Skip to main content
Erschienen in: BMC Cancer 1/2024

Open Access 01.12.2024 | Research

The role of adenocarcinoma subtypes and immunohistochemistry in predicting lymph node metastasis in early invasive lung adenocarcinoma

verfasst von: Mengchao Xue, Junjie Liu, Zhenyi Li, Ming Lu, Huiying Zhang, Wen Liu, Hui Tian

Erschienen in: BMC Cancer | Ausgabe 1/2024

Abstract

Background

Identifying lymph node metastasis areas during surgery for early invasive lung adenocarcinoma remains challenging. The aim of this study was to develop a nomogram mathematical model before the end of surgery for predicting lymph node metastasis in patients with early invasive lung adenocarcinoma.

Methods

In this study, we included patients with invasive lung adenocarcinoma measuring ≤ 2 cm who underwent pulmonary resection with definite pathology at Qilu Hospital of Shandong University from January 2020 to January 2022. Preoperative biomarker results, clinical features, and computed tomography characteristics were collected. The enrolled patients were randomized into a training cohort and a validation cohort in a 7:3 ratio. The training cohort was used to construct the predictive model, while the validation cohort was used to test the model independently. Univariate and multivariate logistic regression analyses were performed to identify independent risk factors. The prediction model and nomogram were established based on the independent risk factors. Recipient operating characteristic (ROC) curves were used to assess the discrimination ability of the model. Calibration capability was assessed using the Hosmer–Lemeshow test and calibration curves. The clinical utility of the nomogram was assessed using decision curve analysis (DCA).

Results

The overall incidence of lymph node metastasis was 13.23% (61/461). Six indicators were finally determined to be independently associated with lymph node metastasis. These six indicators were: age (P < 0.001), serum amyloid (SA) (P = 0.008); carcinoma antigen 125 (CA125) (P = 0. 042); mucus composition (P = 0.003); novel aspartic proteinase of the pepsin family A (Napsin A) (P = 0.007); and cytokeratin 5/6 (CK5/6) (P = 0.042). The area under the ROC curve (AUC) was 0.843 (95% CI: 0.779–0.908) in the training cohort and 0.838 (95% CI: 0.748–0.927) in the validation cohort. the P-value of the Hosmer–Lemeshow test was 0.0613 in the training cohort and 0.8628 in the validation cohort. the bias of the training cohort corrected C-index was 0.8444 and the bias-corrected C-index for the validation cohort was 0.8375. demonstrating that the prediction model has good discriminative power and good calibration.

Conclusions

The column line graphs created showed excellent discrimination and calibration to predict lymph node status in patients with ≤ 2 cm invasive lung adenocarcinoma. In addition, the predictive model has predictive potential before the end of surgery and can inform clinical decision making.
Begleitmaterial
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12885-024-11843-4.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
LNM( +)
Positive for lymph node metastasis
LNM(-)
Negative for lymph node metastasis
COPD
Chronic obstructive pulmonary diseases
ASA
American Society of Anesthesiologists
PNI
Prognostic nutritional index
NLR
Neutrophil–lymphocyte ratio
PLR
Platelet-lymphocyte ratio
MLR
Monocyte-lymphocyte ratio
dNLR
Derived neutrophil-to-lymphocyte ratio
NLPR
Neutrophil to lymphocyte and platelet ratio
SIRI
Systemic inflammatory response syndrome
AISI
Aggregate index of systemic inflammation
SII
Systemic inflammation index
LDH
Lactate dehydrogenase
SA
Serum amyloid
5'-NT
5'-Nucleotidase
Pro-GRP
Pro-gastrin-releasing peptide
SCC
Squamous cell carcinoma
Cyfra21-1
Cytokeratin 19-fragments
CEA
Carcinoembryonic antigen
CA125
Carcinoma antigen 125
NSE
Neuron-specific enolase
BMI
Body mass index
FEV1
Forced expiratory volume in one second
MVV
Maximal voluntary ventilation
CTR
Consolidation-to-tumor ratio
TTF
Thyroid transcription factor 1
PAS
Periodic Acid-Schiff reaction
PAS-D
Periodic Acid-Schiff reaction with diastase
CK 5/6
Cytokeratin 5/6
CK 7
Cytokeratin 7
MUC-AC
Mucin-AC

Introduction

Lung cancer (LC) is the second most prevalent tumor and remains the leading cause of malignancy-related deaths worldwide by far [1]. LC is commonly classified into small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). Among them, adenocarcinoma is the most important subtype of NSCLC and the most common type of LC. With the increasing popularity of low-dose spiral computed tomography (CT) in health screening and disease diagnosis, the incidence of ≤ 2 cm lung cancer has been increasing [2]. For early-stage lung adenocarcinoma, more thoracic surgeons are accepting segmental or subsegmental resection and selective lymph node dissection as the optimal treatment modality [3, 4]. However, in some LC cases, lymph node metastasis (LNM) occurs in the early stages of the tumor. The incidence of LNM in LC cases with lesions ≤ 2 cm in diameter has been reported to be about 10% [5, 6]. Emerging evidence suggests that lymph node metastasis is a risk factor for poor prognosis in patients with early-stage lung adenocarcinoma [7]. Unfortunately, the accuracy of preoperative lymph node staging CT scans is only 45%-79% [812]. Preoperative mediastinoscopy and endobronchial ultrasound transbronchial needle aspiration are not routinely used in patients with clinical stage I disease, and these methods have produced a considerable number of false-negative results [1315]. Complete clearance of metastatic lymph nodes during surgery plays a key role in improving the disease-free survival and overall survival of patients [16]. Therefore, it is necessary to accurately assess preoperative lymph nodes metastasis in NSCLC.
It has been shown that adenocarcinomas with micropapillary and solid growth patterns are more aggressive and have a poorer prognosis [17, 18]. In addition, blood inflammatory markers and tumor markers can be used to predict lymph node metastasis in lung cancer [1922]. CT remains the most widely used tool to assess tumor and lymph node involvement in patients with early-stage non-small cell lung cancer [811]. Some researchers claim that frozen sections are a key indicator to guide the approach to resection [23] and that it is feasible to report histological subtypes and other pathological features during surgery [24, 25].
To date, many studies have explored independent predictors of lymph node metastasis [2632]. These include carcinoembryonic antigen (CEA) [26], tumor size [26], standardized uptake value maximum (SUVmax) [27], female [28], never smoker[28], adenocarcinoma histology [28], positive N1 lymph nodes on positron emission tomography (PET) [29], blood inflammation biomarkers [30], neutrophil to lymphocyte ratio (NLR) [31] and consolidation-to-tumor ratio (CTR) [32], ect. However, only a few studies have developed comprehensive models to predict lymph node metastasis based on radiological features, patient clinical information, and hematological parameters.
In our study, we explored the risk factors for lymph node metastasis in a cohort of patients with early invasive lung cancer and developed a nomogram model for predicting the risk of lymph node metastasis based on patient clinical information, hematologic indicators, imaging features, and pathologic findings. The aim was to enable the nomogram to quickly and accurately predict the incidence of lymph node metastasis before or during surgery, which may provide a computational method for surgeons to make intraoperative decisions.

Materials and methods

Patients

This study was approved by the Ethics Committee of Qilu Hospital, Shandong University (registration number: KYLL-202008–023-1), and all patients signed an informed consent form for the use of their clinical information prior to the procedure.
Patients with invasive adenocarcinoma from January 2020 to December 2021 at Qilu Hospital of Shandong University were retrospectively evaluated.
The inclusion criteria were: (1) patients with a single intrapulmonary nodule suggested by chest CT within 1 month before surgery; (2) nodules with a maximum diameter ≤ 20 mm on CT; (3) undergoing pneumonectomy (lobectomy or subpneumonectomy) with systemic lymph node dissection; (4) complete pathological data and pathological type of Invasive lung adenocarcinoma; (5) not receiving neoadjuvant chemotherapy or radiotherapy before surgery; (6) no pulmonary atelectasis and active inflammatory images of the lungs. Exclusion criteria were (1) patients < 18 years of age, (2) open-heart surgery, (3) incomplete perioperative data, and (4) patients with a history of malignant disease within 5 years. (5) combination of acute infectious diseases that can cause changes in the levels of systemic inflammatory markers; (6) presence of distant metastases.
A total of 2213 patients were included in this study, and after our exclusion according to the above-mentioned criteria, 522 patients with invasive lung adenocarcinoma with tumor size ≤ 2 cm were finally recruited in our study. Figure 1 shows the flow chart of included patients.

Clinical data of patients

Clinicopathological information was collected from the patient record management system as follows: age, gender, presence of preoperative comorbidities [hypertension, diabetes mellitus, and chronic obstructive pulmonary disease (COPD)], history of smoking, body mass index (BMI), predicted percent forceful expiratory volume in one second (FEV1% predicted), predicted percent maximum voluntary ventilation (MVV% predicted), and American Society of Anesthesiologists (ASA) score.

Hematological test

Record hematologic parameters within 2 weeks prior to surgery as follows. (1) Blood count: neutrophils, basophils, eosinophils, lymphocytes, monocytes, red blood cells, platelets, albumin, hemoglobin, blood glucose, blood type. (2) Serum enzyme count: serum 5'-nucleotidase (5'-NT), serum amylase (SA), lactate dehydrogenase (LDH). (3) Tumor markers: carcinoembryonic antigen 125 (CA125), neuron-specific enolase (NSE), carcinoembryonic antigen (CEA), gastrin-releasing peptide (pro-GRP), cytokeratin 19-fragment (cybra21-1), and squamous carcinoma antigen (SCC). (4) Inflammatory markers: serum complement C1q and derived neutrophil–lymphocyte ratio (NLR), platelet-lymphocyte ratio (PLR), monocyte-lymphocyte ratio (MLR), derived neutrophil–lymphocyte ratio (dNLR), neutrophil–lymphocyte and platelet ratio (NLPR), systemic inflammatory response syndrome (SIRS), total systemic inflammatory index (AISI) and systemic inflammatory index (SII). These derived inflammatory indicators were calculated as follows.
  • NLR = neutrophils/lymphocytes.
  • PLR = platelets/lymphocytes.
  • MLR = monocytes/lymphocytes.
  • dNLR = [neutrophils/ (leukocytes—neutrophils)].
  • NLPR = [Neutrophils/ (lymphocytes × platelets)].
  • SIRI = [(neutrophils × monocytes)/lymphocytes)].
  • AISI = [(neutrophils × monocytes × platelets)/lymphocytes].
  • SII = [(neutrophils x platelets)/lymphocytes)].

Imaging analysis

The morphological features of computed tomography include: location (central or peripheral), shape (regular or irregular), spiculation, calcification, cavity sign, bronchial sign, lobar sign, pleural adhesion sign, vascular penetration sign, pleural effusion sign, maximum tumor diameter, lymph node enlargement sign, and consolidation to tumor ratio (CTR). Two radiologists measured each imaging feature independently, and a third radiologist with more than 20 years of experience in chest radiology reassessed the discrepancies. Any disagreements were resolved by consensus.
Centrality was defined as nodules located in the bronchi, lobular bronchi, and segmental bronchi. Peripherality was defined as nodules located below the tertiary bronchi. Spiculation was defined as spread from the nodal margins to the lung parenchyma without contacting the pleural surface. Signs of calcification were defined as having one of these patterns on CT imaging: stratification, central nodule, diffusion, or popcorn pattern. Cavitation signs were defined as gas-filled spaces that are considered to be transparent or low-attenuation regions. The bronchial sign shows direct bronchial involvement of nodules on CT images. Lobulation was defined as the wavy or fan-shaped portion of the lesion surface and the strands extending from the nodal margins into the lung parenchyma. Signs of pleural adhesions were defined as linear attenuation or major or minor fissures toward the pleura. The vascular penetration sign was observed on the CT image with a pulmonary artery crossing the node. The pleural effusion sign was defined as a blunting of the rib-diaphragm angle visible on the CT image. The lymph node enlargement sign was the enlargement of mediastinal lymph nodes that can be observed on CT images.CTR was defined as the ratio of the diameter of the solid component of the lung nodule to the maximum diameter of the nodule.

Histological evaluation

All pathological specimens were fixed in formalin, stained with hematoxylin–eosin, and evaluated by two experienced lung pathologists. Histopathological evaluation was performed by examining hematoxylin–eosin-stained slides with a light microscope. All specimens were classified according to the International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society classification of adenocarcinoma of the lung [33]. The pathological lymph node status of patients was confirmed according to the 8th edition of the TNM lung cancer classification.
The percentage of each histological component (mucinous, lepidic, acinar, papillary, micropapillary and solid pattern) was recorded in 5% increments and the tumors were classified according to the predominant pattern. The pattern was considered present if ≥ 5% of the histological pattern was present in the tumor.

DNA purification and quantification

Cutting all formalin-fixed paraffin-embedded (FFPE) specimens to 5–8 μm thickness. Thereafter, DNA and RNA extraction was performed using 5–30 tissue sections with at least 2% tumor cells using the FFPE DNA/RNA Nucleic Acid Extraction Kit (No. 8.0223601X036G, Xiamen Diagnostics, Xiamen, China). After isolation of DNA and RNA, the concentrations of DNA and RNA were determined using a microscopic spectrophotometer. the RNA concentrations ranged from 10 to 500 ng/μL and the DNA concentrations were > 2 ng/μL.

Immunohistochemistry Validation in Resected Patients

All IHC staining was performed in the clinical immunohistochemistry laboratory of our hospital pathology department. All IHC staining was performed in the clinical immunohistochemistry laboratory of our hospital pathology department. Briefly, specimens were sectioned at 5 μm, dewaxed and incubated with primary antibody. Staining characteristics as well as the intensity and distribution of staining patterns were reviewed and considered. If more than 5% of the tumor cells with the appropriate staining pattern were found, the case was considered positive; otherwise, the case was considered negative. Immunohistochemistry was verified for CK5/6, CK7, Napsin A, MUC-AC, P63, Ki-67% positive rate, CyclinD1, EMA, CD31, D2-40, etc.

special staining in resected patients

The Periodic Acid-Schiff (PAS) reaction, Periodic Acid-Schiff reaction with diastase (PAS-D) and elastic fibers are three special staining procedures that are commonly performed in a histology laboratory. The staining reaction was classified as positive or negative by three "blinded" observers.

Statistical analysis

All statistical analyses were performed using SPSS 26.0 (SPSS Inc., Chicago, Illinois, USA) and R statistical software (Windows version 4.2.1, http: //www.​r-project.​org/​). We used the “rms package” to plot the nomogram, “pROC” to plot the ROC curve, and “rmda” to plot the DCA curve. Categorical variables were compared using Pearson's Chi-square test or Fisher's exact test. Normally distributed continuous variables were expressed as mean ± standard deviation (SD) and compared using the Student's t-test. For non-normally distributed continuous variables, data were expressed as medians (interquartile range [IQR]) and compared between two groups using the Mann–Whitney U test. Statistical significance was described as a two-sided P value of less than 0.05.
We implement the random assignment of patients through the R. All enrolled patients were randomly assigned to the training and validation cohorts in a 7:3 ratio, using a randomly segmented sample. The training cohort was used to develop the prediction nomograms, while the validation cohort was used to verify the performance of the nomograms.

Predictive model development and validation

Construction of nomogram

The training cohort data were first analyzed by univariate logistic regression analysis to identify potential risk factors. Those factors with P-values less than 0.05 in univariate analysis were included in further multivariate logistic regression analyses. Finally, predictive models were developed using independent risk factors (P < 0.05 in multivariate logistic regression). A nomogram was created by using R statistical software (Windows version 4.2.1, http: //www.​r-project.​org/​). Area under the curve (AUC) was determined, and receiver operating characteristic (ROC) curves were created. A regression model was used to calculate scores for each variable, and the predicted probability of risk of lymph node metastasis in small-sized non-small cell lung cancer could be derived by summing the scores for each variable.

Nomogram performance

An assessment of the performance of predictive nomograms is made by discriminative power, calibration and clinical utility. Discriminative power is the capability of a model to correctly differentiate between events and non-events.ROC curves are employed to assess the recognition efficiency of predictive nomograms [34]. A measurement of how well the predicted probability matches the actual result is called calibration. the Hosmer–Lemeshow test can be used to assess calibration ability, with a p-value greater than 0.05 indicating satisfactory calibration [35]. Subsequently a nomogram calibration plot is formed to further assess the calibration. This was verified internally by using a bootstrap method repeated 1000 times [36]. Predictive nomograms were evaluated for clinical effectiveness using decision curve analysis (DCA) based on the net benefit of different threshold probabilities [37]. The optimal cutoff value was determined when the Youden index (sensitivity + specificity-1) reached its maximum value based on ROC curve analysis of the training cohort.

Results

Patient characteristics

A total of 522 patients were enrolled in this study. The overall incidence of lymph node metastasis was 13.23% (61/461). Of all patients enrolled, 284 were women and 138 were men. The median age was 61 (range: 31–81) years. the median tumor size on CT was 1.2 (range: 0.3–2) cm. Demographic characteristics and variable data for both cohorts are shown in Table 1. The training cohort included 366 (70.1%) patients, whereas the validation cohort included 156 (29.9%) patients. The characteristics of the two cohorts were similar, with p-values > 0.05 except for MVV% predicted, and the differences in distribution were not statistically significant. Detailed information on the features of the two groups in the training and validation groups is shown in Table 2.
Table 1
Patients’ characteristics of the training cohort and validation cohort
Characteristics
All cohort (N = 522)
Validation cohort (N = 156)
Training cohort (N = 366)
p
Gender, n (%)
   
0.171
 Female
284 (54.4)
92 (59.0)
192 (52.5)
 
 Male
238 (45.6)
64 (41.0)
174 (47.5)
 
Hypertension, n (%)
   
0.713
 No
352 (67.4)
107 (68.6)
245 (66.9)
 
 Yes
170 (32.6)
49 (31.4)
121 (33.1)
 
Diabetes, n (%)
   
0.296
 No
454 (87.0)
132 (84.6)
322 (88.0)
 
 Yes
68 (13.0)
24 (15.4)
44 (12.0)
 
COPD, n (%)
   
0.279
 No
516 (98.9)
153 (98.1)
363 (99.2)
 
 Yes
6 (1.1)
3 (1.9)
3 (0.8)
 
Smoking history, n (%)
   
0.338
 Non-smoker
373 (71.5)
116 (74.4)
257 (70.2)
 
 Smoker
149 (28.5)
40 (25.6)
109 (29.8)
 
Blood type, n (%)
   
0.661
 A
150 (28.7)
44 (28.2)
106 (29.0)
 
 B
191 (36.6)
52 (33.3)
139 (38.0)
 
 AB
58 (11.1)
19 (12.2)
39 (10.7)
 
 O
123 (23.6)
41 (26.3)
82 (22.4)
 
ASA, n (%)
   
0.859
 1
41 (7.9)
11 (7.1)
30 (8.2)
 
 2
460 (88.1)
138 (88.5)
322 (88.0)
 
 3
21 (4.0)
7 (4.5)
14 (3.8)
 
Location, n (%)
   
0.714
 Centrality
61 (11.7)
17 (10.9)
44 (12.0)
 
 Peripherality
461 (88.3)
139 (89.1)
322 (88.0)
 
Shape, n (%)
   
0.584
 Regularity
175 (33.5)
55 (35.3)
120 (32.8)
 
 Irregularity
347 (66.5)
101 (64.7)
246 (67.2)
 
Spiculation, n (%)
   
0.77
 No
162 (31.0)
47 (30.1)
115 (31.4)
 
 Yes
360 (69.0)
109 (69.9)
251 (68.6)
 
Cavitation sign, n (%)
   
0.333
 No
412 (78.9)
119 (76.3)
293 (80.1)
 
 Yes
110 (21.1)
37 (23.7)
73 (19.9)
 
Calcification, n (%)
   
0.142
 No
517 (99.0)
156 (100.0)
361 (98.6)
 
 Yes
5 (1.0)
0 (0.0)
5 (1.4)
 
Vascular penetration sign, n (%)
   
0.802
 No
140 (26.8)
43 (27.6)
97 (26.5)
 
 Yes
382 (73.2)
113 (72.4)
269 (73.5)
 
Pleural adhesions, n (%)
   
0.723
 No
190 (36.4)
55 (35.3)
135 (36.9)
 
 Yes
332 (63.6)
101 (64.7)
231 (63.1)
 
Bronchus sign, n (%)
   
0.514
 No
352 (67.4)
102 (65.4)
250 (68.3)
 
 Yes
170 (32.6)
54 (34.6)
116 (31.7)
 
Lobulation, n (%)
   
0.2
 No
262 (50.2)
85 (54.5)
177 (48.4)
 
 Yes
260 (49.8)
71 (45.5)
189 (51.6)
 
Lymph node enlargement sign, n (%)
   
0.677
 No
426 (81.6)
129 (82.7)
297 (81.1)
 
 Yes
96 (18.4)
27 (17.3)
69 (18.9)
 
Pleural effusion sign, n (%)
   
0.853
 No
516 (98.9)
154 (98.7)
362 (98.9)
 
 Yes
6 (1.1)
2 (1.3)
4 (1.1)
 
Lepidic, n (%)
   
0.362
 No
162 (31.0)
44 (28.2)
118 (32.2)
 
 Yes
360 (69.0)
112 (71.8)
248 (67.8)
 
Acinar, n (%)
   
0.141
 No
97 (18.6)
23 (14.7)
74 (20.2)
 
 Yes
425 (81.4)
133 (85.3)
292 (79.8)
 
Papillary, n (%)
   
0.453
 No
314 (60.2)
90 (57.7)
224 (61.2)
 
 Yes
208 (39.8)
66 (42.3)
142 (38.8)
 
Micropapillary, n (%)
   
0.495
 No
421 (80.7)
123 (78.8)
298 (81.4)
 
 Yes
101 (19.3)
33 (21.2)
68 (18.6)
 
Solid, n (%)
   
0.862
 No
490 (93.9)
146 (93.6)
344 (94.0)
 
 Yes
32 (6.1)
10 (6.4)
22 (6.0)
 
Mucinous, n (%)
   
0.642
 No
446 (85.4)
135 (86.5)
311 (85.0)
 
 Yes
76 (14.6)
21 (13.5)
55 (15.0)
 
CK5/6, n (%)
   
0.098
 No
496 (95.0)
152 (97.4)
344 (94.0)
 
 Yes
26 (5.0)
4 (2.6)
22 (6.0)
 
CK7, n (%)
   
0.921
 No
393 (75.3)
117 (75.0)
276 (75.4)
 
 Yes
129 (24.7)
39 (25.0)
90 (24.6)
 
TTF-1, n (%)
   
0.746
 No
373 (71.5)
113 (72.4)
260 (71.0)
 
 Yes
149 (28.5)
43 (27.6)
106 (29.0)
 
Napsin A, n (%)
   
0.154
 No
452 (86.6)
130 (83.3)
322 (88.0)
 
 Yes
70 (13.4)
26 (16.7)
44 (12.0)
 
MUC-AC, n (%)
   
0.064
 No
494 (94.6)
152 (97.4)
342 (93.4)
 
 Yes
28 (5.4)
4 (2.6)
24 (6.6)
 
P63, n (%)
   
0.184
 No
483 (92.5)
148 (94.9)
335 (91.5)
 
 Yes
39 (7.5)
8 (5.1)
31 (8.5)
 
CyclinD1, n (%)
   
0.07
 No
493 (94.4)
143 (91.7)
350 (95.6)
 
 Yes
29 (5.6)
13 (8.3)
16 (4.4)
 
EMA, n (%)
   
0.156
 No
496 (95.0)
145 (92.9)
351 (95.9)
 
 Yes
26 (5.0)
11 (7.1)
15 (4.1)
 
CD31, n (%)
   
0.268
 No
491 (94.1)
144 (92.3)
347 (94.8)
 
 Yes
31 (5.9)
12 (7.7)
19 (5.2)
 
D2-40, n (%)
   
0.403
 No
492 (94.3)
145 (92.9)
347 (94.8)
 
 Yes
30 (5.7)
11 (7.1)
19 (5.2)
 
Stretch fiber, n (%)
   
0.893
 No
376 (72.0)
113 (72.4)
263 (71.9)
 
 Yes
146 (28.0)
43 (27.6)
103 (28.1)
 
PAS, n (%)
   
0.82
 No
466 (89.3)
140 (89.7)
326 (89.1)
 
 Yes
56 (10.7)
16 (10.3)
40 (10.9)
 
PAS-D, n (%)
   
0.828
 No
474 (90.8)
141 (90.4)
333 (91.0)
 
 Yes
48 (9.2)
15 (9.6)
33 (9.0)
 
 Albumin (g/L), median (IQR)
60.00 (57.92, 62.20)
59.45 (57.68, 61.73)
60.20 (58.02, 62.30)
0.051
 Lymphocyte (× 109/L), median (IQR)
1.77 (1.44, 2.19)
1.78 (1.42, 2.21)
1.77 (1.45, 2.19)
0.843
 PNI (%), median (IQR)
69.15 (66.00, 71.85)
68.80 (65.84, 71.20)
69.32 (66.11, 72.04)
0.138
 Neutrophil (× 109/L), median (IQR)
3.00 (2.46, 3.89)
3.06 (2.49, 3.87)
2.96 (2.45, 3.89)
0.813
 Eosinophil (× 109/L), median (IQR)
0.11 (0.06, 0.19)
0.11 (0.07, 0.18)
0.11 (0.06, 0.19)
0.839
 Basophil (× 109/L), median (IQR)
0.03 (0.02, 0.04)
0.03 (0.02, 0.04)
0.03 (0.02, 0.04)
0.89
 Monocyte (× 109/L), median (IQR)
0.42 (0.34, 0.51)
0.42 (0.33, 0.50)
0.42 (0.34, 0.51)
0.718
 Erythrocyte (× 1012/L), median (IQR)
4.50 (4.20, 4.83)
4.49 (4.11, 4.86)
4.50 (4.23, 4.82)
0.383
 Hemoglobin (g/L), median (IQR)
138.00 (128.00, 148.00)
137.00 (126.00, 146.00)
138.50 (129.00, 149.00)
0.133
 Platelet (× 109/L), median (IQR)
234.00 (198.25, 267.00)
232.00 (194.25, 264.00)
235.00 (199.00, 269.00)
0.319
 NLR (%), median (IQR)
1.72 (1.29, 2.24)
1.75 (1.30, 2.27)
1.71 (1.29, 2.23)
0.928
 PLR (%), median (IQR)
132.06 (103.89, 163.59)
130.94 (97.47, 164.23)
133.94 (105.04, 163.06)
0.345
 MLR (%), median (IQR)
0.23 (0.19, 0.29)
0.22 (0.18, 0.29)
0.23 (0.19, 0.29)
0.438
 dNLR (%), median (IQR)
1.28 (1.01, 1.59)
1.28 (0.99, 1.62)
1.28 (1.01, 1.58)
0.675
 NLPR (%), median (IQR)
0.01 (0.01, 0.01)
0.01 (0.01, 0.01)
0.01 (0.01, 0.01)
0.782
 SIRI (%), median (IQR)
0.69 (0.49, 1.01)
0.69 (0.48, 1.01)
0.70 (0.49, 1.00)
0.788
 AISI (%), median (IQR)
163.50 (108.03, 240.75)
150.35 (105.01, 250.14)
165.50 (110.25, 237.16)
0.477
 SII (%), median (IQR)
396.04 (296.66, 533.27)
383.11 (276.55, 546.01)
404.92 (300.25, 528.57)
0.418
 Blood sugar(mmol/L), median (IQR)
5.20 (4.75, 5.82)
5.15 (4.75, 5.73)
5.21 (4.75, 5.86)
0.645
 Complement C1q(mg/L), median (IQR)
173.10 (150.62, 191.62)
173.40 (150.48, 193.00)
173.05 (150.80, 191.28)
0.999
 LDH (U/L), median (IQR)
193.50 (173.00, 217.75)
195.44 (178.00, 219.00)
192.00 (172.00, 216.75)
0.237
 SA (mg/dL), median (IQR)
54.03 (49.82, 59.00)
54.03 (49.48, 58.40)
54.03 (50.00, 59.18)
0.583
 5'-NT (U/L), median (IQR)
4.00 (3.00, 5.00)
4.00 (3.00, 5.00)
4.00 (3.00, 5.00)
0.606
 Pro-GRP (pg/mL), median (IQR)
41.96 (34.69, 45.88)
41.96 (33.72, 44.41)
41.96 (34.82, 46.14)
0.603
 SCC (ng/mL), median (IQR)
1.10 (0.78, 1.97)
1.10 (0.73, 1.97)
1.10 (0.78, 1.97)
0.766
 Cyfra21-1 (ng/mL), median (IQR)
2.32 (1.79, 2.62)
2.32 (1.87, 2.70)
2.32 (1.78, 2.58)
0.536
 CEA (ng/mL), median (IQR)
2.32 (1.74, 2.97)
2.32 (1.89, 3.15)
2.32 (1.68, 2.92)
0.159
 CA125 (U/mL), median (IQR)
10.72 (7.62, 11.20)
10.72 (7.76, 12.03)
10.50 (7.54, 10.90)
0.207
 NSE (ng/mL), median (IQR)
19.45 (15.72, 20.60)
19.45 (16.30, 20.60)
19.45 (15.60, 20.58)
0.544
 Age (years), median (IQR)
61.00 (54.00, 67.00)
61.00 (54.00, 67.00)
61.00 (54.00, 66.75)
0.566
 BMI (kg/m2), median (IQR)
25.14 (23.05, 27.18)
25.17 (22.86, 27.19)
25.10 (23.15, 27.17)
0.591
 FEV1% predicted (%), median (IQR)
104.36 (93.22, 116.15)
102.90 (88.81, 113.14)
105.29 (94.06, 117.16)
0.063
 MVV% predicted (%), median (IQR)
104.06 (88.28, 115.19)
101.32 (85.89, 114.83)
104.89 (90.43, 116.36)
0.038
 Maximum diameter (cm), median (IQR)
1.50 (1.20, 1.80)
1.50 (1.20, 1.70)
1.50 (1.20, 1.80)
0.264
 CTR (%), median (IQR)
0.50 (0.00, 0.88)
0.56 (0.09, 0.87)
0.46 (0.00, 0.89)
0.194
 Ki-67 positive rate (%), median (IQR)
0.00 (0.00, 1.00)
0.00 (0.00, 0.00)
0.00 (0.00, 2.00)
0.283
COPD chronic obstructive pulmonary diseases, ASA American Society of Anesthesiologists, PNI prognostic nutritional index, NLR neutrophil–lymphocyte ratio, PLR platelet-lymphocyte ratio, MLR monocyte-lymphocyte ratio, dNLR derived neutrophil-to-lymphocyte ratio, NLPR neutrophil to lymphocyte and platelet ratio, SIRI systemic inflammatory response syndrome, AISI aggregate index of systemic inflammation, SII systemic inflammation index, LDH lactate dehydrogenase, SA serum amyloid, 5'-NT 5'-nucleotidase, Pro-GRP pro-gastrin-releasing peptide, SCC squamous cell carcinoma, Cyfra21-1 cytokeratin 19-fragments, CEA carcinoembryonic antigen, CA125 carcinoma antigen 125, NSE neuron-specific enolase, BMI body mass index, FEV1 forced expiratory volume in one second, MVV maximal voluntary ventilation, CTR consolidation-to-tumor ratio, TTF thyroid transcription factor 1, PAS Periodic Acid-Schiff reaction, PAS-D Periodic Acid-Schiff reaction with diastase, CK 5/6 Cytokeratin 5/6, CK 7 Cytokeratin 7, MUC-AC mucin-AC
Table 2
Clinical characteristics of patients in the training and validation cohorts
Characteristics
Training Cohort (n = 366)
Validation cohort (n = 156)
LNM (-) (n = 327)
LNM ( +) (n = 39)
p
LNM (-) (n = 134)
LNM ( +) (n = 22)
p
Gender, n (%)
  
0.23
   
 Female
168 (51.4)
24 (61.5)
 
78 (58.2)
14 (63.6)
 
 Male
159 (48.6)
15 (38.5)
 
56 (41.8)
8 (36.4)
 
Hypertension, n (%)
  
0.297
  
0.965
 No
216 (66.1)
29 (74.4)
 
92 (68.7)
15 (68.2)
 
 Yes
111 (33.9)
10 (25.6)
 
42 (31.3)
7 (31.8)
 
Diabetes, n (%)
  
0.379
  
0.303
 No
286 (87.5)
36 (92.3)
 
115 (85.8)
17 (77.3)
 
 Yes
41 (12.5)
3 (7.7)
 
19 (14.2)
5 (22.7)
 
COPD, n (%)
  
0.548
  
0.479
 No
324 (99.1)
39 (100.0)
 
131 (97.8)
22 (100.0)
 
 Yes
3 (0.9)
0 (0.0)
 
3 (2.2)
0 (0.0)
 
Smoking history, n (%)
  
0.82
  
0.736
 Non-smoker
229 (70.0)
28 (71.8)
 
99 (73.9)
17 (77.3)
 
 Smoker
98 (30.0)
11 (28.2)
 
35 (26.1)
5 (22.7)
 
Blood type, n (%)
  
0.791
  
0.407
 A
94 (28.7)
12 (30.8)
 
39 (29.1)
5 (22.7)
 
 B
127 (38.8)
12 (30.8)
 
46 (34.3)
6 (27.3)
 
 AB
34 (10.4)
5 (12.8)
 
14 (10.4)
5 (22.7)
 
 O
72 (22.0)
10 (25.6)
 
35 (26.1)
6 (27.3)
 
ASA, n (%)
  
0.331
  
0.475
 1
28 (8.6)
2 (5.1)
 
9 (6.7)
2 (9.1)
 
 2
288 (88.1)
34 (87.2)
 
120 (89.6)
18 (81.8)
 
 3
11 (3.4)
3 (7.7)
 
5 (3.7)
2 (9.1)
 
Location, n (%)
  
0.72
  
0.769
 Centrality
40 (12.2)
4 (10.3)
 
15 (11.2)
2 (9.1)
 
 Peripherality
287 (87.8)
35 (89.7)
 
119 (88.8)
20 (90.9)
 
Shape, n (%)
  
0.519
  
0.907
 Regularity
109 (33.3)
11 (28.2)
 
47 (35.1)
8 (36.4)
 
 Irregularity
218 (66.7)
28 (71.8)
 
87 (64.9)
14 (63.6)
 
Spiculation, n (%)
  
0.121
  
0.069
 No
107 (32.7)
8 (20.5)
 
44 (32.8)
3 (13.6)
 
 Yes
220 (67.3)
31 (79.5)
 
90 (67.2)
19 (86.4)
 
Cavitation sign, n (%)
  
0.925
  
0.132
 No
262 (80.1)
31 (79.5)
 
105 (78.4)
14 (63.6)
 
 Yes
65 (19.9)
8 (20.5)
 
29 (21.6)
8 (36.4)
 
Calcification, n (%)
  
0.437
  
NA
 No
322 (98.5)
39 (100.0)
 
134 (100.0)
22 (100.0)
 
 Yes
5 (1.5)
0 (0.0)
 
0 (0.0)
0 (0.0)
 
Vascular penetration sign, n (%)
  
0.37
  
0.974
 No
89 (27.2)
8 (20.5)
 
37 (27.6)
6 (27.3)
 
 Yes
238 (72.8)
31 (79.5)
 
97 (72.4)
16 (72.7)
 
Pleural adhesions, n (%)
  
0.01
  
0.022
 No
128 (39.1)
7 (17.9)
 
52 (38.8)
3 (13.6)
 
 Yes
199 (60.9)
32 (82.1)
 
82 (61.2)
19 (86.4)
 
Bronchus sign, n (%)
  
0.185
  
0.249
 No
227 (69.4)
23 (59.0)
 
90 (67.2)
12 (54.5)
 
 Yes
100 (30.6)
16 (41.0)
 
44 (32.8)
10 (45.5)
 
Lobulation, n (%)
  
0.02
  
0.065
 No
165 (50.5)
12 (30.8)
 
77 (57.5)
8 (36.4)
 
 Yes
162 (49.5)
27 (69.2)
 
57 (42.5)
14 (63.6)
 
Lymph node enlargement sign, n (%)
  
0.251
  
0.907
 No
268 (82.0)
29 (74.4)
 
111 (82.8)
18 (81.8)
 
 Yes
59 (18.0)
10 (25.6)
 
23 (17.2)
4 (18.2)
 
Pleural effusion sign, n (%)
  
0.487
  
0.564
 No
323 (98.8)
39 (100.0)
 
132 (98.5)
22 (100.0)
 
 Yes
4 (1.2)
0 (0.0)
 
2 (1.5)
0 (0.0)
 
Lepidic, n (%)
  
0.049
  
0.153
 No
100 (30.6)
18 (46.2)
 
35 (26.1)
9 (40.9)
 
 Yes
227 (69.4)
21 (53.8)
 
99 (73.9)
13 (59.1)
 
Acinar, n (%)
  
0.638
  
0.42
 No
65 (19.9)
9 (23.1)
 
21 (15.7)
2 (9.1)
 
 Yes
262 (80.1)
30 (76.9)
 
113 (84.3)
20 (90.9)
 
Papillary, n (%)
  
0.319
  
0.029
 No
203 (62.1)
21 (53.8)
 
82 (61.2)
8 (36.4)
 
 Yes
124 (37.9)
18 (46.2)
 
52 (38.8)
14 (63.6)
 
Micropapillary, n (%)
  
0.003
  
 < 0.001
 No
273 (83.5)
25 (64.1)
 
112 (83.6)
11 (50.0)
 
 Yes
54 (16.5)
14 (35.9)
 
22 (16.4)
11 (50.0)
 
Solid, n (%)
  
< 0.001
  
0.015
 No
313 (95.7)
31 (79.5)
 
128 (95.5)
18 (81.8)
 
 Yes
14 (4.3)
8 (20.5)
 
6 (4.5)
4 (18.2)
 
Mucinous, n (%)
  
0.015
  
0.979
 No
283 (86.5)
28 (71.8)
 
116 (86.6)
19 (86.4)
 
 Yes
44 (13.5)
11 (28.2)
 
18 (13.4)
3 (13.6)
 
CK5/6, n (%)
  
< 0.001
  
 < 0.001
 No
318 (97.2)
26 (66.7)
 
133 (99.3)
19 (86.4)
 
 Yes
9 (2.8)
13 (33.3)
 
1 (0.7)
3 (13.6)
 
CK7, n (%)
  
0.033
  
0.003
 No
252 (77.1)
24 (61.5)
 
106 (79.1)
11 (50.0)
 
 Yes
75 (22.9)
15 (38.5)
 
28 (20.9)
11 (50.0)
 
TTF-1, n (%)
  
0.001
  
 < 0.001
 No
241 (73.7)
19 (48.7)
 
104 (77.6)
9 (40.9)
 
 Yes
86 (26.3)
20 (51.3)
 
30 (22.4)
13 (59.1)
 
Napsin A, n (%)
  
< 0.001
  
 < 0.001
 No
299 (91.4)
23 (59.0)
 
119 (88.8)
11 (50.0)
 
 Yes
28 (8.6)
16 (41.0)
 
15 (11.2)
11 (50.0)
 
MUC-AC, n (%)
  
0.286
  
0.526
 No
304 (93.0)
38 (97.4)
 
131 (97.8)
21 (95.5)
 
 Yes
23 (7.0)
1 (2.6)
 
3 (2.2)
1 (4.5)
 
P63, n (%)
  
< 0.001
  
 < 0.001
 No
310 (94.8)
25 (64.1)
 
131 (97.8)
17 (77.3)
 
 Yes
17 (5.2)
14 (35.9)
 
3 (2.2)
5 (22.7)
 
CyclinD1, n (%)
  
0.057
  
 < 0.001
 No
315 (96.3)
35 (89.7)
 
129 (96.3)
14 (63.6)
 
 Yes
12 (3.7)
4 (10.3)
 
5 (3.7)
8 (36.4)
 
EMA, n (%)
  
< 0.001
  
 < 0.001
 No
319 (97.6)
32 (82.1)
 
130 (97.0)
15 (68.2)
 
 Yes
8 (2.4)
7 (17.9)
 
4 (3.0)
7 (31.8)
 
CD31, n (%)
  
0.023
  
 < 0.001
 No
313 (95.7)
34 (87.2)
 
129 (96.3)
15 (68.2)
 
 Yes
14 (4.3)
5 (12.8)
 
5 (3.7)
7 (31.8)
 
D2-40, n (%)
  
< 0.001
  
 < 0.001
 No
315 (96.3)
32 (82.1)
 
129 (96.3)
16 (72.7)
 
 Yes
12 (3.7)
7 (17.9)
 
5 (3.7)
6 (27.3)
 
Stretch fiber, n (%)
  
0.008
  
0.043
 No
242 (74.0)
21 (53.8)
 
101 (75.4)
12 (54.5)
 
 Yes
85 (26.0)
18 (46.2)
 
33 (24.6)
10 (45.5)
 
PAS, n (%)
  
< 0.001
  
0.005
 No
305 (93.3)
21 (53.8)
 
124 (92.5)
16 (72.7)
 
 Yes
22 (6.7)
18 (46.2)
 
10 (7.5)
6 (27.3)
 
PAS-D, n (%)
  
0.001
  
 < 0.001
 No
303 (92.7)
30 (76.9)
 
127 (94.8)
14 (63.6)
 
 Yes
24 (7.3)
9 (23.1)
 
7 (5.2)
8 (36.4)
 
 Albumin (g/L), median (IQR)
60.40 (58.30, 62.50)
58.80 (56.30, 60.40)
0.004
59.60 (57.70, 61.90)
58.55 (57.62, 60.13)
0.191
 Lymphocyte (× 109/L), median (IQR)
1.81 (1.46, 2.21)
1.59 (1.28, 1.85)
0.015
1.83 (1.42, 2.27)
1.63 (1.43, 2.01)
0.326
 PNI (%), median (IQR)
69.65 (66.45, 72.25)
66.00 (64.55, 69.22)
< 0.001
69.05 (66.01, 71.39)
67.28 (64.33, 69.30)
0.072
 Neutrophil (× 109/L), median (IQR)
2.94 (2.45, 3.90)
3.02 (2.64, 3.39)
0.934
3.07 (2.44, 3.85)
3.05 (2.81, 3.95)
0.341
 Eosinophil (× 109/L), median (IQR)
0.11 (0.06, 0.18)
0.11 (0.07, 0.21)
0.689
0.11 (0.07, 0.21)
0.10 (0.07, 0.15)
0.402
 Basophil (× 109/L), median (IQR)
0.03 (0.02, 0.04)
0.03 (0.02, 0.04)
0.716
0.03 (0.02, 0.04)
0.03 (0.03, 0.04)
0.524
 Monocyte (× 109/L), median (IQR)
0.42 (0.34, 0.51)
0.40 (0.33, 0.52)
0.994
0.42 (0.33, 0.50)
0.42 (0.36, 0.50)
0.704
 Erythrocyte (× 1012/L), median (IQR)
4.51 (4.24, 4.82)
4.50 (4.20, 4.82)
0.898
4.48 (4.09, 4.85)
4.58 (4.34, 4.86)
0.367
 Hemoglobin (g/L), median (IQR)
138.00 (129.00, 149.00)
139.00 (125.00, 148.00)
0.409
136.50 (126.00, 145.75)
137.50 (126.50, 145.00)
0.923
 Platelet (× 109/L), median (IQR)
232.00 (198.50, 264.50)
261.00 (231.50, 288.50)
0.013
230.00 (191.00, 264.00)
242.50 (211.25, 286.00)
0.179
 NLR (%), median (IQR)
1.70 (1.26, 2.23)
1.91 (1.57, 2.24)
0.042
1.66 (1.27, 2.12)
2.03 (1.70, 2.43)
0.026
 PLR (%), median (IQR)
130.66 (104.47, 159.12)
161.74 (136.77, 181.94)
< 0.001
127.15 (93.63, 157.73)
155.21 (116.53, 180.74)
0.043
 MLR (%), median (IQR)
0.23 (0.18, 0.29)
0.27 (0.22, 0.32)
0.012
0.22 (0.18, 0.28)
0.25 (0.20, 0.33)
0.182
 dNLR (%), median (IQR)
1.28 (1.01, 1.58)
1.40 (1.12, 1.60)
0.147
1.24 (0.97, 1.57)
1.51 (1.28, 1.69)
0.012
 NLPR (%), median (IQR)
0.01 (0.01, 0.01)
0.01 (0.01, 0.01)
0.496
0.01 (0.01, 0.01)
0.01 (0.01, 0.01)
0.212
 SIRI (%), median (IQR)
0.69 (0.47, 1.02)
0.80 (0.63, 0.92)
0.068
0.65 (0.47, 0.98)
0.79 (0.57, 1.33)
0.108
 AISI (%), median (IQR)
163.03 (105.84, 232.89)
221.50 (144.41, 264.92)
0.017
147.89 (100.00, 242.84)
181.92 (135.84, 375.84)
0.056
 SII (%), median (IQR)
389.76 (298.64, 511.21)
519.12 (343.84, 622.08)
0.006
369.06 (273.13, 515.99)
504.51 (390.20, 594.27)
0.013
 Blood sugar(mmol/L), median (IQR)
5.22 (4.78, 5.86)
5.10 (4.62, 5.76)
0.172
5.11 (4.73, 5.67)
5.48 (4.96, 6.27)
0.117
 Complement C1q(mg/L), median (IQR)
171.00 (149.90, 188.55)
189.20 (163.10, 206.95)
0.002
170.80 (149.72, 192.62)
179.80 (168.00, 192.75)
0.089
 LDH (U/L), median (IQR)
191.00 (172.00, 215.50)
195.89 (173.00, 229.50)
0.209
193.00 (176.50, 219.75)
196.50 (184.75, 207.00)
0.996
 SA (mg/dL), median (IQR)
54.00 (49.75, 58.80)
57.10 (51.30, 63.95)
0.033
54.03 (49.12, 58.58)
56.00 (52.37, 58.25)
0.151
 5'-NT (U/L), median (IQR)
4.00 (3.00, 5.00)
4.00 (3.00, 4.62)
0.497
4.00 (3.00, 5.00)
4.00 (4.00, 5.00)
0.149
 Pro-GRP (pg/mL), median (IQR)
41.96 (34.69, 45.59)
41.96 (35.90, 49.95)
0.335
41.96 (32.44, 44.34)
41.96 (41.34, 45.13)
0.069
 SCC (ng/mL), median (IQR)
1.10 (0.78, 1.97)
1.10 (0.94, 1.96)
0.706
1.06 (0.72, 1.97)
1.36 (0.76, 1.97)
0.273
 Cyfra21-1 (ng/mL), median (IQR)
2.32 (1.80, 2.58)
2.32 (1.73, 2.57)
0.697
2.32 (1.88, 2.70)
2.32 (1.72, 2.32)
0.674
 CEA (ng/mL), median (IQR)
2.32 (1.75, 2.92)
2.32 (1.09, 2.78)
0.251
2.32 (1.80, 2.97)
2.32 (2.32, 3.83)
0.109
 CA125 (U/mL), median (IQR)
10.30 (7.40, 10.72)
10.72 (9.84, 12.80)
0.002
10.71 (7.61, 11.28)
11.41 (10.72, 14.02)
0.002
 NSE (ng/mL), median (IQR)
19.45 (15.50, 20.05)
19.45 (16.95, 22.95)
0.239
19.45 (15.93, 20.60)
19.45 (18.27, 20.16)
0.488
 Age (years), median (IQR)
62.00 (54.00, 67.00)
56.00 (48.50, 64.00)
0.017
62.00 (54.25, 68.00)
56.00 (50.75, 63.50)
0.034
 BMI (kg/m2), median (IQR)
24.97 (23.04, 27.04)
26.37 (24.53, 29.94)
0.005
24.91 (22.59, 27.02)
25.41 (24.25, 28.07)
0.069
 FEV1% predicted (%), median (IQR)
105.30 (94.90, 117.40)
97.01 (85.34, 109.50)
0.037
102.69 (88.96, 114.94)
104.15 (85.17, 110.00)
0.563
 MVV% predicted (%), median (IQR)
105.23 (90.91, 117.04)
99.47 (87.00, 111.57)
0.126
101.32 (85.28, 114.90)
99.50 (86.96, 114.40)
0.776
 Maximum diameter (cm), median (IQR)
1.50 (1.20, 1.75)
1.60 (1.50, 1.90)
0.001
1.45 (1.10, 1.60)
1.60 (1.40, 1.95)
0.013
 CTR (%), median (IQR)
0.43 (0.00, 0.85)
0.85 (0.40, 1.00)
< 0.001
0.50 (0.00, 0.73)
0.79 (0.60, 1.00)
0.004
 Ki-67 positive rate (%), median (IQR)
0.00 (0.00, 1.25)
0.00 (0.00, 15.00)
0.103
0.00 (0.00, 0.00)
0.00 (0.00, 14.38)
0.002
LNM( +) positive for lymph node metastasis, LNM(-) negative for lymph node metastasis, COPD chronic obstructive pulmonary diseases, ASA American Society of Anesthesiologists, PNI prognostic nutritional index, NLR neutrophil–lymphocyte ratio, PLR platelet-lymphocyte ratio, MLR monocyte-lymphocyte ratio, Dnlr derived neutrophil-to-lymphocyte ratio, NLPR neutrophil to lymphocyte and platelet ratio, SIRI systemic inflammatory response syndrome, AISI aggregate index of systemic inflammation, SII systemic inflammation index, LDH lactate dehydrogenase, SA serum amyloid, 5'-NT 5'-nucleotidase, Pro-GRP pro-gastrin-releasing peptide, SCC squamous cell carcinoma, Cyfra21-1 cytokeratin 19-fragments, CEA carcinoembryonic antigen, CA125 carcinoma antigen 125, NSE neuron-specific enolase, BMI body mass index, FEV1 forced expiratory volume in one second, MVV maximal voluntary ventilation, CTR consolidation-to-tumor ratio, TTF thyroid transcription factor 1, PAS Periodic Acid-Schiff reaction, PAS-D Periodic Acid-Schiff reaction with diastase, CK 5/6 Cytokeratin 5/6, CK 7 Cytokeratin 7, MUC-AC mucin-AC

Identifying risk factors for lymph node metastasis

Univariate and then multivariate logistic regression analyses were performed in the training cohort to investigate independent risk factors for lymph node metastasis, and the results of the logistic regression analyses are shown in Table 3.
Table 3
Univariate and multivariate logistic regression analysis of LNM factors in a training cohort
Characteristics
Univariate analysis
Multivariate analysis
OR (95%CI)
P
OR (95%CI)
P
Age
0.959 (0.927, 0.991)
0.013
0.934 (0.871, 0.996)
< 0.001
SA
1.041 (1.003, 1.081)
0.033
1.025 (0.937, 1.109)
0.008
CA125
1.045 (1.006, 1.094)
0.028
1.103 (1.021, 1.189)
0.042
Mucinous
    
 No
Ref
Ref
Ref
Ref
 Yes
2.527 (1.135, 5.324)
0.018
1.729 (0.371, 7.519)
0.003
Napsin A
    
 No
Ref
Ref
Ref
Ref
 Yes
7.429 (3.494, 15.681)
< 0.001
2.704 (0.489, 15.541)
0.007
CK5/6
    
 No
Ref
Ref
Ref
Ref
 Yes
17.667 (6.993, 46.668)
< 0.001
18.668 (2.938, 154.991)
0.042
PAS-D
    
 No
Ref
Ref
Ref
Ref
 Yes
3.788 (1.548, 8.676)
0.002
3.521 (0.605, 19.102)
0.067
CK7
    
 No
Ref
Ref
Ref
Ref
 Yes
2.100 (1.030, 4.171)
0.036
0.146 (0.021, 0.935)
0.123
PAS
    
 No
Ref
Ref
Ref
Ref
 Yes
11.883 (5.542, 25.739)
 < 0.001
1.673 (0.307, 7.799)
0.148
Pleural adhesions
    
 No
Ref
Ref
Ref
Ref
 Yes
2.940 (1.332, 7.436)
0.013
3.516 (0.800, 19.883)
0.21
D2-40
    
 No
Ref
Ref
Ref
Ref
 Yes
5.742 (2.015, 15.355)
0.001
4.325 (0.285, 89.145)
0.252
TTF-1
    
 No
Ref
Ref
Ref
Ref
 Yes
2.950 (1.500, 5.827)
0.002
3.817 (0.668, 21.137)
0.253
CD31
    
 No
Ref
Ref
Ref
Ref
 Yes
3.288 (1.013, 9.196)
0.031
0.393 (0.013, 10.772)
0.3
Solid
    
 No
Ref
Ref
Ref
Ref
 Yes
5.770 (2.159, 14.602)
 < 0.001
1.925 (0.246, 13.577)
0.47
Micropapillary
    
 No
Ref
Ref
Ref
Ref
 Yes
2.831 (1.355, 5.735)
0.004
2.189 (0.495, 9.065)
0.515
Stretch fiber
    
 No
Ref
Ref
Ref
Ref
 Yes
2.440 (1.231, 4.801)
0.01
2.134 (0.578, 7.992)
0.528
EMA, n (%)
    
 No
Ref
Ref
Ref
Ref
 Yes
8.723 (2.889, 25.881)
 < 0.001
2.237 (0.213, 22.148)
0.588
P63
    
 No
Ref
Ref
Ref
Ref
 Yes
10.212 (4.487, 23.219)
 < 0.001
9.324 (1.994, 52.880)
0.608
Lobulation
    
 No
Ref
Ref
Ref
Ref
 Yes
2.292 (1.146, 4.838)
0.023
2.316 (0.647, 9.247)
0.989
 Maximum Diameter
5.159 (1.965, 14.589)
0.001
3.651 (0.759, 20.700)
0.119
 FEV1% predicted
0.982 (0.964, 1.000)
0.045
0.979 (0.946, 1.013)
0.12
 PLR
1.010 (1.004, 1.016)
0.001
0.994 (0.954, 1.029)
0.067
 Lymphocyte
0.475 (0.235, 0.896)
0.03
0.087 (0.001, 2.061)
0.199
 BMI
1.172 (1.067, 1.288)
0.001
1.367 (1.161, 1.642)
0.21
 CTR
5.724 (2.351, 15.258)
 < 0.001
0.988 (0.171, 5.685)
0.284
 PNI
0.925 (0.876, 0.977)
0.005
NA (NA, NA)
0.352
 Ki-67 positive rate
1.029 (1.010, 1.046)
0.001
0.990 (0.949, 1.028)
0.495
 Complement C1q
1.018 (1.007, 1.029)
0.001
1.020 (0.999, 1.042)
0.553
 Platelet
1.006 (1.001, 1.011)
0.016
1.012 (0.989, 1.041)
0.747
 Albumin
0.942 (0.888, 1.003)
0.047
1.010 (0.896, 1.176)
0.886
Acinar
    
 No
Ref
Ref
  
 Yes
0.827 (0.388, 1.926)
0.639
  
ASA
    
 1
Ref
Ref
  
 2
1.653 (0.467, 10.515)
0.505
  
 3
3.818 (0.561, 32.139)
0.171
  
Blood type
    
 A
Ref
Ref
  
 B
0.740 (0.315, 1.736)
0.484
  
 AB
1.152 (0.346, 3.360)
0.804
  
 O
1.088 (0.436, 2.662)
0.853
  
Bronchus sign
    
 No
Ref
Ref
  
 Yes
1.579 (0.788, 3.099)
0.188
  
Calcification
    
 No
Ref
Ref
  
 Yes
0.000 (NA, NA)
0.989
  
Cavitation sign
    
 No
Ref
Ref
  
 Yes
1.040 (0.429, 2.270)
0.925
  
COPD
    
 No
Ref
Ref
  
 Yes
0.000 (NA, NA)
0.987
  
CyclinD1
    
 No
Ref
Ref
  
 Yes
3.000 (0.805, 9.151)
0.069
  
Diabetes
    
 No
Ref
Ref
  
 Yes
0.581 (0.136, 1.708)
0.384
  
Gender
    
 Female
Ref
Ref
  
 Male
0.660 (0.328, 1.292)
0.232
  
Hypertension
    
 No
Ref
Ref
  
 Yes
0.671 (0.301, 1.384)
0.3
  
Lepidic
    
 No
Ref
Ref
  
 Yes
0.514 (0.262, 1.015)
0.052
  
Location
    
 Centrality
Ref
Ref
  
 Peripherality
1.220 (0.456, 4.238)
0.72
  
Lymph node enlargement sign
    
 No
Ref
Ref
  
 Yes
1.566 (0.693, 3.295)
0.255
  
MUC-AC
    
 No
Ref
Ref
  
 Yes
0.348 (0.019, 1.726)
0.308
  
Papillary
    
 No
Ref
Ref
  
 Yes
1.403 (0.713, 2.737)
0.32
  
Pleural effusion sign
    
 No
Ref
Ref
  
 Yes
0.000 (NA, NA)
0.985
  
Shape
    
 Regularity
Ref
Ref
  
 Irregularity
1.273 (0.626, 2.758)
0.52
  
Smoking history
    
 Non-smoker
Ref
Ref
  
 Smoker
0.918 (0.423, 1.870)
0.82
  
Spiculation
    
 No
Ref
Ref
  
 Yes
1.885 (0.876, 4.528)
0.126
  
Vascular penetration sign
    
 No
Ref
Ref
  
 Yes
1.449 (0.671, 3.492)
0.372
  
 Cyfra21-1
0.934 (0.623, 1.078)
0.684
  
 AISI
1.000 (0.999, 1.001)
0.495
  
 Basophil
0.501 (0.000, 48.590)
0.856
  
 Blood Sugar
0.802 (0.556, 1.072)
0.187
  
 CEA
0.939 (0.717, 1.151)
0.602
  
 dNLR
1.062 (0.636, 1.543)
0.778
  
 Eosinophil
1.375 (0.221, 4.520)
0.618
  
 Erythrocyte
0.920 (0.431, 1.956)
0.829
  
 Hemoglobin
0.981 (0.959, 1.002)
0.078
  
 LDH
1.006 (0.998, 1.015)
0.122
  
 MLR
1.803 (0.830, 3.913)
0.096
  
 Monocyte
1.168 (0.731, 1.673)
0.366
  
 MVV% predicted
0.987 (0.971, 1.001)
0.097
  
 Neutrophil
0.945 (0.704, 1.185)
0.668
  
 NLPR
0.000 (NA, NA)
0.597
  
 NLR
1.023 (0.775, 1.215)
0.825
  
 NSE
1.029 (0.988, 1.067)
0.133
  
 Pro_GRP
1.005 (0.979, 1.028)
0.695
  
 SCC
0.960 (0.562, 1.451)
0.867
  
 SII
1.000 (1.000, 1.001)
0.265
  
 SIRI
1.023 (0.799, 1.170)
0.781
  
 5'-NT
0.995 (0.747, 1.271)
0.973
  
LNM lymph node metastasis, COPD chronic obstructive pulmonary diseases, ASA American Society of Anesthesiologists, PNI prognostic nutritional index, NLR neutrophil–lymphocyte ratio, PLR platelet-lymphocyte ratio, MLR monocyte-lymphocyte ratio, dNLR derived neutrophil-to-lymphocyte ratio, NLPR neutrophil to lymphocyte and platelet ratio, SIRI systemic inflammatory response syndrome, AISI aggregate index of systemic inflammation, SII systemic inflammation index, PIV pan-immune-inflammation value, LDH lactate dehydrogenase, SA serum amyloid, 5'-NT 5'-nucleotidase, Pro-GRP pro-gastrin-releasing peptide, SCC squamous cell carcinoma, Cyfra21-1 cytokeratin 19-fragments, CEA carcinoembryonic antigen, CA125 carcinoma antigen 125, NSE neuron-specific enolase, BMI body mass index, FEV1 forced expiratory volume in one second, MVV maximal voluntary ventilation, CTR consolidation-to-tumor ratio, TTF thyroid transcription factor 1, PAS Periodic Acid-Schiff reaction, PAS-D Periodic Acid-Schiff reaction with diastase, CK 5/6 Cytokeratin 5/6, CK 7 Cytokeratin 7, MUC-AC mucin-AC
Univariate analysis showed that as many as 30 factors were potential risk factors for lymph node metastasis in early-stage small lung adenocarcinoma (P < 0.05). After further multivariate logistic regression analysis, six indicators were finally identified to be independently associated with lymph node metastasis. The six indicators were: age [odds ratio (OR) = 0.934; 95% confidence interval (CI): 0.871–0.996; P < 0.001]; SA (OR = 1.025; 95% CI: 0.937–1.109; P = 0.008); CA125 (OR = 1.103; 95% CI: 1.021–1.189; P = 0.042); Mucinous (no and yes; OR = 1.729; 95% CI: 0.371–7.519; P = 0.003); Napsin A (no and yes; OR = 2.704; 95% CI: 0.489–15.541; P = 0.007); and CK5/6 (no and yes; OR = 18.668; 95% CI: 2.938–154.991; P = 0.042). The results of the multifactorial logistic regression analysis of the 30 factors screened in this study are detailed in the forest plot (Fig. 2).

Frequency of targeted gene alterations

Of the 522 patients, 46 underwent genetic alteration analysis using ARMS-PCR. Of these, 37 (80.4%) samples had gene mutations detected. The mutation frequencies of EGFR and KRAS genes were 71.7% (33/46) and 8.7% (4/46), respectively. EGFR mutations were the most common type of alteration, with 39.1% (18/46) of patients having mutations in Exon21, 26.1% (12/46) having mutations in Exon19, 2.2% (1/46) having mutations in Exon18, 2.2% (1/46) having mutations in Exon20, and 2.2% (1/46) having double mutations in Exon18 and Exon20. All of the KRAS mutations were mutations in Exon2, with a total of 4 cases or 8.7% (4/46). Of the 37 patients with genetic mutations, 4 had lymph node metastases and 33 did not. Considering the possibility of gene mutations in patients without genetic testing, this study will not include gene mutations in the univariate and multifactorial analyses, but will simply elaborate the findings.

Nomogram construction

All six independent risk factors for lymph node metastasis in small invasive lung adenocarcinoma within 2 cm were included to create a logistic regression model. The probability of lymph node metastasis in small invasive lung adenocarcinoma could be calculated by the following formula: ln (p/1-p) = -0.068 × age + 0.025 × SA + 0.098 × CA125 + 0.547 × mucinous (no = 0; yes = 1) + 2.927 × CK5/6 (no = 0; yes = 1)—13.972. Based on the above equation, a nomogram of the predicted probability of lymph node metastasis in invasive lung adenocarcinoma within 2 cm was plotted using R statistical software (Fig. 3). As shown in this nomogram, there are 9 axes, and axes 2–7 represent the six variables in the prediction model. By drawing a line perpendicular to the highest point axis, the estimated score for each risk factor can be calculated and can be further summed to obtain a total score. The total score axis is then used to predict the probability of developing lymph node metastasis in invasive lung adenocarcinoma, which in turn can further guide the surgical approach.

Predictive performance and validation of the nomogram

Discrimination ability of the prediction model and nomogram is assessed by the ROC curve (Fig. 4). ROC area under the curve (AUC) was 0.843 (95% CI: 0.779–0.908) for the training cohort and 0.838 (95% CI: 0.748–0.927) for the validation cohort, indicating that the nomogram has good predictive accuracy. The ROC curve for the training cohort had a threshold of 0.089 and sensitivities and specificities of 0.795 and 0.786, respectively (Table 4). Our Hosmer–Lemeshow test and calibration charts were used to assess calibration capability. Our p-value for the Hosmer–Lemeshow test was 0.0613 in the training cohort and 0.8628 in the validation cohort, indicating that the difference between the predicted and actual observed probabilities was negligible. A good calibration of the prediction nomogram is also demonstrated by the calibration plots of the training cohort (Fig. 5A) and the validation cohort (Fig. 5B). The bias-corrected C-index for the training cohort was 0.8444 and the bias-corrected C-index for the validation cohort was 0.8375, further demonstrating the goodness of the prediction model.
Table 4
Results of ROC curve for training cohort
Characteristics
Value
Threshold
0.089
Specificity
0.786
Sensitivity
0.795
Accuracy
0.787
TN
257
TP
31
FN
8
FP
70
NPV
0.97
PPV
0.307
FDR
0.693
FPR
0.214
TPR
0.795
TNR
0.786
FNR
0.205
1-specificity
0.214
1-sensitivity
0.205
1-accuracy
0.213
1-npv
0.03
1-ppv
0.693
Precision
0.307
Recall
0.795
Youden
1.581
Closest.topleft
0.088
TP true positive, FP false positive, TN true negative, FN false negative, TPR true positive rate, FPR false positive rate, TNR true negative rate, FNR false negative rate, PPV positive predict value, NPR negative predict value, FDR false discovery rate

Clinical utility of the predictive nomogram

Just as shown in Fig. 6A and B, DCA was used to assess the clinical utility of the prediction nomogram. Findings show that the nomogram provided greater net benefit and broader threshold probabilities for predicting the risk of lymph node metastasis in invasive lung adenocarcinoma within 2 cm in both the training and validation cohorts, showing that the nomogram is clinically useful. Figure 7A and B show the clinical impact curves (CIC) for the validation cohort and the verification cohort, respectively. The curves show that a high benefit ratio is obtained within a probability threshold of 0.2–1.0. It suggests that the present model can indeed be used clinically to predict the probability of lymph node metastasis in small invasive lung adenocarcinoma.

Discussion

In this retrospective study, we developed a nomogram to predict the incidence of lymph node metastasis. In this study, age, SA, CA125, mucin composition, CK5/6, and napsin-A were found to be independent risk factors for lymph node metastasis. The results of genetic testing showed that EGFR was the most common alteration. A nomogram model was developed to assess the risk of lymph node metastasis, which showed consistent discriminatory performance and satisfactory calibration. In 2012, a related study by Terumoto Koike et al. identified the following four predictors of mediastinal lymph node metastasis: (age ≥ 67 years, CEA ≥ 3.5 ng/ml, tumor size ≥ 2.0 cm, and the CTR ≥ 89%) [26]. Advanced age was a common predictor in both our studies. As for hematologic components, our study showed SA and CA125 as predictors. CTR and tumor size were not shown to be associated with mediastinal lymph node metastasis in our study. The inclusion of immunologic components in the predictors is an innovative point of our study. These previously unpublished observations have potential implications for the therapeutic management of early-stage lung adenocarcinoma. This is because the nomogram may have the potential to predict lymph node status before the end of surgery and to guide surgeons in developing lymph node dissection strategies.
Many studies have been conducted on the effect of age on lymph node metastasis in non-small cell lung cancer [26, 3846]. A part of the findings concluded that youth is an influential factor for lymph node metastasis in lung cancer, with a higher risk of lymph node metastasis in lung cancer patients at a younger age [26, 4143]. Another part of the study showed that age had no significant effect on lymph node metastasis in lung cancer patients [4446]. This discrepancy may be due to differences in the patients included in the study, sample size, and analysis methods. Therefore, the different conclusions reached in previous studies are explainable and acceptable. Based on our findings, we conclude that patients with young invasive lung adenocarcinoma are at greater risk for lymph node metastasis and require more thorough and meticulous lymph node dissection.
To date, there have been some case reports of elevated levels of SA being associated with lung cancer [4749]. The predominance of salivary amylase was observed in these studies from the amylase isozyme pattern in serum and tumor tissues. Amylase levels were higher in tumor tissue than in normal lung tissue. Immunohistochemical studies revealed that amylase was located in tumor cells. Observation of ultrastructure revealed electron-dense particles in the cytoplasm of tumor cells. The findings suggest that in this case, amylase is produced by lung cancer. The possibility that serum amylase levels may be a highly sensitive marker for lung cancer was raised in these studies. Our findings found that lung adenocarcinoma patients with high levels of SA concentration in the blood had a higher risk of lymph node metastasis.
CA125 has long been recognized for its role as a classical tumor maker, not only as a predictor of lung cancer, but also as a direct correlate of tumor infiltration and metastasis. It has been confirmed that CA125 is associated with lymph node metastasis in lung cancer [50, 51]. CA125 provides important value in judging the extent of lung cancer metastasis and monitoring the progression of lung cancer disease. This study demonstrated the importance of CA125 in determining whether lymph node metastasis is present in lung cancer patients. Surgeons should be more cautious when performing lymph node dissection during lung cancer surgery when faced with patients with high serum CA125 levels.
Mucus is thought to play a key role in the development of cancer, as mucinous adenocarcinoma in many organs is associated with lymph node metastasis and poorer prognosis [5256]. The mucinous glandular component of the tumor is histologically characterized by cupped and highly columnar epithelial cells and produces mucin, and the mucinous subtype is considered more malignant than other common subtypes of lung adenocarcinoma, such as squamous and alveolar subtypes [5759]. Some reports with small sample sizes claim a low rate of lymph node metastasis in invasive mucinous adenocarcinoma [6063]. The results of other studies hold the opposite opinion. The study by Zhu et al. claimed that the mucus subtype is a risk factor for distant metastasis of lung adenocarcinoma [64]. Our findings suggest that the mucus component is one of the risk factors for lymph node metastasis.
Napsin A is a human aspartate protease associated with pepsin, gastrin, renin, and histone protease [65]. IHC studies have demonstrated that Napsin A is expressed in normal human type II lung cells and alveolar macrophages [66]. Strong cytoplasmic staining for napsin A was observed in up to 87% of lung adenocarcinomas [6771]. In contrast, CK5/6 is a sensitive and relatively specific marker of squamous differentiation [7274]. The novelty of our study is that for the first time, lymph node metastasis was linked to these two immunohistochemical markers, demonstrating that CK5/6 and napsin A can be used to predict lymph node metastasis in invasive adenocarcinoma. However, the reasons behind why CK5/6 and napsin A can predict lymph node metastasis are still waiting to be explored and studied.
Our study has several advantages compared with other studies. First, for the first time, we included CK5/6, napsin A, and mucus components as influencing factors for lymph node metastasis in our prediction model. Second, the factors in our prediction model are common and easily available in clinical practice. Third, our prediction model has excellent discriminatory power, calibration, and clinical utility. The model is easy to use in clinical practice, and the associated nomogram guides surgeons to quickly select an optimized surgical approach.
Our study has several limitations. First, the analysis was based on retrospective data from a single institution, and the possibility of selection bias cannot be ruled out; results from other centers must be validated. Second, mutation testing was performed according to the patients' wishes. Thus, the sample size for testing their genomics is a subset of the entire cohort, which makes it challenging to include mutation information in a multiple regression analysis. Third, the limited number of cases may lead to potential bias, especially in histological subtype analysis.

Conclusion

In this study, a clinical prediction model for six risk factors was proposed. For invasive lung cancer, age, SA, CA125, mucin composition, CK5/6, and napsin-A are important risk factors associated with lymph node metastasis. Based on this line chart, surgeons may be able to predict lymph node status before the end of surgery.

Acknowledgements

Not applicable.

Declarations

This study was approved by the Ethics Committee of Qilu Hospital, Shandong University (registration number: KYLL-202008–023-1), and all patients signed an informed consent form for the use of their clinical information prior to the procedure. All methods were performed in accordance with the Declaration of Helsinki.
NA.

Competing interests

The authors declare no competing interests.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Anhänge

Supplementary Information

Literatur
1.
Zurück zum Zitat Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin. 2021;71(1):7–33.PubMedCrossRef Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin. 2021;71(1):7–33.PubMedCrossRef
2.
Zurück zum Zitat Walter JE, Heuvelmans MA, de Jong PA, Vliegenthart R, van Ooijen PMA, Peters RB, et al. Occurrence and lung cancer probability of new solid nodules at incidence screening with low-dose CT: analysis of data from the randomised, controlled NELSON trial. Lancet Oncol. 2016;17(7):907–16.PubMedCrossRef Walter JE, Heuvelmans MA, de Jong PA, Vliegenthart R, van Ooijen PMA, Peters RB, et al. Occurrence and lung cancer probability of new solid nodules at incidence screening with low-dose CT: analysis of data from the randomised, controlled NELSON trial. Lancet Oncol. 2016;17(7):907–16.PubMedCrossRef
3.
Zurück zum Zitat Kuroda H, Sakata S, Takahashi Y, Nakada T, Oya Y, Sugita Y, et al. Subsegmental resection preserves regional pulmonary function: a focus on thoracoscopy. Thorac Cancer. 2021;12(7):1033–40.PubMedPubMedCentralCrossRef Kuroda H, Sakata S, Takahashi Y, Nakada T, Oya Y, Sugita Y, et al. Subsegmental resection preserves regional pulmonary function: a focus on thoracoscopy. Thorac Cancer. 2021;12(7):1033–40.PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Iwata H, Shirahashi K, Mizuno Y, Yamamoto H, Takemura H. Feasibility of segmental resection in non-small-cell lung cancer with ground-glass opacity. Eur J Cardiothorac Surg. 2014;46(3):375–9 (discussion 9).PubMedCrossRef Iwata H, Shirahashi K, Mizuno Y, Yamamoto H, Takemura H. Feasibility of segmental resection in non-small-cell lung cancer with ground-glass opacity. Eur J Cardiothorac Surg. 2014;46(3):375–9 (discussion 9).PubMedCrossRef
5.
Zurück zum Zitat Pani E, Kennedy G, Zheng X, Ukert B, Jarrar D, Gaughan C, et al. Factors associated with nodal metastasis in 2-centimeter or less non-small cell lung cancer. J Thorac Cardiovasc Surg. 2020;159(3):1088-96.e1.PubMedCrossRef Pani E, Kennedy G, Zheng X, Ukert B, Jarrar D, Gaughan C, et al. Factors associated with nodal metastasis in 2-centimeter or less non-small cell lung cancer. J Thorac Cardiovasc Surg. 2020;159(3):1088-96.e1.PubMedCrossRef
6.
Zurück zum Zitat Yu X, Li Y, Shi C, Han B. Risk factors of lymph node metastasis in patients with non-small cell lung cancer ≤ 2 cm in size: a monocentric population-based analysis. Thorac Cancer. 2018;9(1):3–9.PubMedCrossRef Yu X, Li Y, Shi C, Han B. Risk factors of lymph node metastasis in patients with non-small cell lung cancer ≤ 2 cm in size: a monocentric population-based analysis. Thorac Cancer. 2018;9(1):3–9.PubMedCrossRef
7.
Zurück zum Zitat Higgins KA, Chino JP, Ready N, D’Amico TA, Berry MF, Sporn T, et al. Lymphovascular invasion in non-small-cell lung cancer: implications for staging and adjuvant therapy. J Thorac Oncol. 2012;7(7):1141–7.PubMedCrossRef Higgins KA, Chino JP, Ready N, D’Amico TA, Berry MF, Sporn T, et al. Lymphovascular invasion in non-small-cell lung cancer: implications for staging and adjuvant therapy. J Thorac Oncol. 2012;7(7):1141–7.PubMedCrossRef
8.
Zurück zum Zitat Gdeedo A, Van Schil P, Corthouts B, Van Mieghem F, Van Meerbeeck J, Van Marck E. Prospective evaluation of computed tomography and mediastinoscopy in mediastinal lymph node staging. Eur Respir J. 1997;10(7):1547–51.PubMedCrossRef Gdeedo A, Van Schil P, Corthouts B, Van Mieghem F, Van Meerbeeck J, Van Marck E. Prospective evaluation of computed tomography and mediastinoscopy in mediastinal lymph node staging. Eur Respir J. 1997;10(7):1547–51.PubMedCrossRef
9.
Zurück zum Zitat Gupta NC, Graeber GM, Bishop HA. Comparative efficacy of positron emission tomography with fluorodeoxyglucose in evaluation of small (<1 cm), intermediate (1 to 3 cm), and large (>3 cm) lymph node lesions. Chest. 2000;117(3):773–8.PubMedCrossRef Gupta NC, Graeber GM, Bishop HA. Comparative efficacy of positron emission tomography with fluorodeoxyglucose in evaluation of small (<1 cm), intermediate (1 to 3 cm), and large (>3 cm) lymph node lesions. Chest. 2000;117(3):773–8.PubMedCrossRef
10.
Zurück zum Zitat Prenzel KL, Mönig SP, Sinning JM, Baldus SE, Brochhagen HG, Schneider PM, et al. Lymph node size and metastatic infiltration in non-small cell lung cancer. Chest. 2003;123(2):463–7.PubMedCrossRef Prenzel KL, Mönig SP, Sinning JM, Baldus SE, Brochhagen HG, Schneider PM, et al. Lymph node size and metastatic infiltration in non-small cell lung cancer. Chest. 2003;123(2):463–7.PubMedCrossRef
11.
Zurück zum Zitat Sioris T, Järvenpää R, Kuukasjärvi P, Helin H, Saarelainen S, Tarkka M. Comparison of computed tomography and systematic lymph node dissection in determining TNM and stage in non-small cell lung cancer. Eur J Cardiothorac Surg. 2003;23(3):403–8.PubMedCrossRef Sioris T, Järvenpää R, Kuukasjärvi P, Helin H, Saarelainen S, Tarkka M. Comparison of computed tomography and systematic lymph node dissection in determining TNM and stage in non-small cell lung cancer. Eur J Cardiothorac Surg. 2003;23(3):403–8.PubMedCrossRef
12.
Zurück zum Zitat Steinert HC, Hauser M, Allemann F, Engel H, Berthold T, von Schulthess GK, et al. Non-small cell lung cancer: nodal staging with FDG PET versus CT with correlative lymph node mapping and sampling. Radiology. 1997;202(2):441–6.PubMedCrossRef Steinert HC, Hauser M, Allemann F, Engel H, Berthold T, von Schulthess GK, et al. Non-small cell lung cancer: nodal staging with FDG PET versus CT with correlative lymph node mapping and sampling. Radiology. 1997;202(2):441–6.PubMedCrossRef
13.
Zurück zum Zitat Hermens FH, Van Engelenburg TC, Visser FJ, Thunnissen FB, Termeer R, Janssen JP. Diagnostic yield of transbronchial histology needle aspiration in patients with mediastinal lymph node enlargement. Respiration. 2003;70(6):631–5.PubMedCrossRef Hermens FH, Van Engelenburg TC, Visser FJ, Thunnissen FB, Termeer R, Janssen JP. Diagnostic yield of transbronchial histology needle aspiration in patients with mediastinal lymph node enlargement. Respiration. 2003;70(6):631–5.PubMedCrossRef
14.
Zurück zum Zitat Annema JT, Veseliç M, Versteegh MI, Willems LN, Rabe KF. Mediastinal restaging: EUS-FNA offers a new perspective. Lung Cancer. 2003;42(3):311–8.PubMedCrossRef Annema JT, Veseliç M, Versteegh MI, Willems LN, Rabe KF. Mediastinal restaging: EUS-FNA offers a new perspective. Lung Cancer. 2003;42(3):311–8.PubMedCrossRef
15.
Zurück zum Zitat FreixinetGilart J, García PG, de Castro FR, Suárez PR, Rodríguez NS, de Ugarte AV. Extended cervical mediastinoscopy in the staging of bronchogenic carcinoma. Ann Thorac Surg. 2000;70(5):1641–3.CrossRef FreixinetGilart J, García PG, de Castro FR, Suárez PR, Rodríguez NS, de Ugarte AV. Extended cervical mediastinoscopy in the staging of bronchogenic carcinoma. Ann Thorac Surg. 2000;70(5):1641–3.CrossRef
16.
Zurück zum Zitat Boffa DJ, Kosinski AS, Paul S, Mitchell JD, Onaitis M. Lymph node evaluation by open or video-assisted approaches in 11,500 anatomic lung cancer resections. Ann Thorac Surg. 2012;94(2):347–53 (discussion 53).PubMedCrossRef Boffa DJ, Kosinski AS, Paul S, Mitchell JD, Onaitis M. Lymph node evaluation by open or video-assisted approaches in 11,500 anatomic lung cancer resections. Ann Thorac Surg. 2012;94(2):347–53 (discussion 53).PubMedCrossRef
17.
Zurück zum Zitat Ohtaki Y, Yoshida J, Ishii G, Aokage K, Hishida T, Nishimura M, et al. Prognostic significance of a solid component in pulmonary adenocarcinoma. Ann Thorac Surg. 2011;91(4):1051–7.PubMedCrossRef Ohtaki Y, Yoshida J, Ishii G, Aokage K, Hishida T, Nishimura M, et al. Prognostic significance of a solid component in pulmonary adenocarcinoma. Ann Thorac Surg. 2011;91(4):1051–7.PubMedCrossRef
18.
Zurück zum Zitat Nitadori J, Bograd AJ, Kadota K, Sima CS, Rizk NP, Morales EA, et al. Impact of micropapillary histologic subtype in selecting limited resection vs lobectomy for lung adenocarcinoma of 2cm or smaller. J Natl Cancer Inst. 2013;105(16):1212–20.PubMedPubMedCentralCrossRef Nitadori J, Bograd AJ, Kadota K, Sima CS, Rizk NP, Morales EA, et al. Impact of micropapillary histologic subtype in selecting limited resection vs lobectomy for lung adenocarcinoma of 2cm or smaller. J Natl Cancer Inst. 2013;105(16):1212–20.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Wu J, Chen J, Lv X, Yang Q, Yao S, Zhang D, et al. Clinical value of serum and exhaled breath condensate inflammatory factor IL-11 levels in non-small cell lung cancer: Clinical value of IL-11 in non-small cell lung cancer. Int J Biol Markers. 2021;36(2):64–76.PubMedCrossRef Wu J, Chen J, Lv X, Yang Q, Yao S, Zhang D, et al. Clinical value of serum and exhaled breath condensate inflammatory factor IL-11 levels in non-small cell lung cancer: Clinical value of IL-11 in non-small cell lung cancer. Int J Biol Markers. 2021;36(2):64–76.PubMedCrossRef
20.
Zurück zum Zitat Chen JL, Wu JN, Lv XD, Yang QC, Chen JR, Zhang DM. The value of red blood cell distribution width, neutrophil-to-lymphocyte ratio, and hemoglobin-to-red blood cell distribution width ratio in the progression of non-small cell lung cancer. PLoS ONE. 2020;15(8):e0237947.PubMedPubMedCentralCrossRef Chen JL, Wu JN, Lv XD, Yang QC, Chen JR, Zhang DM. The value of red blood cell distribution width, neutrophil-to-lymphocyte ratio, and hemoglobin-to-red blood cell distribution width ratio in the progression of non-small cell lung cancer. PLoS ONE. 2020;15(8):e0237947.PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Jiang C, Zhao M, Hou S, Hu X, Huang J, Wang H, et al. The indicative value of serum tumor markers for metastasis and stage of non-small cell lung cancer. Cancers (Basel). 2022;14(20):5064.PubMedCrossRef Jiang C, Zhao M, Hou S, Hu X, Huang J, Wang H, et al. The indicative value of serum tumor markers for metastasis and stage of non-small cell lung cancer. Cancers (Basel). 2022;14(20):5064.PubMedCrossRef
22.
Zurück zum Zitat Moon Y, Choi SY, Park JK, Lee KY. Risk factors for occult lymph node metastasis in peripheral non-small cell lung cancer with invasive component size 3 cm or less. World J Surg. 2020;44(5):1658–65.PubMedCrossRef Moon Y, Choi SY, Park JK, Lee KY. Risk factors for occult lymph node metastasis in peripheral non-small cell lung cancer with invasive component size 3 cm or less. World J Surg. 2020;44(5):1658–65.PubMedCrossRef
23.
Zurück zum Zitat Liu S, Wang R, Zhang Y, Li Y, Cheng C, Pan Y, et al. Precise diagnosis of intraoperative frozen section is an effective method to guide resection strategy for peripheral small-sized lung adenocarcinoma. J Clin Oncol. 2016;34(4):307–13.PubMedCrossRef Liu S, Wang R, Zhang Y, Li Y, Cheng C, Pan Y, et al. Precise diagnosis of intraoperative frozen section is an effective method to guide resection strategy for peripheral small-sized lung adenocarcinoma. J Clin Oncol. 2016;34(4):307–13.PubMedCrossRef
24.
Zurück zum Zitat Su H, Xie H, Dai C, Zhao S, Xie D, She Y, et al. Procedure-specific prognostic impact of micropapillary subtype may guide resection strategy in small-sized lung adenocarcinomas: a multicenter study. Ther Adv Med Oncol. 2020;12:1758835920937893.PubMedPubMedCentralCrossRef Su H, Xie H, Dai C, Zhao S, Xie D, She Y, et al. Procedure-specific prognostic impact of micropapillary subtype may guide resection strategy in small-sized lung adenocarcinomas: a multicenter study. Ther Adv Med Oncol. 2020;12:1758835920937893.PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Yeh YC, Nitadori J, Kadota K, Yoshizawa A, Rekhtman N, Moreira AL, et al. Using frozen section to identify histological patterns in stage I lung adenocarcinoma of ≤ 3 cm: accuracy and interobserver agreement. Histopathology. 2015;66(7):922–38.PubMedPubMedCentralCrossRef Yeh YC, Nitadori J, Kadota K, Yoshizawa A, Rekhtman N, Moreira AL, et al. Using frozen section to identify histological patterns in stage I lung adenocarcinoma of ≤ 3 cm: accuracy and interobserver agreement. Histopathology. 2015;66(7):922–38.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Koike T, Koike T, Yamato Y, Yoshiya K, Toyabe S. Predictive risk factors for mediastinal lymph node metastasis in clinical stage IA non-small-cell lung cancer patients. J Thorac Oncol. 2012;7(8):1246–51.PubMedCrossRef Koike T, Koike T, Yamato Y, Yoshiya K, Toyabe S. Predictive risk factors for mediastinal lymph node metastasis in clinical stage IA non-small-cell lung cancer patients. J Thorac Oncol. 2012;7(8):1246–51.PubMedCrossRef
27.
Zurück zum Zitat Ye B, Cheng M, Li W, Ge XX, Geng JF, Feng J, et al. Predictive factors for lymph node metastasis in clinical stage IA lung adenocarcinoma. Ann Thorac Surg. 2014;98(1):217–23.PubMedCrossRef Ye B, Cheng M, Li W, Ge XX, Geng JF, Feng J, et al. Predictive factors for lymph node metastasis in clinical stage IA lung adenocarcinoma. Ann Thorac Surg. 2014;98(1):217–23.PubMedCrossRef
28.
Zurück zum Zitat Kanzaki R, Higashiyama M, Fujiwara A, Tokunaga T, Maeda J, Okami J, et al. Occult mediastinal lymph node metastasis in NSCLC patients diagnosed as clinical N0–1 by preoperative integrated FDG-PET/CT and CT: Risk factors, pattern, and histopathological study. Lung Cancer. 2011;71(3):333–7.PubMedCrossRef Kanzaki R, Higashiyama M, Fujiwara A, Tokunaga T, Maeda J, Okami J, et al. Occult mediastinal lymph node metastasis in NSCLC patients diagnosed as clinical N0–1 by preoperative integrated FDG-PET/CT and CT: Risk factors, pattern, and histopathological study. Lung Cancer. 2011;71(3):333–7.PubMedCrossRef
29.
Zurück zum Zitat Farjah F, Lou F, Sima C, Rusch VW, Rizk NP. A prediction model for pathologic N2 disease in lung cancer patients with a negative mediastinum by positron emission tomography. J Thorac Oncol. 2013;8(9):1170–80.PubMedCrossRef Farjah F, Lou F, Sima C, Rusch VW, Rizk NP. A prediction model for pathologic N2 disease in lung cancer patients with a negative mediastinum by positron emission tomography. J Thorac Oncol. 2013;8(9):1170–80.PubMedCrossRef
30.
Zurück zum Zitat Goksel S, Ozcelik N, Telatar G, Ardic C. The role of hematological inflammatory biomarkers in the diagnosis of lung cancer and in predicting TNM stage. Cancer Invest. 2021;39(6–7):514–20.PubMedCrossRef Goksel S, Ozcelik N, Telatar G, Ardic C. The role of hematological inflammatory biomarkers in the diagnosis of lung cancer and in predicting TNM stage. Cancer Invest. 2021;39(6–7):514–20.PubMedCrossRef
31.
Zurück zum Zitat Xu F, Xu P, Cui W, Gong W, Wei Y, Liu B, et al. Neutrophil-to-lymphocyte and platelet-to-lymphocyte ratios may aid in identifying patients with non-small cell lung cancer and predicting Tumor-Node-Metastasis stages. Oncol Lett. 2018;16(1):483–90.PubMedPubMedCentral Xu F, Xu P, Cui W, Gong W, Wei Y, Liu B, et al. Neutrophil-to-lymphocyte and platelet-to-lymphocyte ratios may aid in identifying patients with non-small cell lung cancer and predicting Tumor-Node-Metastasis stages. Oncol Lett. 2018;16(1):483–90.PubMedPubMedCentral
32.
Zurück zum Zitat Yip R, Li K, Liu L, Xu D, Tam K, Yankelevitz DF, et al. Controversies on lung cancers manifesting as part-solid nodules. Eur Radiol. 2018;28(2):747–59.PubMedCrossRef Yip R, Li K, Liu L, Xu D, Tam K, Yankelevitz DF, et al. Controversies on lung cancers manifesting as part-solid nodules. Eur Radiol. 2018;28(2):747–59.PubMedCrossRef
33.
Zurück zum Zitat Travis WD, Brambilla E, Noguchi M, Nicholson AG, Geisinger K, Yatabe Y, et al. International association for the study of lung cancer/American Thoracic Society/European Respiratory Society: international multidisciplinary classification of lung adenocarcinoma: executive summary. Proc Am Thorac Soc. 2011;8(5):381–5.PubMedCrossRef Travis WD, Brambilla E, Noguchi M, Nicholson AG, Geisinger K, Yatabe Y, et al. International association for the study of lung cancer/American Thoracic Society/European Respiratory Society: international multidisciplinary classification of lung adenocarcinoma: executive summary. Proc Am Thorac Soc. 2011;8(5):381–5.PubMedCrossRef
34.
Zurück zum Zitat Obuchowski NA, Bullen JA. Receiver operating characteristic (ROC) curves: review of methods with applications in diagnostic medicine. Phys Med Biol. 2018;63(7):07tr1.CrossRef Obuchowski NA, Bullen JA. Receiver operating characteristic (ROC) curves: review of methods with applications in diagnostic medicine. Phys Med Biol. 2018;63(7):07tr1.CrossRef
35.
Zurück zum Zitat Nattino G, Pennell ML, Lemeshow S. Assessing the goodness of fit of logistic regression models in large samples: a modification of the Hosmer-Lemeshow test. Biometrics. 2020;76(2):549–60.PubMedCrossRef Nattino G, Pennell ML, Lemeshow S. Assessing the goodness of fit of logistic regression models in large samples: a modification of the Hosmer-Lemeshow test. Biometrics. 2020;76(2):549–60.PubMedCrossRef
36.
Zurück zum Zitat Rosenfeld JP, Donchin E. Resampling (bootstrapping) the mean: a definite do. Psychophysiology. 2015;52(7):969–72.PubMedCrossRef Rosenfeld JP, Donchin E. Resampling (bootstrapping) the mean: a definite do. Psychophysiology. 2015;52(7):969–72.PubMedCrossRef
38.
Zurück zum Zitat Huang L, Li W, Zhao L, Li B, Chai Y. Risk factors of lymph node metastasis in lung squamous cell carcinoma of 3 cm or less in diameter. Medicine (Baltimore). 2017;96(29):e7563.PubMedCrossRef Huang L, Li W, Zhao L, Li B, Chai Y. Risk factors of lymph node metastasis in lung squamous cell carcinoma of 3 cm or less in diameter. Medicine (Baltimore). 2017;96(29):e7563.PubMedCrossRef
39.
Zurück zum Zitat Haruki T, Wakahara M, Matsuoka Y, Miwa K, Araki K, Taniguchi Y, et al. Clinicopathological characteristics of lung adenocarcinoma with unexpected lymph node metastasis. Ann Thorac Cardiovasc Surg. 2017;23(4):181–7.PubMedPubMedCentralCrossRef Haruki T, Wakahara M, Matsuoka Y, Miwa K, Araki K, Taniguchi Y, et al. Clinicopathological characteristics of lung adenocarcinoma with unexpected lymph node metastasis. Ann Thorac Cardiovasc Surg. 2017;23(4):181–7.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Xia W, Wang A, Jin M, Mao Q, Xia W, Dong G, et al. Young age increases risk for lymph node positivity but decreases risk for non-small cell lung cancer death. Cancer Manag Res. 2018;10:41–8.PubMedPubMedCentralCrossRef Xia W, Wang A, Jin M, Mao Q, Xia W, Dong G, et al. Young age increases risk for lymph node positivity but decreases risk for non-small cell lung cancer death. Cancer Manag Res. 2018;10:41–8.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Chen B, Wang X, Yu X, Xia WJ, Zhao H, Li XF, et al. Lymph node metastasis in Chinese patients with clinical T1 non-small cell lung cancer: A multicenter real-world observational study. Thorac Cancer. 2019;10(3):533–42.PubMedPubMedCentralCrossRef Chen B, Wang X, Yu X, Xia WJ, Zhao H, Li XF, et al. Lymph node metastasis in Chinese patients with clinical T1 non-small cell lung cancer: A multicenter real-world observational study. Thorac Cancer. 2019;10(3):533–42.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Shafazand S, Gould MK. A clinical prediction rule to estimate the probability of mediastinal metastasis in patients with non-small cell lung cancer. J Thorac Oncol. 2006;1(9):953–9.PubMedCrossRef Shafazand S, Gould MK. A clinical prediction rule to estimate the probability of mediastinal metastasis in patients with non-small cell lung cancer. J Thorac Oncol. 2006;1(9):953–9.PubMedCrossRef
43.
Zurück zum Zitat Zhang Y, Sun Y, Xiang J, Zhang Y, Hu H, Chen H. A prediction model for N2 disease in T1 non-small cell lung cancer. J Thorac Cardiovasc Surg. 2012;144(6):1360–4.PubMedCrossRef Zhang Y, Sun Y, Xiang J, Zhang Y, Hu H, Chen H. A prediction model for N2 disease in T1 non-small cell lung cancer. J Thorac Cardiovasc Surg. 2012;144(6):1360–4.PubMedCrossRef
44.
Zurück zum Zitat Zhang Y, Sun Y, Shen L, Li Y, Xiang J, Zhang Y, et al. Predictive factors of lymph node status in small peripheral non-small cell lung cancers: tumor histology is more reliable. Ann Surg Oncol. 2013;20(6):1949–54.PubMedCrossRef Zhang Y, Sun Y, Shen L, Li Y, Xiang J, Zhang Y, et al. Predictive factors of lymph node status in small peripheral non-small cell lung cancers: tumor histology is more reliable. Ann Surg Oncol. 2013;20(6):1949–54.PubMedCrossRef
45.
Zurück zum Zitat Li X, Zhang H, Xing L, Xu X, Xie P, Ma H, et al. Predictive value of primary fluorine-18 fluorodeoxyglucose standard uptake value for a better choice of systematic nodal dissection or sampling in clinical stage ia non–small-cell lung cancer. Clin Lung Cancer. 2013;14(5):568–73.PubMedCrossRef Li X, Zhang H, Xing L, Xu X, Xie P, Ma H, et al. Predictive value of primary fluorine-18 fluorodeoxyglucose standard uptake value for a better choice of systematic nodal dissection or sampling in clinical stage ia non–small-cell lung cancer. Clin Lung Cancer. 2013;14(5):568–73.PubMedCrossRef
46.
Zurück zum Zitat Sakao Y, Nakazono T, Sakuragi T, Natsuaki M, Itoh T. Predictive factors for survival in surgically resected clinical IA peripheral adenocarcinoma of the lung. Ann Thorac Surg. 2004;77(4):1157–61 (discussion 61-2).PubMedCrossRef Sakao Y, Nakazono T, Sakuragi T, Natsuaki M, Itoh T. Predictive factors for survival in surgically resected clinical IA peripheral adenocarcinoma of the lung. Ann Thorac Surg. 2004;77(4):1157–61 (discussion 61-2).PubMedCrossRef
47.
Zurück zum Zitat Yanagitani N, Kaira K, Sunaga N, Naito Y, Koike Y, Ishihara S, et al. Serum amylase is a sensitive tumor marker for amylase-producing small cell lung cancer? Int J Clin Oncol. 2007;12(3):231–3.PubMedCrossRef Yanagitani N, Kaira K, Sunaga N, Naito Y, Koike Y, Ishihara S, et al. Serum amylase is a sensitive tumor marker for amylase-producing small cell lung cancer? Int J Clin Oncol. 2007;12(3):231–3.PubMedCrossRef
48.
Zurück zum Zitat Minami S, Komuta K, Asai M. A case of amylase-producing lung cancer. Nihon Kokyuki Gakkai Zasshi. 2003;41(10):717–21.PubMed Minami S, Komuta K, Asai M. A case of amylase-producing lung cancer. Nihon Kokyuki Gakkai Zasshi. 2003;41(10):717–21.PubMed
49.
Zurück zum Zitat Tsukawaki M, Izawa M, Yoshida M, Araki N, Hashiba Y, Nakagawa H, et al. A case of amylase-producing lung cancer. Intern Med. 1992;31(1):60–3.PubMedCrossRef Tsukawaki M, Izawa M, Yoshida M, Araki N, Hashiba Y, Nakagawa H, et al. A case of amylase-producing lung cancer. Intern Med. 1992;31(1):60–3.PubMedCrossRef
50.
Zurück zum Zitat Zhu J, Xu WG, Xiao H, Zhou Y. Application of a radiomics model for preding lymph node metastasis in non-small cell lung cancer. Sichuan Da Xue Xue Bao Yi Xue Ban. 2019;50(3):373–8.PubMed Zhu J, Xu WG, Xiao H, Zhou Y. Application of a radiomics model for preding lymph node metastasis in non-small cell lung cancer. Sichuan Da Xue Xue Bao Yi Xue Ban. 2019;50(3):373–8.PubMed
51.
Zurück zum Zitat Liang Z, Wang HF, Wu AZ, Cai JH. Clinical value of multi-tumor markers protein biochip in the diagnosis of pulmonary carcinoma. Nan Fang Yi Ke Da Xue Xue Bao. 2010;30(11):2516–8.PubMed Liang Z, Wang HF, Wu AZ, Cai JH. Clinical value of multi-tumor markers protein biochip in the diagnosis of pulmonary carcinoma. Nan Fang Yi Ke Da Xue Xue Bao. 2010;30(11):2516–8.PubMed
52.
Zurück zum Zitat Consorti F, Lorenzotti A, Midiri G, Di Paola M. Prognostic significance of mucinous carcinoma of colon and rectum: a prospective case-control study. J Surg Oncol. 2000;73(2):70–4.PubMedCrossRef Consorti F, Lorenzotti A, Midiri G, Di Paola M. Prognostic significance of mucinous carcinoma of colon and rectum: a prospective case-control study. J Surg Oncol. 2000;73(2):70–4.PubMedCrossRef
53.
Zurück zum Zitat Enciu M, Aşchie M, Deacu M, Poinăreanu I. Morphological characteristics of a mucinous adenocarcinoma of the prostate: differential diagnosis considerations. Rom J Morphol Embryol. 2013;54(1):191–4.PubMed Enciu M, Aşchie M, Deacu M, Poinăreanu I. Morphological characteristics of a mucinous adenocarcinoma of the prostate: differential diagnosis considerations. Rom J Morphol Embryol. 2013;54(1):191–4.PubMed
54.
Zurück zum Zitat Kunisaki C, Akiyama H, Nomura M, Matsuda G, Otsuka Y, Ono HA, et al. Clinicopathologic characteristics and surgical outcomes of mucinous gastric carcinoma. Ann Surg Oncol. 2006;13(6):836–42.PubMedCrossRef Kunisaki C, Akiyama H, Nomura M, Matsuda G, Otsuka Y, Ono HA, et al. Clinicopathologic characteristics and surgical outcomes of mucinous gastric carcinoma. Ann Surg Oncol. 2006;13(6):836–42.PubMedCrossRef
55.
Zurück zum Zitat Kawamura H, Kondo Y, Osawa S, Nisida Y, Okada K, Isizu H, et al. A clinicopathologic study of mucinous adenocarcinoma of the stomach. Gastric Cancer. 2001;4(2):83–6.PubMedCrossRef Kawamura H, Kondo Y, Osawa S, Nisida Y, Okada K, Isizu H, et al. A clinicopathologic study of mucinous adenocarcinoma of the stomach. Gastric Cancer. 2001;4(2):83–6.PubMedCrossRef
56.
Zurück zum Zitat Beatty PL, Narayanan S, Gariépy J, Ranganathan S, Finn OJ. Vaccine against MUC1 antigen expressed in inflammatory bowel disease and cancer lessens colonic inflammation and prevents progression to colitis-associated colon cancer. Cancer Prev Res (Phila). 2010;3(4):438–46.PubMedCrossRef Beatty PL, Narayanan S, Gariépy J, Ranganathan S, Finn OJ. Vaccine against MUC1 antigen expressed in inflammatory bowel disease and cancer lessens colonic inflammation and prevents progression to colitis-associated colon cancer. Cancer Prev Res (Phila). 2010;3(4):438–46.PubMedCrossRef
57.
Zurück zum Zitat Travis WD, Brambilla E, Noguchi M, Nicholson AG, Geisinger KR, Yatabe Y, et al. International association for the study of lung cancer/american thoracic society/european respiratory society international multidisciplinary classification of lung adenocarcinoma. J Thorac Oncol. 2011;6(2):244–85.PubMedPubMedCentralCrossRef Travis WD, Brambilla E, Noguchi M, Nicholson AG, Geisinger KR, Yatabe Y, et al. International association for the study of lung cancer/american thoracic society/european respiratory society international multidisciplinary classification of lung adenocarcinoma. J Thorac Oncol. 2011;6(2):244–85.PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Travis WD, Brambilla E, Riely GJ. New pathologic classification of lung cancer: relevance for clinical practice and clinical trials. J Clin Oncol. 2013;31(8):992–1001.PubMedCrossRef Travis WD, Brambilla E, Riely GJ. New pathologic classification of lung cancer: relevance for clinical practice and clinical trials. J Clin Oncol. 2013;31(8):992–1001.PubMedCrossRef
59.
Zurück zum Zitat Cadranel J, Quoix E, Baudrin L, Mourlanette P, Moro-Sibilot D, Morere JF, et al. IFCT-0401 Trial: a phase II study of gefitinib administered as first-line treatment in advanced adenocarcinoma with bronchioloalveolar carcinoma subtype. J Thorac Oncol. 2009;4(9):1126–35.PubMedCrossRef Cadranel J, Quoix E, Baudrin L, Mourlanette P, Moro-Sibilot D, Morere JF, et al. IFCT-0401 Trial: a phase II study of gefitinib administered as first-line treatment in advanced adenocarcinoma with bronchioloalveolar carcinoma subtype. J Thorac Oncol. 2009;4(9):1126–35.PubMedCrossRef
60.
Zurück zum Zitat Russell PA, Wainer Z, Wright GM, Daniels M, Conron M, Williams RA. Does lung adenocarcinoma subtype predict patient survival?: a clinicopathologic study based on the new International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society international multidisciplinary lung adenocarcinoma classification. J Thorac Oncol. 2011;6(9):1496–504.PubMedCrossRef Russell PA, Wainer Z, Wright GM, Daniels M, Conron M, Williams RA. Does lung adenocarcinoma subtype predict patient survival?: a clinicopathologic study based on the new International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society international multidisciplinary lung adenocarcinoma classification. J Thorac Oncol. 2011;6(9):1496–504.PubMedCrossRef
61.
Zurück zum Zitat Lee HY, Cha MJ, Lee KS, Lee HY, Kwon OJ, Choi JY, et al. Prognosis in resected invasive mucinous adenocarcinomas of the lung: related factors and comparison with resected nonmucinous adenocarcinomas. J Thorac Oncol. 2016;11(7):1064–73.PubMedCrossRef Lee HY, Cha MJ, Lee KS, Lee HY, Kwon OJ, Choi JY, et al. Prognosis in resected invasive mucinous adenocarcinomas of the lung: related factors and comparison with resected nonmucinous adenocarcinomas. J Thorac Oncol. 2016;11(7):1064–73.PubMedCrossRef
62.
Zurück zum Zitat Kadota K, Yeh YC, D’Angelo SP, Moreira AL, Kuk D, Sima CS, et al. Associations between mutations and histologic patterns of mucin in lung adenocarcinoma: invasive mucinous pattern and extracellular mucin are associated with KRAS mutation. Am J Surg Pathol. 2014;38(8):1118–27.PubMedPubMedCentralCrossRef Kadota K, Yeh YC, D’Angelo SP, Moreira AL, Kuk D, Sima CS, et al. Associations between mutations and histologic patterns of mucin in lung adenocarcinoma: invasive mucinous pattern and extracellular mucin are associated with KRAS mutation. Am J Surg Pathol. 2014;38(8):1118–27.PubMedPubMedCentralCrossRef
63.
Zurück zum Zitat Kakegawa S, Shimizu K, Sugano M, Miyamae Y, Kaira K, Araki T, et al. Clinicopathological features of lung adenocarcinoma with KRAS mutations. Cancer. 2011;117(18):4257–66.PubMedCrossRef Kakegawa S, Shimizu K, Sugano M, Miyamae Y, Kaira K, Araki T, et al. Clinicopathological features of lung adenocarcinoma with KRAS mutations. Cancer. 2011;117(18):4257–66.PubMedCrossRef
64.
Zurück zum Zitat Pang Z, Liu H, Chen Z, Zhu L. Establishment and validation of a novel nomogram for predicting distant metastasis in patients with invasive lung adenocarcinoma. J Coll Physicians Surg Pak. 2022;32(12):1563–9.PubMedCrossRef Pang Z, Liu H, Chen Z, Zhu L. Establishment and validation of a novel nomogram for predicting distant metastasis in patients with invasive lung adenocarcinoma. J Coll Physicians Surg Pak. 2022;32(12):1563–9.PubMedCrossRef
65.
Zurück zum Zitat Tatnell PJ, Powell DJ, Hill J, Smith TS, Tew DG, Kay J. Napsins: new human aspartic proteinases. Distinction between two closely related genes. FEBS Lett. 1998;441(1):43–8.PubMedCrossRef Tatnell PJ, Powell DJ, Hill J, Smith TS, Tew DG, Kay J. Napsins: new human aspartic proteinases. Distinction between two closely related genes. FEBS Lett. 1998;441(1):43–8.PubMedCrossRef
66.
Zurück zum Zitat Mori K, Kon Y, Konno A, Iwanaga T. Cellular distribution of napsin (kidney-derived aspartic protease-like protein, KAP) mRNA in the kidney, lung and lymphatic organs of adult and developing mice. Arch Histol Cytol. 2001;64(3):319–27.PubMedCrossRef Mori K, Kon Y, Konno A, Iwanaga T. Cellular distribution of napsin (kidney-derived aspartic protease-like protein, KAP) mRNA in the kidney, lung and lymphatic organs of adult and developing mice. Arch Histol Cytol. 2001;64(3):319–27.PubMedCrossRef
67.
Zurück zum Zitat Bishop JA, Sharma R, Illei PB. Napsin A and thyroid transcription factor-1 expression in carcinomas of the lung, breast, pancreas, colon, kidney, thyroid, and malignant mesothelioma. Hum Pathol. 2010;41(1):20–5.PubMedCrossRef Bishop JA, Sharma R, Illei PB. Napsin A and thyroid transcription factor-1 expression in carcinomas of the lung, breast, pancreas, colon, kidney, thyroid, and malignant mesothelioma. Hum Pathol. 2010;41(1):20–5.PubMedCrossRef
68.
Zurück zum Zitat Ueno T, Linder S, Elmberger G. Aspartic proteinase napsin is a useful marker for diagnosis of primary lung adenocarcinoma. Br J Cancer. 2003;88(8):1229–33.PubMedPubMedCentralCrossRef Ueno T, Linder S, Elmberger G. Aspartic proteinase napsin is a useful marker for diagnosis of primary lung adenocarcinoma. Br J Cancer. 2003;88(8):1229–33.PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Stoll LM, Johnson MW, Gabrielson E, Askin F, Clark DP, Li QK. The utility of napsin-A in the identification of primary and metastatic lung adenocarcinoma among cytologically poorly differentiated carcinomas. Cancer Cytopathol. 2010;118(6):441–9.PubMedCrossRef Stoll LM, Johnson MW, Gabrielson E, Askin F, Clark DP, Li QK. The utility of napsin-A in the identification of primary and metastatic lung adenocarcinoma among cytologically poorly differentiated carcinomas. Cancer Cytopathol. 2010;118(6):441–9.PubMedCrossRef
70.
Zurück zum Zitat Turner BM, Cagle PT, Sainz IM, Fukuoka J, Shen SS, Jagirdar J. Napsin A, a new marker for lung adenocarcinoma, is complementary and more sensitive and specific than thyroid transcription factor 1 in the differential diagnosis of primary pulmonary carcinoma: evaluation of 1674 cases by tissue microarray. Arch Pathol Lab Med. 2012;136(2):163–71.PubMedCrossRef Turner BM, Cagle PT, Sainz IM, Fukuoka J, Shen SS, Jagirdar J. Napsin A, a new marker for lung adenocarcinoma, is complementary and more sensitive and specific than thyroid transcription factor 1 in the differential diagnosis of primary pulmonary carcinoma: evaluation of 1674 cases by tissue microarray. Arch Pathol Lab Med. 2012;136(2):163–71.PubMedCrossRef
71.
Zurück zum Zitat Agackiran Y, Ozcan A, Akyurek N, Memis L, Findik G, Kaya S. Desmoglein-3 and Napsin A double stain, a useful immunohistochemical marker for differentiation of lung squamous cell carcinoma and adenocarcinoma from other subtypes. Appl Immunohistochem Mol Morphol. 2012;20(4):350–5.PubMedCrossRef Agackiran Y, Ozcan A, Akyurek N, Memis L, Findik G, Kaya S. Desmoglein-3 and Napsin A double stain, a useful immunohistochemical marker for differentiation of lung squamous cell carcinoma and adenocarcinoma from other subtypes. Appl Immunohistochem Mol Morphol. 2012;20(4):350–5.PubMedCrossRef
72.
Zurück zum Zitat Camilo R, Capelozzi VL, Siqueira SA, Del Carlo BF. Expression of p63, keratin 5/6, keratin 7, and surfactant-A in non-small cell lung carcinomas. Hum Pathol. 2006;37(5):542–6.PubMedCrossRef Camilo R, Capelozzi VL, Siqueira SA, Del Carlo BF. Expression of p63, keratin 5/6, keratin 7, and surfactant-A in non-small cell lung carcinomas. Hum Pathol. 2006;37(5):542–6.PubMedCrossRef
73.
Zurück zum Zitat Downey P, Cummins R, Moran M, Gulmann C. If it’s not CK5/6 positive, TTF-1 negative it’s not a squamous cell carcinoma of lung. APMIS. 2008;116(6):526–9.PubMedCrossRef Downey P, Cummins R, Moran M, Gulmann C. If it’s not CK5/6 positive, TTF-1 negative it’s not a squamous cell carcinoma of lung. APMIS. 2008;116(6):526–9.PubMedCrossRef
74.
Zurück zum Zitat Loo PS, Thomas SC, Nicolson MC, Fyfe MN, Kerr KM. Subtyping of undifferentiated non-small cell carcinomas in bronchial biopsy specimens. J Thorac Oncol. 2010;5(4):442–7.PubMedCrossRef Loo PS, Thomas SC, Nicolson MC, Fyfe MN, Kerr KM. Subtyping of undifferentiated non-small cell carcinomas in bronchial biopsy specimens. J Thorac Oncol. 2010;5(4):442–7.PubMedCrossRef
Metadaten
Titel
The role of adenocarcinoma subtypes and immunohistochemistry in predicting lymph node metastasis in early invasive lung adenocarcinoma
verfasst von
Mengchao Xue
Junjie Liu
Zhenyi Li
Ming Lu
Huiying Zhang
Wen Liu
Hui Tian
Publikationsdatum
01.12.2024
Verlag
BioMed Central
Erschienen in
BMC Cancer / Ausgabe 1/2024
Elektronische ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-024-11843-4

Weitere Artikel der Ausgabe 1/2024

BMC Cancer 1/2024 Zur Ausgabe

„Überwältigende“ Evidenz für Tripeltherapie beim metastasierten Prostata-Ca.

22.05.2024 Prostatakarzinom Nachrichten

Patienten mit metastasiertem hormonsensitivem Prostatakarzinom sollten nicht mehr mit einer alleinigen Androgendeprivationstherapie (ADT) behandelt werden, mahnt ein US-Team nach Sichtung der aktuellen Datenlage. Mit einer Tripeltherapie haben die Betroffenen offenbar die besten Überlebenschancen.

So sicher sind Tattoos: Neue Daten zur Risikobewertung

22.05.2024 Melanom Nachrichten

Das größte medizinische Problem bei Tattoos bleiben allergische Reaktionen. Melanome werden dadurch offensichtlich nicht gefördert, die Farbpigmente könnten aber andere Tumoren begünstigen.

CAR-M-Zellen: Warten auf das große Fressen

22.05.2024 Onkologische Immuntherapie Nachrichten

Auch myeloide Immunzellen lassen sich mit chimären Antigenrezeptoren gegen Tumoren ausstatten. Solche CAR-Fresszell-Therapien werden jetzt für solide Tumoren entwickelt. Künftig soll dieser Prozess nicht mehr ex vivo, sondern per mRNA im Körper der Betroffenen erfolgen.

Blutdrucksenkung könnte Uterusmyome verhindern

Frauen mit unbehandelter oder neu auftretender Hypertonie haben ein deutlich erhöhtes Risiko für Uterusmyome. Eine Therapie mit Antihypertensiva geht hingegen mit einer verringerten Inzidenz der gutartigen Tumoren einher.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.