirurgie Nachrichten

Mit Blick auf das Risiko für Komplikationen nach elektiven Eingriffen im HNO-Bereich scheint das Alter der Patienten kein ausschlaggebender Faktor zu sein. Entscheidend ist offenbar, wie fit die Betroffenen tatsächlich sind.

Intrakapsuläre Tonsillektomie gewinnt an Boden

16.04.2024 Tonsillektomie Nachrichten

Gegenüber der vollständigen Entfernung der Gaumenmandeln hat die intrakapsuläre Tonsillektomie einige Vorteile, wie HNO-Fachleute aus den USA hervorheben. Sie haben die aktuelle Literatur zu dem Verfahren gesichtet.

Bilateraler Hörsturz hat eine schlechte Prognose

15.04.2024 Hörsturz Nachrichten

Die Mehrzahl der Menschen mit Hörsturz ist einseitig betroffen, doch auch ein beidseitiger Hörsturz ist möglich. Wie häufig solche Fälle sind und wie sich ihr Verlauf darstellt, hat eine HNO-Expertenrunde aus den USA untersucht.

Update HNO

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.