Skip to main content
Erschienen in: Brain Structure and Function 2/2012

01.04.2012 | Original Article

The red nucleus and the rubrospinal projection in the mouse

verfasst von: Huazheng Liang, George Paxinos, Charles Watson

Erschienen in: Brain Structure and Function | Ausgabe 2/2012

Einloggen, um Zugang zu erhalten

Abstract

We studied the organization and spinal projection of the mouse red nucleus with a range of techniques (Nissl stain, immunofluorescence, retrograde tracer injections into the spinal cord, anterograde tracer injections into the red nucleus, and in situ hybridization) and counted the number of neurons in the red nucleus (3,200.9 ± 230.8). We found that the rubrospinal neurons were mainly located in the parvicellular region of the red nucleus, more lateral in the rostral part and more medial in the caudal part. Labeled neurons were least common in the rostral and caudal most parts of the red nucleus. Neurons projecting to the cervical cord were predominantly dorsomedially placed and neurons projecting to the lumbar cord were predominantly ventrolaterally placed. Immunofluorescence staining with SMI-32 antibody showed that ~60% of SMI-32-positive neurons were cervical cord-projecting neurons and 24% were lumbar cord-projecting neurons. SMI-32-positive neurons were mainly located in the caudomedial part of the red nucleus. A study of vGluT2 expression showed that the number and location of glutamatergic neurons matched with those of the rubrospinal neurons. In the anterograde tracing experiments, rubrospinal fibers travelled in the dorsal portion of the lateral funiculus, between the lateral spinal nucleus and the calretinin-positive fibers of the lateral funiculus. Rubrospinal fibers terminated in contralateral laminae 5, 6, and the dorsal part of lamina 7 at all spinal cord levels. A few fibers could be seen next to the neurons in the dorsolateral part of lamina 9 at levels of C8–T1 (hand motor neurons) and L5–L6 (foot motor neurons), which is consistent with a view that rubrospinal fibers may play a role in distal limb movement in rodents.
Literatur
Zurück zum Zitat Abercrombie M (1946) Estimation of nuclear population from microtome sections. Anat Rec 94:239–247PubMedCrossRef Abercrombie M (1946) Estimation of nuclear population from microtome sections. Anat Rec 94:239–247PubMedCrossRef
Zurück zum Zitat Antal M, Sholomenko GN, Moschovakis AK, Storm-Mathisen J, Heizmann CW, Hunziker W (1992) The termination pattern and postsynaptic targets of rubrospinal fibers in the rat spinal cord: a light and electron microscopic study. J Comp Neurol 325:22–37PubMedCrossRef Antal M, Sholomenko GN, Moschovakis AK, Storm-Mathisen J, Heizmann CW, Hunziker W (1992) The termination pattern and postsynaptic targets of rubrospinal fibers in the rat spinal cord: a light and electron microscopic study. J Comp Neurol 325:22–37PubMedCrossRef
Zurück zum Zitat Cao Y, Shumsky JS, Sabol MA, Kushner RA, Strittmatter S, Hamers FP, Lee DH, Rabacchi SA, Murray M (2008) Nogo-66 receptor antagonist peptide (NEP1-40) administration promotes functional recovery and axonal growth after lateral funiculus injury in the adult rat. Neurorehabil Neural Repair 22:262–278PubMedCrossRef Cao Y, Shumsky JS, Sabol MA, Kushner RA, Strittmatter S, Hamers FP, Lee DH, Rabacchi SA, Murray M (2008) Nogo-66 receptor antagonist peptide (NEP1-40) administration promotes functional recovery and axonal growth after lateral funiculus injury in the adult rat. Neurorehabil Neural Repair 22:262–278PubMedCrossRef
Zurück zum Zitat Chen A, Wang H, Zhang J, Wu X, Liao J, Li H, Cai W, Luo X, Ju G (2008) BYHWD rescues axotomized neurons and promotes functional recovery after spinal cord injury in rats. J Ethnopharmacol 117:451–456PubMedCrossRef Chen A, Wang H, Zhang J, Wu X, Liao J, Li H, Cai W, Luo X, Ju G (2008) BYHWD rescues axotomized neurons and promotes functional recovery after spinal cord injury in rats. J Ethnopharmacol 117:451–456PubMedCrossRef
Zurück zum Zitat Franklin KBJ, Paxinos G (2008) The mouse brain in stereotaxic coordinates, 3rd edn. Elsevier Academic Press, San Diego Franklin KBJ, Paxinos G (2008) The mouse brain in stereotaxic coordinates, 3rd edn. Elsevier Academic Press, San Diego
Zurück zum Zitat Fujito Y, Aoki M (1995) Monosynaptic rubrospinal projections to distal forelimb motoneurons in the cat. Exp Brain Res 105:181–190PubMedCrossRef Fujito Y, Aoki M (1995) Monosynaptic rubrospinal projections to distal forelimb motoneurons in the cat. Exp Brain Res 105:181–190PubMedCrossRef
Zurück zum Zitat Gibson AR, Hansma DI, Houk JC, Robinson FR (1984) A sensitive low artifact TMB procedure for the demonstration of WGA-HRP in the CNS. Brain Res 298:235–241PubMedCrossRef Gibson AR, Hansma DI, Houk JC, Robinson FR (1984) A sensitive low artifact TMB procedure for the demonstration of WGA-HRP in the CNS. Brain Res 298:235–241PubMedCrossRef
Zurück zum Zitat Guízar-Sahagún G, Ibarra A, Espitia A, Martínez A, Madrazo I, Franco-Bourland RE (2005) Glutathione monoethyl ester improves functional recovery, enhances neuron survival, and stabilizes spinal cord blood flow after spinal cord injury in rats. Neuroscience 130:639–649PubMedCrossRef Guízar-Sahagún G, Ibarra A, Espitia A, Martínez A, Madrazo I, Franco-Bourland RE (2005) Glutathione monoethyl ester improves functional recovery, enhances neuron survival, and stabilizes spinal cord blood flow after spinal cord injury in rats. Neuroscience 130:639–649PubMedCrossRef
Zurück zum Zitat Harvey PJ, Grochmal J, Tetzlaff W, Gordon T, Bennett DJ (2005) An investigation into the potential for activity-dependent regeneration of the rubrospinal tract after spinal cord injury. Eur J Neurosci 22:3025–3035PubMedCrossRef Harvey PJ, Grochmal J, Tetzlaff W, Gordon T, Bennett DJ (2005) An investigation into the potential for activity-dependent regeneration of the rubrospinal tract after spinal cord injury. Eur J Neurosci 22:3025–3035PubMedCrossRef
Zurück zum Zitat Hill E, Kalloniatis M, Tan SS (2000) Glutamate, GABA and precursor amino acids in adult mouse neocortex: cellular diversity revealed by quantitative immunocytochemistry. Cereb Cortex 10:1132–1142PubMedCrossRef Hill E, Kalloniatis M, Tan SS (2000) Glutamate, GABA and precursor amino acids in adult mouse neocortex: cellular diversity revealed by quantitative immunocytochemistry. Cereb Cortex 10:1132–1142PubMedCrossRef
Zurück zum Zitat Holstege G (1987) Anatomical evidence for an ipsilateral rubrospinal pathway and for direct rubrospinal projections to motoneurons in the cat. Neurosci Lett 74:269–274PubMedCrossRef Holstege G (1987) Anatomical evidence for an ipsilateral rubrospinal pathway and for direct rubrospinal projections to motoneurons in the cat. Neurosci Lett 74:269–274PubMedCrossRef
Zurück zum Zitat Holstege G, Blok BF, Ralston DD (1988) Anatomical evidence for red nucleus projections to motoneuronal cell groups in the spinal cord of the monkey. Neurosci Lett 95:97–101PubMedCrossRef Holstege G, Blok BF, Ralston DD (1988) Anatomical evidence for red nucleus projections to motoneuronal cell groups in the spinal cord of the monkey. Neurosci Lett 95:97–101PubMedCrossRef
Zurück zum Zitat Hongo T, Jankowska E, Lundberg A (1969) The rubrospinal tract. I. Effects on alpha-motoneurones innervating hindlimb muscles in cats. Exp Brain Res 7(4):344–364PubMed Hongo T, Jankowska E, Lundberg A (1969) The rubrospinal tract. I. Effects on alpha-motoneurones innervating hindlimb muscles in cats. Exp Brain Res 7(4):344–364PubMed
Zurück zum Zitat Huber GC, Crosby EC, Woodburne RT, Gililan LA, Brown LO, Tamthai B (1943) The mammalian midbrain and isthmus regions. Part I: the nuclear pattern. J Comp Neurol 78:129–534CrossRef Huber GC, Crosby EC, Woodburne RT, Gililan LA, Brown LO, Tamthai B (1943) The mammalian midbrain and isthmus regions. Part I: the nuclear pattern. J Comp Neurol 78:129–534CrossRef
Zurück zum Zitat Jefferson SC, Tester NJ, Howland DR (2011) Chondroitinase ABC promotes recovery of adaptive limb movements and enhances axonal growth caudal to a spinal hemisection. J Neurosci 31:5710–5720PubMedCrossRef Jefferson SC, Tester NJ, Howland DR (2011) Chondroitinase ABC promotes recovery of adaptive limb movements and enhances axonal growth caudal to a spinal hemisection. J Neurosci 31:5710–5720PubMedCrossRef
Zurück zum Zitat Küchler M, Fouad K, Weinmann O, Schwab ME, Raineteau O (2002) Red nucleus projections to distinct motor neuron pools in the rat spinal cord. J Comp Neurol 448(4):349–359PubMedCrossRef Küchler M, Fouad K, Weinmann O, Schwab ME, Raineteau O (2002) Red nucleus projections to distinct motor neuron pools in the rat spinal cord. J Comp Neurol 448(4):349–359PubMedCrossRef
Zurück zum Zitat Lein ES et al (2007) Genome-wide atlas of gene expression in the adult mouse brain. Nature 445:168–176PubMedCrossRef Lein ES et al (2007) Genome-wide atlas of gene expression in the adult mouse brain. Nature 445:168–176PubMedCrossRef
Zurück zum Zitat Liang HZ, Paxinos G, Watson C (2011) Projections from the brain to the spinal cord in the mouse. Brain struct funct 215:159–186PubMedCrossRef Liang HZ, Paxinos G, Watson C (2011) Projections from the brain to the spinal cord in the mouse. Brain struct funct 215:159–186PubMedCrossRef
Zurück zum Zitat McCurdy ML, Hansma DI, Houk JC, Gibson AR (1987) Selective projections from the cat red nucleus to digit motor neurons. J Comp Neurol 265:367–379PubMedCrossRef McCurdy ML, Hansma DI, Houk JC, Gibson AR (1987) Selective projections from the cat red nucleus to digit motor neurons. J Comp Neurol 265:367–379PubMedCrossRef
Zurück zum Zitat Murray HM, Haines DE, Cote I (1976) The rubrospinal tract of the tree shrew (Tupaia glis). Brain Res 116:317–322PubMedCrossRef Murray HM, Haines DE, Cote I (1976) The rubrospinal tract of the tree shrew (Tupaia glis). Brain Res 116:317–322PubMedCrossRef
Zurück zum Zitat Nudo RJ, Masterton RB (1988) Descending pathways to the spinal cord—a comparative study of 22 mammals. J Comp Neurol 277:53–79PubMedCrossRef Nudo RJ, Masterton RB (1988) Descending pathways to the spinal cord—a comparative study of 22 mammals. J Comp Neurol 277:53–79PubMedCrossRef
Zurück zum Zitat Nyberg-Hansen R (1966) Functional organization of descending supraspinal fibre systems to the spinal cord. Anatomical observations and physiological correlations. Ergeb Anat Entwicklungsgesch 39:3–48PubMed Nyberg-Hansen R (1966) Functional organization of descending supraspinal fibre systems to the spinal cord. Anatomical observations and physiological correlations. Ergeb Anat Entwicklungsgesch 39:3–48PubMed
Zurück zum Zitat Nyberg-Hansen R, Brodal A (1964) Sites and mode of termination of rubrospinal fibres in the cat. An experimental study with silver impregnation methods. J Anat 98:235–253PubMed Nyberg-Hansen R, Brodal A (1964) Sites and mode of termination of rubrospinal fibres in the cat. An experimental study with silver impregnation methods. J Anat 98:235–253PubMed
Zurück zum Zitat Prasada Rao PD, Jadhao AG, Sharma SC (1987) Descending projection neurons to the spinal cord of the goldfish, Carassius auratus. J Comp Neurol 265:96–108PubMedCrossRef Prasada Rao PD, Jadhao AG, Sharma SC (1987) Descending projection neurons to the spinal cord of the goldfish, Carassius auratus. J Comp Neurol 265:96–108PubMedCrossRef
Zurück zum Zitat Puelles E, Martínez-de-la-Torre M, Watson C, Puelles L (2011) Midbrain. In: Watson C, Paxinos G, Puelles L (eds) The mouse nervous system. Elsevier Academic Press, San Diego Puelles E, Martínez-de-la-Torre M, Watson C, Puelles L (2011) Midbrain. In: Watson C, Paxinos G, Puelles L (eds) The mouse nervous system. Elsevier Academic Press, San Diego
Zurück zum Zitat Ralston DD, Milroy AM, Holstege G (1988) Ultrastructural evidence for direct monosynaptic rubrospinal connections to motoneurons in Macaca mulatta. Neurosci Lett 95:102–106PubMedCrossRef Ralston DD, Milroy AM, Holstege G (1988) Ultrastructural evidence for direct monosynaptic rubrospinal connections to motoneurons in Macaca mulatta. Neurosci Lett 95:102–106PubMedCrossRef
Zurück zum Zitat Shapovalov AI, Karamjan OA, Kurchavyi GG, Repina ZA (1971) Synaptic actions evoked from the red nucleus on the spinal alpha-motoneurons in the rhesus monkey. Brain Res 32:325–348PubMedCrossRef Shapovalov AI, Karamjan OA, Kurchavyi GG, Repina ZA (1971) Synaptic actions evoked from the red nucleus on the spinal alpha-motoneurons in the rhesus monkey. Brain Res 32:325–348PubMedCrossRef
Zurück zum Zitat ten Donkelaar HJ, de Boer-van Huizen R, Schouten FT, Eggen SJ (1981) Cells of origin of descending pathways to the spinal cord in the clawed toad (Xenopus laevis). Neuroscience 6:2297–2312PubMedCrossRef ten Donkelaar HJ, de Boer-van Huizen R, Schouten FT, Eggen SJ (1981) Cells of origin of descending pathways to the spinal cord in the clawed toad (Xenopus laevis). Neuroscience 6:2297–2312PubMedCrossRef
Zurück zum Zitat Wannier-Morino P, Schmidlin E, Freund P, Belhaj-Saif A, Bloch J, Mir A, Schwab ME, Rouiller EM, Wannier T (2008) Fate of rubrospinal neurons after unilateral section of the cervical spinal cord in adult macaque monkeys: effects of an antibody treatment neutralizing Nogo-A. Brain Res 1217:96–109PubMedCrossRef Wannier-Morino P, Schmidlin E, Freund P, Belhaj-Saif A, Bloch J, Mir A, Schwab ME, Rouiller EM, Wannier T (2008) Fate of rubrospinal neurons after unilateral section of the cervical spinal cord in adult macaque monkeys: effects of an antibody treatment neutralizing Nogo-A. Brain Res 1217:96–109PubMedCrossRef
Zurück zum Zitat Warner G, Watson CR (1972) The rubrospinal tract in a diprotodont marsupial (Trichosurus vulpecula). Brain Res 41:180–183PubMedCrossRef Warner G, Watson CR (1972) The rubrospinal tract in a diprotodont marsupial (Trichosurus vulpecula). Brain Res 41:180–183PubMedCrossRef
Zurück zum Zitat Watson C, Paxinos G, Kayalioglu G, Heise C (2009) Atlas of the mouse spinal cord. In: Watson C, Paxinos G, Kayalioglu G (eds) The spinal cord. Elsevier Academic Press, San Diego, pp 308–379CrossRef Watson C, Paxinos G, Kayalioglu G, Heise C (2009) Atlas of the mouse spinal cord. In: Watson C, Paxinos G, Kayalioglu G (eds) The spinal cord. Elsevier Academic Press, San Diego, pp 308–379CrossRef
Zurück zum Zitat Wild JM, Cabot JB, Cohen DH, Karten HJ (1979) Origin, course and terminations of the rubrospinal tract in the pigeon (Columba livia). J Comp Neurol 187:639–654PubMedCrossRef Wild JM, Cabot JB, Cohen DH, Karten HJ (1979) Origin, course and terminations of the rubrospinal tract in the pigeon (Columba livia). J Comp Neurol 187:639–654PubMedCrossRef
Zurück zum Zitat Yasui Y, Yokota S, Ono K, Tsumori T (2001) Projections from the red nucleus to the parvicellular reticular formation and the cervical spinal cord in the rat with special reference to innervation by branching axons. Brain Res 923:187–192PubMedCrossRef Yasui Y, Yokota S, Ono K, Tsumori T (2001) Projections from the red nucleus to the parvicellular reticular formation and the cervical spinal cord in the rat with special reference to innervation by branching axons. Brain Res 923:187–192PubMedCrossRef
Metadaten
Titel
The red nucleus and the rubrospinal projection in the mouse
verfasst von
Huazheng Liang
George Paxinos
Charles Watson
Publikationsdatum
01.04.2012
Verlag
Springer-Verlag
Erschienen in
Brain Structure and Function / Ausgabe 2/2012
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-011-0348-3

Weitere Artikel der Ausgabe 2/2012

Brain Structure and Function 2/2012 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Schützt Olivenöl vor dem Tod durch Demenz?

10.05.2024 Morbus Alzheimer Nachrichten

Konsumieren Menschen täglich 7 Gramm Olivenöl, ist ihr Risiko, an einer Demenz zu sterben, um mehr als ein Vierten reduziert – und dies weitgehend unabhängig von ihrer sonstigen Ernährung. Dafür sprechen Auswertungen zweier großer US-Studien.

Bluttest erkennt Parkinson schon zehn Jahre vor der Diagnose

10.05.2024 Parkinson-Krankheit Nachrichten

Ein Bluttest kann abnorm aggregiertes Alpha-Synuclein bei einigen Menschen schon zehn Jahre vor Beginn der motorischen Parkinsonsymptome nachweisen. Mit einem solchen Test lassen sich möglicherweise Prodromalstadien erfassen und die Betroffenen früher behandeln.

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Wartezeit nicht kürzer, aber Arbeit flexibler

Psychotherapie Medizin aktuell

Fünf Jahren nach der Neugestaltung der Psychotherapie-Richtlinie wurden jetzt die Effekte der vorgenommenen Änderungen ausgewertet. Das Hauptziel der Novellierung war eine kürzere Wartezeit auf Therapieplätze. Dieses Ziel wurde nicht erreicht, es gab jedoch positive Auswirkungen auf andere Bereiche.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.