Skip to main content
Erschienen in: Antimicrobial Resistance & Infection Control 1/2018

Open Access 01.12.2018 | Research

The prevalence, antibiotic resistance and mecA characterization of coagulase negative staphylococci recovered from non-healthcare settings in London, UK

verfasst von: Zhen Xu, Haroun N. Shah, Raju Misra, Jiazhen Chen, Wenhong Zhang, Yuting Liu, Ronald R. Cutler, Hermine V. Mkrtchyan

Erschienen in: Antimicrobial Resistance & Infection Control | Ausgabe 1/2018

Abstract

Background

Coagulase negative staphylococci (CoNS) are important reservoirs of antibiotic resistance genes and associated mobile genetic elements and are believed to contribute to the emergence of successful methicillin resistant Staphylococcus aureus (MRSA) clones. Although, these bacteria have been linked to various ecological niches, little is known about the dissemination and genetic diversity of antibiotic resistant CoNS in general public settings.

Methods

Four hundred seventy-nine samples were collected from different non-healthcare/general public settings in various locations (n = 355) and from the hands of volunteers (n = 124) in London UK between April 2013 and Nov 2014.

Results

Six hundred forty-three staphylococcal isolates belonging to 19 staphylococcal species were identified. Five hundred seventy-two (94%) isolates were resistant to at least one antibiotic, and only 34 isolates were fully susceptible. Sixty-eight (11%) mecA positive staphylococcal isolates were determined in this study. SCCmec types were fully determined for forty-six isolates. Thirteen staphylococci (19%) carried SCCmec V, followed by 8 isolates carrying SCCmec type I (2%), 5 SCCmec type IV (7%), 4 SCCmec type II (6%), 1 SCCmec type III (2%), 1 SCCmec type VI (2%), and 1 SCCmec type VIII (2%). In addition, three isolates harboured a new SCCmec type 1A, which carried combination of class A mec complex and ccr type 1.
MLST typing revealed that all S. epidermidis strains possess new MLST types and were assigned the following new sequence types: ST599, ST600, ST600, ST600, ST601, ST602, ST602, ST603, ST604, ST605, ST606, ST607 and ST608.

Conclusions

The prevalence of antibiotic resistant staphylococci in general public settings demonstrates that antibiotics in the natural environments contribute to the selection of antibiotic resistant microorganisms. The finding of various SCCmec types in non-healthcare associated environments indicates the complexity of SCCmec. We also report on new MLST types that were assigned for all S. epidermidis isolates, which demonstrates the genetic variability of these isolates.
Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1186/​s13756-018-0367-4) contains supplementary material, which is available to authorized users.
Abkürzungen
AM
Amoxicillin
BCF
Baby care facility
CEP
Cefepime
CHL
Chloramphenicol
CoNS
Coagulase-negative staphylococci
DSH
Different sites of hotels
DSL
Different sites of a library
DSR
Different sites of restaurants
DSS
Different sites of supermarkets
DST
Different sites of transportation facilities
ERY
Erythromycin
FC
Fusidic acid
GEN
Gentamicin
HB
Handbags
HH
Human hands
MALDI-TOF-MS
Matrix-assisted laser desorption ionization time flight mass-spectroscopy
MIC
Minimum Inhibitory Concentrations
MLST
Multi-locus sequence typing
MR-CoNS
Methicillin resistant coagulase negative staphylococci
MRSA
Methicillin resistant Staphylococcus aureus
MUP
Mupirocin
OX
Oxacillin
PEN
Penicillin
SCCmec
Staphylococcal cassette chromosome mec
ST
Sequence types
STR
Streptomycin
TET
Tetracycline

Background

Staphylococci are the most frequently isolated nosocomial pathogens, accounting for 30% of hospital associated infections [1]. Despite, that the high virulence of S. aureus has been evidenced in many studies [2], it is believed that coagulase-negative staphylococci (CoNS) act as an important reservoir of antimicrobial resistance genes and resistance-associated mobile genetic elements, which can transfer between staphylococcal species. Among other CoNS, S. epidermidis, S. hominis and S. haemolyticus are often reported to be resistant to multiple antibiotics [3, 4].
The mecA gene responsible for methicillin resistance was first determined in S. aureus, however, many other staphylococcal species were found to also harbour it [5]. The mecA gene encodes an additional penicillin-binding protein 2a (PBP 2a), which mediates cell wall synthesis in the presence of β-lactam antibiotics [6]. Together with its regulators mecI-mecR1 and site specific recombination genes ccrA and ccrB, the mecA gene, is located on a mobile genetic element known as staphylococcal cassette chromosome mec (SCCmec) [7]. A number of studies have demonstrated the transfer of mecA gene from coagulase-negative staphylococcal species to S. aureus in vivo, and thus contributing to more successful S. aureus clones [8]. To date 11 SCCmec types have been reported based on combinations of mec (A, B, C1, C2 and D) and ccr (AB1, AB2, AB3, AB4 and ccrC) complexes and so called J regions (1, 2, 3) [9].
Traditionally recognised as hospital associated pathogens, methicillin resistant coagulase negative staphylococci (MR-CoNS) have recently been linked with a range of ecological niches (community, wildlife and environmental sources) [1012]. As a result, today increasing attention is being paid to the rapid spread of MR-CoNS and their role in transmission within the community and non - hospital settings [13].
In this study we demonstrate the dissemination of antibiotic resistance in CoNS isolated from various environmental sites in London, UK. The characterization of mecA gene and the SCCmec elements provide insights into the diversity of environmental CoNS clones.

Methods

Isolation

Four hundred seventy-nine samples were collected from different environmental sites in various locations (n = 355) and from the hands of volunteers (n = 124) in London UK between April 2013 and Nov 2014. Environmental sites included hotels (n = 100), baby care facilities (n = 65), handbags (n = 43), supermarkets (n = 37), restaurants (n = 36), public transport (n = 54), and a public library (n = 20). All specimens were plated on Mannitol Salt Agar (Oxoid, Basingstoke, UK), and then incubated aerobically at 37 °C for 24–72 h). One or two colonies for each site were selected based on staphylococci morphology [4]. The colonies were then purified on Nutrient Agar (Oxoid, Basingstoke, UK).

Identification

All isolates were initially screened using Gram staining, catalase and coagulase tests. Those that demonstrated potential staphylococci characteristics were identified by Matrix-assisted laser desorption ionization time flight mass-spectroscopy (MALDI-TOF-MS, Microflex LT, Bruker Daltonics, Coventry, UK) in a positive linear mode (2000–20,000 m/z range) as described previously [12]. The resulting spectra were compared with reference spectra by using the Biotyper 3.0 software (Bruker Daltonics, Coventry, UK). Escherichia. coli DH5α (Bruker Daltonics, Coventry, UK) was used as a standard for calibration and quality control.

Antimicrobial susceptibility test

A panel of 11 antibiotics was used to determine the antibiotic susceptibility of all the isolates. The standard disk diffusion method was used to test AM: amoxicillin (10 μg); CEP: cefepime (30 μg); CHL: chloramphenicol (30 μg); ERY: erythromycin (5 μg); FC: fusidic acid (10 μg); GEN: gentamicin (10 μg); MUP: mupirocin (20 μg); OX: oxacillin (1 μg); PEN: penicillin (1 unit); STR: streptomycin (10 μg); TET: tetracycline (10 μg);. The susceptible, intermediate resistant or resistant were determined by the Guidelines for Susceptibility Testing [14]. The Minimum Inhibitory Concentrations (MIC) for oxacillin were additionally evaluated using “M.I.C. evaluators” (Oxoid Ltd., Basingstoke, UK).

Detection of mecA gene and staphylococcal cassette chromosome mec (SCCmec) typing

The mecA gene was determined by using PCR method as described previously [15]. For mecA positive isolates, SCCmec types were determined by evaluating mec and ccr complexes [15].

MLST typing of Staphylococcus epidermidis

Multi-locus sequence typing (MLST) was used to determine the sequence types of S. epidermidis [16]. Sequence types were assigned using the S. epidermidis database (www.​mlst.​net).

Results

Purification of isolates

A total of 643 staphylococci isolates were recovered in this study, including those from hotels (n = 74), baby care facilities (n = 46), handbags (n = 17), supermarkets (n = 89), restaurants (n = 96), public transportation (n = 94), human hands (n = 192) and public libraries (n = 35) (Additional file 1: Table S1).

Species determination

Six hundred forty-three staphylococcal isolates belonging to 19 staphylococcal species were identified in this study. This included: S. epidermidis (n = 193), S. hominis (n = 161), S. capitis (n = 77), S. warneri (n = 63), S. haemolyticus (n = 45), S. pasteuri (n = 33), S. saprophyticus (n = 20), S. aureus (n = 12), S. simiae (n = 10), S. cohnii (n = 9), S. sciuri (n = 5), S. pettenkoferi (n = 3), S. auricularis (n = 2), S. caprae (n = 2), S. equorum (n = 2), S. lugdunensis (n = 2), S. xylosus (n = 2), S. arlettae (n = 1), and S. simulans (n = 1). S. epidermidis was the predominant species, followed by S. hominis, S. capitis, S. warneri, S. haemolyticus, S. pasteuri, and S. saprophyticus However, the occurrence of the species varied for different sites. S. epidermidis was predominant among the isolates recovered from restaurants, public transport, hands and handbags, whereas S. hominis was predominant among the isolates recovered from supermarkets, baby care facilities and hotels and S. haemolyticus was predominantly isolated from the library (Table 1).
Table 1
Predominant and common staphylococcal species recovered from the human hands and different environmental sites
Sites
Predominant species (%)
Commonly isolated species (%)
BCF
S. hominis (17%)
S. warneri (17%)
DSH
S. hominis (30%)
S. haemolyticus (18%)
DSL
S. haemolyticus (29%)
S. epidermidis (26%)
DSR
S. epidermidis (38%)
S. hominis (35%)
DSS
S. hominis (44%)
S. epidermidis (29%)
DST
S. epidermidis (35%)
S. capitis (15%)
HB
S. epidermidis (40%)
S. capitis (27%)
HH
S. epidermidis (36%)
S. hominis (23%)
BCF baby care facilities, DSH different sites of hotels, DSL different sites of a library, DSR different sites of restaurants, DSS different sites of supermarkets; DST different sites of transportation facilities, HB handbags, HH human hand

Antibiotic susceptibility test results

The disc diffusion method was used to test 606 isolates against a panel of 11 antibiotics. 572 (94%) isolates were resistant to at least one antibiotic, and only 34 isolates were fully susceptible. Resistance to penicillin, and fusidic acid was observed in more than 65% of all staphylococcal isolates tested. 202 (33%) isolates were resistant to streptomycin, 190 (31%) to erythromycin, 161 (27%) to amoxicillin, 98 (16%) to tetracycline, 87 (14%) to mupirocin, 59 (10%) to gentamicin, 48 (8%) cefepime, 36 (6%) oxacillin, and 21(3%) chloramphenicol (Table 2).
Table 2
Antibiotic susceptibility profile of staphylococci isolates recovered from general public settings
Isolates
No of isolates
Resistance to a panel of 11 antibiotics (%)
 
OX
PG
MUP
CEF
GM
FC
S
A
E
T
C
S. epidermidis
176
8
72
16
9
7
64
22
26
43
16
2
S. hominis
152
2
68
9
5
7
66
24
17
38
21
3
S. capitis
73
4
58
15
4
1
60
47
23
14
10
5
S. haemolyticus
40
10
50
13
23
15
68
73
45
0
25
10
S. warneri
63
3
54
17
10
22
59
51
40
27
16
2
S. pasteuri
31
6
69
13
6
9
69
25
31
44
17
3
S. saprophyticus
20
15
90
25
5
10
100
10
25
35
15
10
S. aureus
12
0
83
17
0
58
83
33
50
25
0
8
S. simiae
10
0
10
0
0
0
40
0
0
0
0
0
S. cohnii
9
24
67
11
33
0
78
78
22
56
11
0
S. sciuri
5
60
60
80
0
20
80
80
40
0
0
0
S. pettenkoferi
3
0
33
0
0
0
67
67
33
0
0
0
S. lugdunensis
2
0
50
0
0
0
50
0
0
0
0
0
S. equorum
2
0
50
50
0
0
50
50
50
0
50
0
S. caprae
2
0
100
0
100
100
100
50
50
0
0
0
S. xylosus
2
0
100
50
50
50
100
100
0
0
50
0
S. auricularis
2
0
50
0
50
0
50
0
50
0
0
0
S. arlettae
1
0
100
0
0
0
100
100
100
100
0
0
S. simulans
1
0
100
0
0
0
100
0
0
0
0
0
OX oxacillin (1 μg), PG penicillin G (1 unit), MUP mupirocin (20 μg), CEF cefepime (30 μg), GM gentamicin (10 μg), FC fusidic acid (10 μg), S streptomycin (10 μg), A amoxicillin (10 μg), E erythromycin (5 μg), T tetracycline (10 μg), C chloramphenicol (30 μg)

mecA gene determination and SCCmec typing results

Sixty-eight (11%) mecA positive staphylococcal isolates were determined, however, no MRSA was determined in this study. S. sciuri had the highest mecA gene carriage (80%) among all 19 staphylococcal species, followed by S. cohnii (33%), S. haemolyticus (22%), and S. saprothyticus (20%). Other isolates demonstrated relatively lower carriage of mecA gene, including S.hominis (3%), S.capitis (8%), S. epidermidis (11%), S.warneri (11%), S.pasteuri (13%). No mecA gene was found in the remaining 10 species, including S. aureus, S. simiae, S. equorum, S. caprae, S. xylosus, S. auricularis, S. simulans, S. arlettae S.pettenkoferi, and S. lugdunensis.
SCCmec types were fully determined in forty-six isolates. Twenty-two out of 68 isolates lacked either the mec gene complex or the ccr gene complex. Thirteen staphylococci (19%) carried SCCmec type V, followed by 8 isolates carrying SCCmec type I (2%), 5 isolates SCCmec type IV (7%), 4 isolates SCCmec type II (6%), 1 isolate SCCmec type III (2%), 1 isolate SCCmec type VI (2%), and 1 isolate SCCmec type VIII (2%). In addition, three isolates harboured a new SCCmec type 1A, which carried combination of class A mec complex and ccr type 1. Of the ten isolates that were non-typeable, three carried a combination of class A mec complex and ccrC, six carried a combination of class B mec and ccrC, and one carried class B mec and ccr type 3 (Table 3).
Table 3
Molecular characterisation and antibiotic resistance of mecA gene positive staphylococci
ID
Sites
Species
PG
MUP
CEF
GM
FC
S
A
E
T
C
mecA
mec
ccr
SCCmec
MIC/OX (mg l−1)
71
HH
S. capitis
S
S
S
S
S
R
S
S
S
S
+
I
0.5
100
DSH
S. cohnii
R
R
S
S
S
S
R
R
S
S
+
Class A
5
5A
1
97
BCF
S. cohnii
R
S
R
S
R
R
S
R
S
S
+
Class B
1
I
0.25
279
HH
S. epidermidis
R
S
S
S
R
S
S
R
S
S
+
Class B
2
IV
2
127
DSH
S. epidermidis
R
S
I
S
S
S
R
R
R
S
+
Class C
5
V
2
139
DSR
S. epidermidis
R
R
R
S
R
S
R
R
R
S
+
Class C
5
V
2
191
DSS
S. epidermidis
R
S
S
S
R
S
R
S
S
S
+
Class B
4
VI
2
153
DSH
S. epidermidis
R
S
S
S
R
S
S
S
S
S
+
Class C
5
V
1
187
DSS
S. epidermidis
R
S
S
S
S
S
S
R
S
S
+
Class C
5
V
1
134
DSL
S. epidermidis*
R
S
S
S
R
R
R
R
R
S
+
Class B
1
I
1
259
HH
S. epidermidis
R
S
R
S
R
R
R
R
S
S
+
Class C
5
V
1
135
DSL
S. epidermidis*
R
S
S
S
R
R
R
R
R
S
+
Class B
2
IV
0.5
124
DSH
S. epidermidis
R
S
R
S
R
R
R
S
R
S
+
Class B
2
IV
0.5
133
DSL
S. epidermidis*
R
S
S
S
R
R
R
R
R
S
+
Class B
3
3B
0.5
126
HH
S. epidermidis
R
S
I
S
S
R
R
R
S
S
+
III
0.5
119
DSH
S. epidermidis
R
S
S
S
S
S
R
I
R
S
+
Class C
5
V
0.12
111
BCF
S. epidermidis
R
S
S
S
S
S
S
S
S
S
+
Class A
2
II
0.12
202
DST
S. epidermidis
S
R
S
S
R
I
S
S
S
S
+
Class B
5
5B
0.12
264
HH
S. epidermidis
S
R
S
S
R
R
S
S
S
S
+
Class B
2
IV
0.06
129
DSL
S. epidermidis
R
S
S
S
R
R
R
R
R
S
+
Class B
1
I
0.03
362
DSL
S. haemolyticus
R
S
I
S
S
R
R
S
S
S
+
Class C
5
V
2
367
DSL
S. haemolyticus
R
S
R
S
S
R
R
S
S
S
+
Class C
5
V
2
355
DSH
S. haemolyticus
R
S
R
R
R
R
R
S
R
S
+
Class C
5
V
2
384
HH
S. haemolyticus
R
R
S
S
R
R
S
S
S
S
+
Class C
5
V
2
322
DSH
S. haemolyticus
R
S
S
S
S
I
R
S
R
S
+
Class A
1
1A
0.25
382
HH
S. haemolyticus
R
S
I
S
R
R
S
R
S
S
+
II
0.25
323
DSH
S. haemolyticus
S
S
S
R
S
R
R
I
R
S
+
Class A
2
II
0.12
381
HH
S. haemolyticus
S
S
I
S
S
R
S
S
S
S
+
Class B
5
5B
0.12
360
DSH
S. haemolyticus
S
S
S
S
R
S
S
S
S
R
+
Class B
5
5B
0.06
369
DSL
S. haemolyticus
R
S
S
S
R
R
S
R
S
R
+
Class B
1
I
0.03
413
DSH
S. hominis
S
R
S
S
R
R
S
S
S
S
+
Class C
5
V
2
506
DSS
S. hominis
S
S
S
S
R
S
S
S
S
S
+
Class B
1
I
0.5
400
DSH
S. hominis
R
R
S
S
R
S
R
R
R
S
+
Class A
1
1A
0.12
326
DSH
S. hominis
S
S
S
S
S
S
R
I
S
S
+
Class A
1
1A
0.06
589
HB
S. pasteuri
R
S
S
S
R
R
S
R
S
S
+
Class A
5
5A
0.25
592
HH
S. pasteuri
S
R
S
S
R
R
S
S
S
S
+
Class B
5
5B
0.25
627
HH
S. saprophyticus
R
I
S
S
R
S
S
S
R
S
+
Class B
5
5B
0.5
621
DSS
S. saprophyticus
R
R
R
S
R
S
R
S
R
S
+
Class B
2
IV
0.25
630
HH
S. sciuri
R
R
I
S
R
R
S
S
S
S
+
Class A
4
VIII
2
632
DSH
S. sciuri
R
S
I
S
R
R
R
S
S
S
+
Class A
5
5A
1
633
DSH
S. sciuri
R
R
I
R
R
R
R
S
S
S
+
Class B
5
5B
1
629
HH
S. sciuri
S
R
S
S
S
S
S
S
S
S
+
II
0.25
704
HH
S. warneri
R
S
I
S
R
R
R
R
S
S
+
Class C
5
V
0.5
662
DSH
S. warneri
R
S
S
R
R
R
R
S
R
S
+
Class C
5
V
0.25
694
HH
S. warneri
R
S
S
S
S
S
S
S
R
S
+
I
0.25
655
BCF
S. warneri
S
R
S
R
R
R
S
I
S
S
+
Class B
1
I
0.12
Note: * S. epidermidis isolates with similar MLST types
R: resistant, S sensitive. I intermediate
BCF baby care facility, DSH different sites of hotels, DSL different sites of a library, DSR different sites of restaurants, DSS different sites of supermarkets, DST different sites of transportation facilities, HB handbags, HH human hands
A amoxicillin (10 μg), CEF cefepime (30 μg), C chloramphenicol (30 μg), E erythromycin (5 μg), FC fusidic acid (10 μg), GM gentamicin (10 μg), MUP mupirocin (20 μg), OX oxacillin (1 μg), PG penicillin G (1 unit), S streptomycin (10 μg), T tetracycline (10 μg)

Multi-locus sequence typing of S. epidermidis

MLST was performed to determine the housekeeping genes of 13 oxacillin resistant and mecA positive S. epidermidis. MLST typing revealed that all S. epidermidis strains possess new MLST types. MLST types of S. epidermidis isolates with in house numbers of 279, 133, 134, 135, 126, 259, 124, 127, 234, 187, 308, 153 and 191 were respectively assigned as ST599, ST600, ST600, ST600, ST601, ST602, ST602, ST603, ST604, ST605, ST606, ST607 and ST608 (Table 4). Three S. epidermidis isolates shared the same sequence types (ST), including S. epidermidis 133, 134 and 135 that were isolated from different sites of a library (DSL) possessed ST600 whereas S. epidermidis 259, and S. epidermidis 124 that had ST602 sequence type were isolated from the human hands (HH) and different sites of hotels (DSH) respectively.
Table 4
MLST types of 13 oxacillin resistant and mecA positive S. epidermidis
ID
Sites
Species
arcC
aroE
gtr
mutS
pyrR
tpiA
yqiL
MLST types
279
HH
S. epidermidis
57
17
5
5
3
4
31
ST599
133
DSL
S. epidermidis
57
1
2
2
4
1
4
ST600
134
DSL
S. epidermidis
57
1
2
2
4
1
4
ST600
135
DSL
S. epidermidis
57
1
2
2
4
1
4
ST600
126
HH
S. epidermidis
57
25
9
5
6
1
8
ST601
259
HH
S. epidermidis
57
1
2
2
4
1
1
ST602
124
DSH
S. epidermidis
57
1
2
2
4
1
1
ST602
127
DSH
S. epidermidis
57
10
5
5
10
16
21
ST603
234
HB
S. epidermidis
57
1
1
1
2
41
1
ST604
187
DSS
S. epidermidis
57
1
1
2
2
1
1
ST605
308
HH
S. epidermidis
57
1
2
2
4
7
1
ST606
153
DSH
S. epidermidis
57
1
22
2
2
16
1
ST607
191
DSS
S. epidermidis
57
3
5
5
7
14
11
ST608
HH human hands, DSL different sites of a library, DSH different sites of hotels, DSS different sites of supermarkets
MLST Multi-locus sequence typing

Discussion

Environmental staphylococcal species

Although antibiotic resistance is commonly linked to the clinic, recent studies from different ecological niches revealed multidrug resistant bacteria is widespread in the environment [11, 12, 17].
We have previously reported on high levels of antibiotic resistance in staphylococci isolated from different environmental/public settings [11, 12]. In this study we evaluated the dissemination of antibiotic resistant staphylococci recovered from a wide range of environmental settings, and characterised the carriage of the mecA gene and the diversity of SCCmec elements in these isolates.
Six hundred and forty-three staphylococci isolates belonging to 19 species, including S. epidermidis, S. hominis, S. haemolyticus, S. capitis, S. warneri, S. pasteuri, S. saprophyticus, S. cohnii, S. aureus, S. simiae, S. sciuri, S. pettenkoferi, S. lugdunensis, S. equorum, S. caprae, S. xylosus, S. auricularis, S. simulans, and S. arlettae, were identified in this study. Interestingly, many of the staphylococci species recovered in our study have previously been associated with the community, preserved food, and wildlife [4, 10].

Antibiotic resistance

Antibiotic resistance of staphylococci associated with healthcare settings is well documented, however, little is known about the antibiotic resistance in staphylococci isolated from different ecological niches [4]. In this study, the majority of staphylococci were resistant to penicillin (65%) and fusidic acid (66%) (Fig. 1). Despite that 80% of hospital associated CoNS (across Europe) were reported to be resistant to oxacillin [18], only 6% of CoNS were resistant to oxacillin in this study. In addition, the levels of resistance to chloramphenicol (3%), cefepime (8%), gentamicin (10%), mupirocin (14%), tetracycline (16%), and erythromycin (31%) were lower compared to those reported in clinical settings [1922]. In contrast, the rates of resistance to fusidic acid (66%), amoxicillin (27%) and streptomycin (33%) in environmental staphylococcal isolates were higher than those reported in clinical staphylococci isolates [21, 23, 24]. It is widely accepted that higher levels of antibiotic resistance in clinical isolates are due to consistent antibiotic exposure [25]. The environment may also contribute to the development of antibiotic resistance in microorganisms due to human/ animal therapeutics, sewage, agriculture and industrial use of antibiotics [26]. Therefore, the wide dissemination of multidrug resistant CoNS in non-healthcare associated environments is a disturbing finding. In our study, 94% of staphylococcal isolates were phenotypically resistant to at least 1 antibiotic, 18% were resistant to five or more antibiotics and only 6% staphylococcal isolates were fully susceptible. The study also revealed that the number of isolates resistant to multiple antibiotics varied between the different isolation sites. The least number of multiple antibiotic resistant CoNS isolates were recovered from the public transport (58%), the highest was isolated from hotels (78%).

Methicillin-resistant staphylococci

Methicillin resistant staphylococci pose a major public health threat, and cause severe economic and health consequences [27]. Methicillin resistance is determined by the mecA gene, which encodes for penicillin binding protein 2a (PBP2a) that has a low affinity to β-lactam antibiotics [28]. Hussain et al. assessed the correlation between mecA gene and oxacillin susceptibility breakpoints (0.5 mg l− 1) of 493 clinical CoNS belonging to and classified into 4 categories [29]. The mecA gene positive staphylococci were categorized into groups I and II, and demonstrated that group I (S. haemolyticus (83.3%), S. epidermidis (61.9%), S. hominis (51.8%)) differs from group II (S. cohnii (28.5%), S. warneri (27.3%), S. saprophyticus (9.0%)) by their high levels of mecA-carriage [29]. Interestingly, S. hominis (38%), S. haemolyticus (22%), and S. epidermidis (7%) isolated in this study harboured significantly lower levels of the mecA gene. Moreover, in this study S. cohnii (33%) and S. saprophyticus (10%) showed higher mecA gene carriage than clinical isolates reported by Hussain, et al. [29], whereas the levels of mecA gene carriage in S. warneri (6%) were lower than in clinical isolates. No mecA gene was detected in staphylococcal species of groups III and IV, which included S. xylosus, S. lugdunensis, S. capitis, S.simulans, and S. schleiferi [29]. Similarly, in this study S. lugdunensis, S. xylosus and S. simulans were determined to be susceptible to oxacillin and lacked mecA gene. However, in contrast to the reports by Hussain, et al. [29] we found that mecA gene was present in 8% of S. capitis isolates.
Oxacillin susceptible mecA gene positive S. aureus (OS-MRSA) has been reported worldwide, and the risk of induced high levels of oxacillin resistance was determined in OS-MRSA [30, 31]. In this study, 68 (46%) staphylococcal isolates were confirmed by PCR to carry the mecA gene, however, they were phenotypically susceptible to oxacillin with the MICs (oxacillin) varying from 0.015 to 2 mg l− 1. This study demonstrates the prevalence of mecA positive but oxacillin susceptible CoNS (OS-CoNS) in the environment. Little is known about OS-CoNS isolates recovered from the environment and their epidemiological data are limited. Additional studies are necessary to further our understanding of the prevalence and molecular epidemiology of OS-CoNS in the environment.

SCCmec elements

SCCmec is a mobile genetic element with two essential components: the mec gene complex, and the cassette chromosome recombinase (ccr) gene complex [32]. The combination of the mec gene complex and ccr gene complex confers different SCCmec types [32]. SCCmec type I, II, III are reported to be associated with MRSA recovered from healthcare settings, whereas SCCmec type IV and V are mainly associated with the community [32]. Moreover, it has been shown that the size of SCCmec types IV and V are smaller than SCCmec types I, II and III, thus conferring increased mobility by their smaller size and contributing the spread of these smaller SCCmec elements [33] . In this study, SCCmec type I, II or III were found in 19% (n = 13) of mecA-positive CoNS, whereas 27% (n = 18) of CoNS were determined to harbour SCCmec type IV or V. SCCmec type VI and VIII were previously identified in Portugal (2006) and Canada (2009) in hospital associated MRSA (HA-MRSA) [33, 34]. In this study, we identified one of each type, however, we did not detect SCCmec types IX.
Becker et al., have previously summarized the community and livestock associated staphylococcal species and their SCCmec types, which included S. capitis (I, IA, II, III, IV, IVa, V, non-typeable: (NT)), S. cohnii (NT), S. epidermidis (I, IIa, IIb, III, III (variant), IV, IVa, IVb, IVc, IVd, IVe, IVg, V, VI, NT), S. haemolyticus (I, II, II.1, III, III (variant), IV, V, NT), S. honomis (I, III, IV, NT), S. pasteuri (IVc), S. saprophyticus (III, NT), S. sciuri (I, III, IIIA, V, VII, NT) and S. warneri (IV, IV.1, IVb, IVE) [4]. In this study, species associated SCCmec types differed and included the following: S. capitis (I, NT), S. haemolyticus (I, II, V, NT) and S. hominis (I, V, NT), S. cohnii (I, V, NT), S. pasteuri (NT), S. saprophyticus (IV, NT), S. sciuri (II, VIII), S. warneri (I, V, NT). S. epidermidis possessed SCCmec types similar to those reported previously [4].
Thirteen unclassified SCCmec types were determined in this study, including three carrying class A mec complex and ccrC, six had a combination of class B mec and ccrC, one carried class B mec and ccr3, and three had a combination of class A mec complex and ccr type 1. The 1A was previously defined as a new SCCmec type 1A by others [35]. Pseudo (ψ)-SCCmec harbours the mec complex but lacks ccr, while, SCCmec12263 is reported to carry the ccr complex but lacks mec complex [36, 37]. In this study, 21 isolates (29%) were categorized as (ψ)-SCCmec and SCCmec12263 since they lacked either mec complex or ccr complexes. ψ SCC element is characterized by lacking genes for ccr and mec [4]. One of S. saprophyticus isolates in this study was found to possess the ψ SCC element (Table 5).
Table 5
The diversity of SCCmec types of mecA gene positive staphylococci
ID
Sites
Species
PG
MUP
CEF
GM
FC
S
A
E
T
C
mecA
mec
ccr
SCCmec
MIC/OX (mg l−1)
75
HH
S. capitis
R
S
S
S
R
R
S
S
S
S
+
Class A
NT
Pseudo (ψ)-SCCmec
0.5
81
HH
S. capitis
R
S
R
S
R
R
R
R
S
S
+
NT
5
SCCmec12263
0.5
70
HH
S. capitis
R
S
S
S
S
R
S
S
R
S
+
NT
5
SCCmec12263
0.25
83
HH
S. capitis
S
R
S
S
R
R
S
S
S
S
+
NT
5
SCCmec12263
0.12
24
DSH
S. capitis
S
S
S
S
R
R
S
S
S
S
+
NT
1
SCCmec12263
0.12
108
HH
S. cohnii
S
S
I
S
R
R
S
R
R
S
+
Class A
NT
Pseudo (ψ)-SCCmec
1
308
HH
S. epidermidis
R
R
S
S
R
S
R
R
S
S
+
Class B
NT
Pseudo (ψ)-SCCmec
2
234
HB
S. epidermidis
S
R
S
S
R
R
S
R
R
S
+
Class A
NT
Pseudo (ψ)-SCCmec
1
249
DSH
S. epidermidis
R
S
S
S
R
R
S
S
R
S
+
NT
2
SCCmec12263
0.12
125
DSH
S. epidermidis
S
S
I
S
S
R
S
S
S
S
+
NT
5
SCCmec12263
0.06
185
DSS
S. epidermidis
R
S
S
S
S
S
S
S
S
S
+
Class C
NT
Pseudo (ψ)-SCCmec
0.06
498
DSS
S. hominis
R
S
S
S
R
S
S
R
S
S
+
Class A
NT
Pseudo (ψ)-SCCmec
0.5
426
DSH
S. hominis
R
S
I
S
R
R
R
R
S
S
+
Class A
NT
Pseudo (ψ)-SCCmec
0.25
412
DSH
S. hominis
R
S
S
S
R
S
R
R
S
S
+
NT
1
SCCmec12263
0.06
391
BCF
S. hominis
R
S
S
S
R
S
S
S
S
S
+
NT
5
SCCmec12263
0.03
593
HH
S. pasteuri
R
S
S
R
R
R
R
S
S
S
+
NT
5
SCCmec12263
0.5
597
HH
S. pasteuri
R
R
I
S
S
R
S
S
S
S
+
NT
5
SCCmec12263
0.5
616
BCF
S. saprophyticus
R
R
S
S
R
I
R
R
R
S
+
NT
5
SCCmec12263
256
612
BCF
S. saprophyticus
R
R
S
S
R
S
S
R
S
S
+
NT
NT
ψ SCC
1
659
DSH
S. warneri
R
R
S
S
R
R
R
S
S
S
+
NT
5
SCCmec12263
0.5
648
BCF
S. warneri
R
S
S
R
R
S
R
S
S
S
+
NT
5
SCCmec12263
0.06
645
BCF
S. warneri
R
S
S
S
R
S
S
S
S
S
+
NT
4
SCCmec12263
0.015
R resistant, S sensitive, I intermediate
BCF baby care facility, DSH different sites of hotels, DSL different sites of a library, DSR different sites of restaurants, DSS different sites of supermarkets; DST different sites of transportation facilities, HB handbags, HH human hands
A amoxicillin (10 μg), CEF cefepime (30 μg), C chloramphenicol (30 μg), E erythromycin (5 μg), FC fusidic acid (10 μg), GM gentamicin (10 μg), MUP mupirocin (20 μg), OX oxacillin (1 μg), PG penicillin G (1 unit), S streptomycin (10 μg), T tetracycline (10 μg)

MLST of S. epidermidis

Whilst many studies have reported on the changing epidemiology of S. aureus, epidemiological data of other staphylococcal species are limited [38, 39]. In this study, 10 new MLST types were determined in 13 S. epidermidis isolates. Interestingly, although isolates recovered from human hands (S. epidermidis 259/ SCCmec V) and hotels (S. epidermidis 124/ SCCmec IV) harboured different SCCmec types, they shared the same MLST type ST602. In addition, three S. epidermidis isolates recovered from libraries (S. epidermidis 133, S. epidermidis 134, S. epidermidis 135) shared the same MLST type ST600 (Table 4). However, despite sharing the same MLST type S. epidermidis 133, S. epidermidis 134 and S. epidermidis 135 harbored SCCmec type 3B, I, IV respectively. Others reported that S. epidermidis ST2 was associated with type II, III, IV and non-typable SCCmec, and S. epidermidis ST22 harboured SCCmec type III, IV and V [40].

Conclusions

Systematic analysis of staphylococci isolated from non-healthcare environments provided insights into the diversity and antibiotic susceptibility patterns of these isolates. Multi-drug resistance was commonly seen in each staphylococcal species. The prevalence of multiple antibiotic resistant staphylococci in this study provides evidence that antibiotics in the natural environments can contribute to the selection of antibiotic resistance in microorganisms. The finding of various SCCmec types in non-healthcare associated environments emphasizes the complexity of SCCmec elements. In addition to this, we also report on new MLST types that were assigned for all S. epidermidis isolates. This highlights the genetic variability of these isolates. In conclusion, the non-healthcare environments may act as a reservoir of multidrug resistant staphylococci, and current infection control measures are ineffective in limiting the spread of these bacteria.

Funding

This work was part of Zhen Xu’s PhD study funded by China Scholarship Council.

Availability of data and materials

All data generated or analysed during this study are included in this published article and its supplementary information files.
Not applicable.
Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
2.
Zurück zum Zitat Foster TJ, Geoghegan JA, Ganesh VK, Höök M. Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nat Rev Microbiol. 2014;12(1):49–62.CrossRefPubMedPubMedCentral Foster TJ, Geoghegan JA, Ganesh VK, Höök M. Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nat Rev Microbiol. 2014;12(1):49–62.CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Bouchami O, Achour W, Mekni MA, Rolo J, Ben HA. Antibiotic resistance and molecular characterization of clinical isolates of methicillin-resistant coagulase-negative staphylococci isolated from bacteremic patients in oncohematology. Folia Microbiol. 2011;56(2):122–30.CrossRef Bouchami O, Achour W, Mekni MA, Rolo J, Ben HA. Antibiotic resistance and molecular characterization of clinical isolates of methicillin-resistant coagulase-negative staphylococci isolated from bacteremic patients in oncohematology. Folia Microbiol. 2011;56(2):122–30.CrossRef
5.
Zurück zum Zitat Ubukata K, Nonoguchi R, Song MD, Matsuhashi M, Konno M. Homology of mecA gene in methicillin-resistant Staphylococcus haemolyticus and Staphylococcus simulans to that of Staphylococcus aureus. Antimicrob Agents Chemother. 1990;34(1):170–2.CrossRefPubMedPubMedCentral Ubukata K, Nonoguchi R, Song MD, Matsuhashi M, Konno M. Homology of mecA gene in methicillin-resistant Staphylococcus haemolyticus and Staphylococcus simulans to that of Staphylococcus aureus. Antimicrob Agents Chemother. 1990;34(1):170–2.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Pinho MG, de Lencastre H, Tomasz A. An acquired and a native penicillin-binding protein cooperate in building the cell wall of drug-resistant staphylococci. Proc Natl Acad Sci. 2001;98(19):10886–91.CrossRefPubMedPubMedCentral Pinho MG, de Lencastre H, Tomasz A. An acquired and a native penicillin-binding protein cooperate in building the cell wall of drug-resistant staphylococci. Proc Natl Acad Sci. 2001;98(19):10886–91.CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Hiramatsu K, Cui L, Kuroda M, Ito T. The emergence and evolution of methicillin-resistant Staphylococcus aureus. Trends Microbiol. 2001;9(10):486–93.CrossRefPubMed Hiramatsu K, Cui L, Kuroda M, Ito T. The emergence and evolution of methicillin-resistant Staphylococcus aureus. Trends Microbiol. 2001;9(10):486–93.CrossRefPubMed
8.
Zurück zum Zitat Harrison EM, Paterson GK, Holden MTG, Ba X, Rolo J, Morgan FJE, et al. A novel hybrid SCCmec-mecC region in Staphylococcus sciuri. J Antimicrob Chemother. 2014;69(4):911–8.CrossRefPubMed Harrison EM, Paterson GK, Holden MTG, Ba X, Rolo J, Morgan FJE, et al. A novel hybrid SCCmec-mecC region in Staphylococcus sciuri. J Antimicrob Chemother. 2014;69(4):911–8.CrossRefPubMed
9.
Zurück zum Zitat IWG-SCC. Classification of staphylococcal cassette chromosome mec (SCCmec): guidelines for reporting novel SCCmec elements. Antimicrob Agents Chemother. 2009;53(12):4961–7.CrossRef IWG-SCC. Classification of staphylococcal cassette chromosome mec (SCCmec): guidelines for reporting novel SCCmec elements. Antimicrob Agents Chemother. 2009;53(12):4961–7.CrossRef
10.
Zurück zum Zitat Pantucek R. Staphylococcus simiae sp. nov., isolated from south American squirrel monkeys. Int J Syst Evol Microbiol. 2005;55(5):1953–8.CrossRefPubMed Pantucek R. Staphylococcus simiae sp. nov., isolated from south American squirrel monkeys. Int J Syst Evol Microbiol. 2005;55(5):1953–8.CrossRefPubMed
11.
Zurück zum Zitat Xu Z, Mkrtchyan HV, Cutler RR. Antibiotic resistance and mecA characterization of coagulase-negative staphylococci isolated from three hotels in London, UK. Front Microbiol. 2015;6:947.CrossRefPubMedPubMedCentral Xu Z, Mkrtchyan HV, Cutler RR. Antibiotic resistance and mecA characterization of coagulase-negative staphylococci isolated from three hotels in London, UK. Front Microbiol. 2015;6:947.CrossRefPubMedPubMedCentral
12.
13.
Zurück zum Zitat Boyce JM. Environmental contamination makes an important contribution to hospital infection. J Hosp Infect. 2007;65(Suppl 2):50–4.CrossRefPubMed Boyce JM. Environmental contamination makes an important contribution to hospital infection. J Hosp Infect. 2007;65(Suppl 2):50–4.CrossRefPubMed
14.
Zurück zum Zitat Andrews JM, Howe RA. BSAC standardized disc susceptibility testing method (version 10). J Antimicrob Chemother. 2011;66:2726–57.CrossRefPubMed Andrews JM, Howe RA. BSAC standardized disc susceptibility testing method (version 10). J Antimicrob Chemother. 2011;66:2726–57.CrossRefPubMed
15.
Zurück zum Zitat Kondo Y, Ito T, Ma XX, Watanabe S, Kreiswirth BN, Etienne J, et al. Combination of multiplex PCRs for staphylococcal cassette chromosome mec type assignment: rapid identification system for mec, ccr, and major differences in junkyard regions. Antimicrob Agents Chemother. 2007;51(1):264–74.CrossRefPubMed Kondo Y, Ito T, Ma XX, Watanabe S, Kreiswirth BN, Etienne J, et al. Combination of multiplex PCRs for staphylococcal cassette chromosome mec type assignment: rapid identification system for mec, ccr, and major differences in junkyard regions. Antimicrob Agents Chemother. 2007;51(1):264–74.CrossRefPubMed
16.
Zurück zum Zitat Thomas JC, Vargas MR, Miragaia M, Peacock SJ, Archer GL, Enright MC. Improved multilocus sequence typing scheme for Staphylococcus epidermidis. J Clin Microbiol. 2007;45(2):616–9.CrossRefPubMed Thomas JC, Vargas MR, Miragaia M, Peacock SJ, Archer GL, Enright MC. Improved multilocus sequence typing scheme for Staphylococcus epidermidis. J Clin Microbiol. 2007;45(2):616–9.CrossRefPubMed
17.
Zurück zum Zitat Leonard FC, Markey BK. Meticillin-resistant Staphylococcus aureus in animals: a review. Vet J. 2008;175(1):27–36.CrossRefPubMed Leonard FC, Markey BK. Meticillin-resistant Staphylococcus aureus in animals: a review. Vet J. 2008;175(1):27–36.CrossRefPubMed
18.
Zurück zum Zitat Hanberger H, Diekema D, Fluit A, Jones R, Struelens M, Spencer R, et al. Surveillance of antibiotic resistance in European ICUs. J Hosp Infect. 2001;48(3):161–76.CrossRefPubMed Hanberger H, Diekema D, Fluit A, Jones R, Struelens M, Spencer R, et al. Surveillance of antibiotic resistance in European ICUs. J Hosp Infect. 2001;48(3):161–76.CrossRefPubMed
19.
Zurück zum Zitat Agvald-Ohman C, Lund B, Edlund C. Multiresistant coagulase-negative staphylococci disseminate frequently between intubated patients in a multidisciplinary intensive care unit. Crit Care. 2004;8(1):R42–7.CrossRefPubMed Agvald-Ohman C, Lund B, Edlund C. Multiresistant coagulase-negative staphylococci disseminate frequently between intubated patients in a multidisciplinary intensive care unit. Crit Care. 2004;8(1):R42–7.CrossRefPubMed
20.
Zurück zum Zitat Mohan U, Jindal N, Aggarwal P. Species distribution and antibiotic sensitivity pattern of coagulase negative staphylococci isolated from various clinical specimens. Indian J Med Microbiol. 2002;20(1):45–6.PubMed Mohan U, Jindal N, Aggarwal P. Species distribution and antibiotic sensitivity pattern of coagulase negative staphylococci isolated from various clinical specimens. Indian J Med Microbiol. 2002;20(1):45–6.PubMed
21.
Zurück zum Zitat Akinkunmi E, Lamikanra A. Species Distribution and Antibiotic resistance in coagulase-negative staphylococci colonizing the gastrointestinal tract of children in Ile-Ife, Nigeria. Trop J Pharm Res. 2010;9(1):35–43.CrossRef Akinkunmi E, Lamikanra A. Species Distribution and Antibiotic resistance in coagulase-negative staphylococci colonizing the gastrointestinal tract of children in Ile-Ife, Nigeria. Trop J Pharm Res. 2010;9(1):35–43.CrossRef
22.
Zurück zum Zitat Fritsche TR, Sader HS, Jones RN. Comparative activity and spectrum of broad-spectrum β-lactams (cefepime, ceftazidime, ceftriaxone, piperacillin/tazobactam) tested against 12,295 staphylococci and streptococci: report from the SENTRY antimicrobial surveillance program (North America: 2001-2002). Diagn Microbiol Infect Dis. 2003;47(2):435–40.CrossRefPubMed Fritsche TR, Sader HS, Jones RN. Comparative activity and spectrum of broad-spectrum β-lactams (cefepime, ceftazidime, ceftriaxone, piperacillin/tazobactam) tested against 12,295 staphylococci and streptococci: report from the SENTRY antimicrobial surveillance program (North America: 2001-2002). Diagn Microbiol Infect Dis. 2003;47(2):435–40.CrossRefPubMed
23.
Zurück zum Zitat Ferreira RBR, Nunes APF, Kokis VM, Krepsky N, de Fonseca LS, de Bastos Mdo CF, et al. Simultaneous detection of the mecA and ileS-2 genes in coagulase-negative staphylococci isolated from Brazilian hospitals by multiplex PCR. Diagn Microbiol Infect Dis. 2002;42(3):205–12.CrossRefPubMed Ferreira RBR, Nunes APF, Kokis VM, Krepsky N, de Fonseca LS, de Bastos Mdo CF, et al. Simultaneous detection of the mecA and ileS-2 genes in coagulase-negative staphylococci isolated from Brazilian hospitals by multiplex PCR. Diagn Microbiol Infect Dis. 2002;42(3):205–12.CrossRefPubMed
24.
Zurück zum Zitat Idriss SHE, Foltys V, Tančin V, Kirchnerová K, Tančinová D, Zaujec K. Mastitis pathogens and their resistance against antimicrobial agents in dairy cows in Nitra, Slovakia. Slovak J Anim Sci. 2014;47(1):33–8. Idriss SHE, Foltys V, Tančin V, Kirchnerová K, Tančinová D, Zaujec K. Mastitis pathogens and their resistance against antimicrobial agents in dairy cows in Nitra, Slovakia. Slovak J Anim Sci. 2014;47(1):33–8.
25.
Zurück zum Zitat Antoniadou A, Kanellakopoulou K, Kanellopoulou M, Polemis M, Koratzanis G, Papademetriou E, et al. Impact of a hospital-wide antibiotic restriction policy program on the resistance rates of nosocomial gram-negative bacteria. Infect Dis (Auckl). 2013;45(6):438–45. Antoniadou A, Kanellakopoulou K, Kanellopoulou M, Polemis M, Koratzanis G, Papademetriou E, et al. Impact of a hospital-wide antibiotic restriction policy program on the resistance rates of nosocomial gram-negative bacteria. Infect Dis (Auckl). 2013;45(6):438–45.
26.
Zurück zum Zitat Cantas L, Shah SQA, Cavaco LM, Manaia CM, Walsh F, Popowska M, et al. A brief multi-disciplinary review on antimicrobial resistance in medicine and its linkage to the global environmental microbiota. Front Microbiol. 2013;4(10):96.PubMedPubMedCentral Cantas L, Shah SQA, Cavaco LM, Manaia CM, Walsh F, Popowska M, et al. A brief multi-disciplinary review on antimicrobial resistance in medicine and its linkage to the global environmental microbiota. Front Microbiol. 2013;4(10):96.PubMedPubMedCentral
27.
Zurück zum Zitat Stefani S, Varaldo PE. Epidemiology of methicillin-resistant staphylococci in Europe. Clin Microbiol Infect. 2003;9(12):1179–86.CrossRefPubMed Stefani S, Varaldo PE. Epidemiology of methicillin-resistant staphylococci in Europe. Clin Microbiol Infect. 2003;9(12):1179–86.CrossRefPubMed
28.
Zurück zum Zitat Tulinski P, Fluit AC, Wagenaar JA, Mevius D, van de Vijver L, Duim B. Methicillin-resistant coagulase-negative staphylococci on pig farms as a reservoir of heterogeneous staphylococcal cassette chromosome mec elements. Appl Environ Microbiol. 2012;78(2):299–304.CrossRefPubMedPubMedCentral Tulinski P, Fluit AC, Wagenaar JA, Mevius D, van de Vijver L, Duim B. Methicillin-resistant coagulase-negative staphylococci on pig farms as a reservoir of heterogeneous staphylococcal cassette chromosome mec elements. Appl Environ Microbiol. 2012;78(2):299–304.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Hussain Z, Stoakes L, Massey V, Diagre D, Fitzgerald V, El Sayed S, et al. Correlation of oxacillin MIC with mecA gene carriage in coagulase-negative staphylococci. J Clin Microbiol. 2000;38(2):752–4.CrossRefPubMedPubMedCentral Hussain Z, Stoakes L, Massey V, Diagre D, Fitzgerald V, El Sayed S, et al. Correlation of oxacillin MIC with mecA gene carriage in coagulase-negative staphylococci. J Clin Microbiol. 2000;38(2):752–4.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Hososaka Y, Hanaki H, Endo H, Suzuki Y, Nagasawa Z, Otsuka Y, et al. Characterization of oxacillin-susceptible mecA-positive Staphylococcus aureus: a new type of MRSA. J Infect Chemother. 2007;13(2):79–86.CrossRefPubMed Hososaka Y, Hanaki H, Endo H, Suzuki Y, Nagasawa Z, Otsuka Y, et al. Characterization of oxacillin-susceptible mecA-positive Staphylococcus aureus: a new type of MRSA. J Infect Chemother. 2007;13(2):79–86.CrossRefPubMed
31.
Zurück zum Zitat Saeed K, Dryden M, Parnaby R. Oxacillin-susceptible MRSA, the emerging MRSA clone in the UK? J Hosp Infect. 2010;76(3):267–8.CrossRefPubMed Saeed K, Dryden M, Parnaby R. Oxacillin-susceptible MRSA, the emerging MRSA clone in the UK? J Hosp Infect. 2010;76(3):267–8.CrossRefPubMed
32.
Zurück zum Zitat Monecke S, Coombs G, Shore AC, Coleman DC, Akpaka P, Borg M, et al. A field guide to pandemic, epidemic and sporadic clones of methicillin-resistant Staphylococcus aureus. PLoS One. 2011;6(4):e17936.CrossRefPubMedPubMedCentral Monecke S, Coombs G, Shore AC, Coleman DC, Akpaka P, Borg M, et al. A field guide to pandemic, epidemic and sporadic clones of methicillin-resistant Staphylococcus aureus. PLoS One. 2011;6(4):e17936.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Oliveira DC, Tomasz ALH. Secrets of success of a human pathogen: molecular evolution of pandemic clones of meticillin-resistant Staphylococcus aureus. Lancet Infect Dis. 2002;2(3):180–9.CrossRefPubMed Oliveira DC, Tomasz ALH. Secrets of success of a human pathogen: molecular evolution of pandemic clones of meticillin-resistant Staphylococcus aureus. Lancet Infect Dis. 2002;2(3):180–9.CrossRefPubMed
34.
Zurück zum Zitat Zhang K, McClure J-A, Elsayed S, Conly JM. Novel staphylococcal cassette chromosome mec type, tentatively designated type VIII, harboring class a mec and type 4 ccr gene complexes in a Canadian epidemic strain of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2009;53(2):531–40.CrossRefPubMed Zhang K, McClure J-A, Elsayed S, Conly JM. Novel staphylococcal cassette chromosome mec type, tentatively designated type VIII, harboring class a mec and type 4 ccr gene complexes in a Canadian epidemic strain of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2009;53(2):531–40.CrossRefPubMed
35.
Zurück zum Zitat Bouchami O, Ben Hassen A, de Lencastre H, Miragaia M. Molecular epidemiology of methicillin-resistant Staphylococcus hominis (MRSHo): low Clonality and reservoirs of SCCmec structural elements. Chaturvedi V, editor PLoS One. 2011;6(7):e21940.CrossRef Bouchami O, Ben Hassen A, de Lencastre H, Miragaia M. Molecular epidemiology of methicillin-resistant Staphylococcus hominis (MRSHo): low Clonality and reservoirs of SCCmec structural elements. Chaturvedi V, editor PLoS One. 2011;6(7):e21940.CrossRef
36.
Zurück zum Zitat Harrison EM, Paterson GK, Holden MTG, Morgan FJE, Larsen AR, Petersen A, et al. A Staphylococcus xylosus isolate with a new mecC allotype. Antimicrob Agents Chemother. 2013;57(3):1524–8.CrossRefPubMedPubMedCentral Harrison EM, Paterson GK, Holden MTG, Morgan FJE, Larsen AR, Petersen A, et al. A Staphylococcus xylosus isolate with a new mecC allotype. Antimicrob Agents Chemother. 2013;57(3):1524–8.CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Katayama Y, Takeuchi F, Ito T, Ma XX, Ui-Mizutani Y, Kobayashi I, et al. Identification in methicillin-susceptible Staphylococcus hominis of an active primordial mobile genetic element for the staphylococcal cassette chromosome mec of methicillin-resistant Staphylococcus aureus. J Bacteriol. 2003;185(9):2711–22.CrossRefPubMedPubMedCentral Katayama Y, Takeuchi F, Ito T, Ma XX, Ui-Mizutani Y, Kobayashi I, et al. Identification in methicillin-susceptible Staphylococcus hominis of an active primordial mobile genetic element for the staphylococcal cassette chromosome mec of methicillin-resistant Staphylococcus aureus. J Bacteriol. 2003;185(9):2711–22.CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Herwaldt LA, Geiss M, Kao C, Pfaller MA. The positive predictive value of isolating coagulase-negative staphylococci from blood cultures. Clin Infect Dis. 1996;22(1):14–20.CrossRefPubMed Herwaldt LA, Geiss M, Kao C, Pfaller MA. The positive predictive value of isolating coagulase-negative staphylococci from blood cultures. Clin Infect Dis. 1996;22(1):14–20.CrossRefPubMed
39.
Zurück zum Zitat Wang XM, Noble L, Kreiswirth BN, Eisner W, McClements W, Jansen KU, et al. Evaluation of a multilocus sequence typing system for Staphylococcus epidermidis. J Med Microbiol. 2003;52(11):989–98.CrossRefPubMed Wang XM, Noble L, Kreiswirth BN, Eisner W, McClements W, Jansen KU, et al. Evaluation of a multilocus sequence typing system for Staphylococcus epidermidis. J Med Microbiol. 2003;52(11):989–98.CrossRefPubMed
40.
Zurück zum Zitat Miragaia M, Thomas JC, Couto I, Enright MC, de Lencastre H. Inferring a population structure for Staphylococcus epidermidis from multilocus sequence typing data. J Bacteriol. 2007;189(6):2540–52.CrossRefPubMedPubMedCentral Miragaia M, Thomas JC, Couto I, Enright MC, de Lencastre H. Inferring a population structure for Staphylococcus epidermidis from multilocus sequence typing data. J Bacteriol. 2007;189(6):2540–52.CrossRefPubMedPubMedCentral
Metadaten
Titel
The prevalence, antibiotic resistance and mecA characterization of coagulase negative staphylococci recovered from non-healthcare settings in London, UK
verfasst von
Zhen Xu
Haroun N. Shah
Raju Misra
Jiazhen Chen
Wenhong Zhang
Yuting Liu
Ronald R. Cutler
Hermine V. Mkrtchyan
Publikationsdatum
01.12.2018
Verlag
BioMed Central
Erschienen in
Antimicrobial Resistance & Infection Control / Ausgabe 1/2018
Elektronische ISSN: 2047-2994
DOI
https://doi.org/10.1186/s13756-018-0367-4

Weitere Artikel der Ausgabe 1/2018

Antimicrobial Resistance & Infection Control 1/2018 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.