Skip to main content
Erschienen in: Inflammation 4/2018

14.04.2018 | REVIEW

The Role of Adenosine Receptor Activation in Attenuating Cartilaginous Inflammation

verfasst von: Jonathan M. Bekisz, Christopher D. Lopez, Carmen Corciulo, Aranzazu Mediero, Paulo G. Coelho, Lukasz Witek, Roberto L. Flores, Bruce N. Cronstein

Erschienen in: Inflammation | Ausgabe 4/2018

Einloggen, um Zugang zu erhalten

Abstract

Adenosine receptor activation has been explored as a modulator of the inflammatory process that propagates osteoarthritis. It has been reported that cartilage has enhanced regenerative potential when influenced by adenosine receptor activation. As adenosine’s role in maintaining chondrocyte homeostasis at the cellular and molecular levels is explored, successful in vivo applications of adenosine delivery for cartilage repair continue to be reported. This review summarizes the role adenosine receptor ligation plays in chondrocyte homeostasis and regeneration of articular cartilage damaged in osteoarthritis. It also reports on all the modalities reported for delivery of adenosine through in vivo applications.
Literatur
1.
Zurück zum Zitat Haskó, G., and B.N. Cronstein. 2004. Adenosine: An endogenous regulator of innate immunity. Trends in Immunology 25: 33–39.CrossRefPubMed Haskó, G., and B.N. Cronstein. 2004. Adenosine: An endogenous regulator of innate immunity. Trends in Immunology 25: 33–39.CrossRefPubMed
2.
Zurück zum Zitat Haskó, G., P. Pacher, E.A. Deitch, and S.E. Vizi. 2007. Shaping of monocyte and macrophage function by adenosine receptors. Pharmacology & Therapeutics 113: 264–275.CrossRef Haskó, G., P. Pacher, E.A. Deitch, and S.E. Vizi. 2007. Shaping of monocyte and macrophage function by adenosine receptors. Pharmacology & Therapeutics 113: 264–275.CrossRef
3.
Zurück zum Zitat Hall, B.K., and T. Miyake. 2004. Divide, accumulate, differentiate: cell condensation in skeletal development revisited. International Journal of Developmental Biology 39(6): 881–93. Hall, B.K., and T. Miyake. 2004. Divide, accumulate, differentiate: cell condensation in skeletal development revisited. International Journal of Developmental Biology 39(6): 881–93.
4.
Zurück zum Zitat Borea, P.A., S. Gessi, S. Merighi, and K. Varani. 2016. Adenosine as a multi-signalling guardian angel in human diseases: When, where and how does it exert its protective effects? Trends in Pharmacological Sciences 37: 419–434.CrossRefPubMed Borea, P.A., S. Gessi, S. Merighi, and K. Varani. 2016. Adenosine as a multi-signalling guardian angel in human diseases: When, where and how does it exert its protective effects? Trends in Pharmacological Sciences 37: 419–434.CrossRefPubMed
5.
Zurück zum Zitat Wuelling, M., and A. Vortkamp. 2010. Transcriptional networks controlling chondrocyte proliferation and differentiation during endochondral ossification. Pediatric Nephrology 25: 625–631.CrossRefPubMed Wuelling, M., and A. Vortkamp. 2010. Transcriptional networks controlling chondrocyte proliferation and differentiation during endochondral ossification. Pediatric Nephrology 25: 625–631.CrossRefPubMed
6.
Zurück zum Zitat Ohta, A., and M. Sitkovsky. 2001. Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature 414: 916–920.CrossRefPubMed Ohta, A., and M. Sitkovsky. 2001. Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature 414: 916–920.CrossRefPubMed
7.
Zurück zum Zitat Borea, P.A., S. Gessi, S. Merighi, F. Vincenzi, and K. Varani. 2017. Pathological overproduction: The bad side of adenosine. British Journal of Pharmacology 174: 1945–1960.CrossRefPubMedPubMedCentral Borea, P.A., S. Gessi, S. Merighi, F. Vincenzi, and K. Varani. 2017. Pathological overproduction: The bad side of adenosine. British Journal of Pharmacology 174: 1945–1960.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Cekic, C., and J. Linden. 2016. Purinergic regulation of the immune system. Nature Reviews. Immunology 16: 177–192.CrossRefPubMed Cekic, C., and J. Linden. 2016. Purinergic regulation of the immune system. Nature Reviews. Immunology 16: 177–192.CrossRefPubMed
9.
Zurück zum Zitat Koszalka, P., M. Golunska, A. Urban, G. Stasilojc, M. Stanislawowski, M. Majewski, A.C. Skladanowski, and J. Bigda. 2016. Specific activation of A3, A2A and A1 adenosine receptors in CD73-knockout mice affects B16F10 melanoma growth, neovascularization, angiogenesis and macrophage infiltration. PLoS One 11: e0151420.CrossRefPubMedPubMedCentral Koszalka, P., M. Golunska, A. Urban, G. Stasilojc, M. Stanislawowski, M. Majewski, A.C. Skladanowski, and J. Bigda. 2016. Specific activation of A3, A2A and A1 adenosine receptors in CD73-knockout mice affects B16F10 melanoma growth, neovascularization, angiogenesis and macrophage infiltration. PLoS One 11: e0151420.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Zhou, Y., D.J. Schneider, E. Morschl, L. Song, M. Pedroza, H. Karmouty-Quintana, T. Le, C.X. Sun, and M.R. Blackburn. 2011. Distinct roles for the A2B adenosine receptor in acute and chronic stages of bleomycin-induced lung injury. Journal of Immunology 186: 1097–1106.CrossRef Zhou, Y., D.J. Schneider, E. Morschl, L. Song, M. Pedroza, H. Karmouty-Quintana, T. Le, C.X. Sun, and M.R. Blackburn. 2011. Distinct roles for the A2B adenosine receptor in acute and chronic stages of bleomycin-induced lung injury. Journal of Immunology 186: 1097–1106.CrossRef
11.
Zurück zum Zitat Rudich, N., O. Dekel, and R. Sagi-Eisenberg. 2015. Down-regulation of the A3 adenosine receptor in human mast cells upregulates mediators of angiogenesis and remodeling. Molecular Immunology 65: 25–33.CrossRefPubMed Rudich, N., O. Dekel, and R. Sagi-Eisenberg. 2015. Down-regulation of the A3 adenosine receptor in human mast cells upregulates mediators of angiogenesis and remodeling. Molecular Immunology 65: 25–33.CrossRefPubMed
12.
Zurück zum Zitat Kolachala, V., B. Ruble, M. Vijay-Kumar, L. Wang, S. Mwangi, H. Figler, R. Figler, S. Srinivasan, A. Gewirtz, J. Linden, D. Merlin, and S. Sitaraman. 2008. Blockade of adenosine A2B receptors ameliorates murine colitis. British Journal de Pharmacologie 155: 127–137.CrossRef Kolachala, V., B. Ruble, M. Vijay-Kumar, L. Wang, S. Mwangi, H. Figler, R. Figler, S. Srinivasan, A. Gewirtz, J. Linden, D. Merlin, and S. Sitaraman. 2008. Blockade of adenosine A2B receptors ameliorates murine colitis. British Journal de Pharmacologie 155: 127–137.CrossRef
13.
Zurück zum Zitat Kolachala, V.L., M. Vijay-Kumar, G. Dalmasso, D. Yang, J. Linden, L. Wang, A. Gewirtz, K. Ravid, D. Merlin, and S.V. Sitaraman. 2008. A2B adenosine receptor gene deletion attenuates murine colitis. Gastroenterology 135: 861–870.CrossRefPubMed Kolachala, V.L., M. Vijay-Kumar, G. Dalmasso, D. Yang, J. Linden, L. Wang, A. Gewirtz, K. Ravid, D. Merlin, and S.V. Sitaraman. 2008. A2B adenosine receptor gene deletion attenuates murine colitis. Gastroenterology 135: 861–870.CrossRefPubMed
14.
Zurück zum Zitat Ingersoll, S.A., H. Laroui, V.L. Kolachala, L. Wang, P. Garg, T.L. Denning, A.T. Gewirtz, D. Merlin, and S.V. Sitaraman. 2012. A((2)B)AR expression in non-immune cells plays an important role in the development of murine colitis. Digestive and Liver Disease 44: 819–826.CrossRefPubMedPubMedCentral Ingersoll, S.A., H. Laroui, V.L. Kolachala, L. Wang, P. Garg, T.L. Denning, A.T. Gewirtz, D. Merlin, and S.V. Sitaraman. 2012. A((2)B)AR expression in non-immune cells plays an important role in the development of murine colitis. Digestive and Liver Disease 44: 819–826.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Lee, J., I. Hwang, J.H. Lee, H.W. Lee, L.S. Jeong, and H. Ha. 2013. The selective A3AR antagonist LJ-1888 ameliorates UUO-induced tubulointerstitial fibrosis. The American Journal of Pathology 183: 1488–1497.CrossRefPubMed Lee, J., I. Hwang, J.H. Lee, H.W. Lee, L.S. Jeong, and H. Ha. 2013. The selective A3AR antagonist LJ-1888 ameliorates UUO-induced tubulointerstitial fibrosis. The American Journal of Pathology 183: 1488–1497.CrossRefPubMed
16.
Zurück zum Zitat Tang, J., X. Jiang, Y. Zhou, and Y. Dai. 2015. Effects of A2BR on the biological behavior of mouse renal fibroblasts during hypoxia. Molecular Medicine Reports 11: 4397–4402.CrossRefPubMed Tang, J., X. Jiang, Y. Zhou, and Y. Dai. 2015. Effects of A2BR on the biological behavior of mouse renal fibroblasts during hypoxia. Molecular Medicine Reports 11: 4397–4402.CrossRefPubMed
17.
Zurück zum Zitat Yang, T., C. Zollbrecht, M.E. Winerdal, Z. Zhuge, X.M. Zhang, N. Terrando, A. Checa, J. Sallstrom, C.E. Wheelock, O. Winqvist, R.A. Harris, E. Larsson, A.E. Persson, B.B. Fredholm, and M. Carlstrom. 2016. Genetic abrogation of adenosine A3 receptor prevents uninephrectomy and high salt-induced hypertension. Journal of the American Heart Association 5: e003868.CrossRefPubMedPubMedCentral Yang, T., C. Zollbrecht, M.E. Winerdal, Z. Zhuge, X.M. Zhang, N. Terrando, A. Checa, J. Sallstrom, C.E. Wheelock, O. Winqvist, R.A. Harris, E. Larsson, A.E. Persson, B.B. Fredholm, and M. Carlstrom. 2016. Genetic abrogation of adenosine A3 receptor prevents uninephrectomy and high salt-induced hypertension. Journal of the American Heart Association 5: e003868.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Zhou, Y., J.N. Murthy, D. Zeng, L. Belardinelli, and M.R. Blackburn. 2010. Alterations in adenosine metabolism and signaling in patients with chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. PLoS One 5: e9224.CrossRefPubMedPubMedCentral Zhou, Y., J.N. Murthy, D. Zeng, L. Belardinelli, and M.R. Blackburn. 2010. Alterations in adenosine metabolism and signaling in patients with chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. PLoS One 5: e9224.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Long, F., X.M. Zhang, S. Karp, Y. Yang, and A.P. McMahon. 2001. Genetic manipulation of hedgehog signaling in the endochondral skeleton reveals a direct role in the regulation of chondrocyte proliferation Development. Development 128(24): 5099–108. Long, F., X.M. Zhang, S. Karp, Y. Yang, and A.P. McMahon. 2001. Genetic manipulation of hedgehog signaling in the endochondral skeleton reveals a direct role in the regulation of chondrocyte proliferation Development. Development 128(24): 5099–108.
20.
Zurück zum Zitat Shum, L., and G. Nuckolls. 2002. The life cycle of chondrocytes in the developing skeleton. Arthritis Research 4: 94–106.CrossRefPubMed Shum, L., and G. Nuckolls. 2002. The life cycle of chondrocytes in the developing skeleton. Arthritis Research 4: 94–106.CrossRefPubMed
21.
Zurück zum Zitat Hwang, H., and H. Kim. 2015. Chondrocyte apoptosis in the pathogenesis of osteoarthritis. International Journal of Molecular Sciences 16: 26035–26054.CrossRefPubMedPubMedCentral Hwang, H., and H. Kim. 2015. Chondrocyte apoptosis in the pathogenesis of osteoarthritis. International Journal of Molecular Sciences 16: 26035–26054.CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Xia, B., D. Chen, J. Zhang, S. Hu, H. Jin, and P. Tong. 2014. Osteoarthritis pathogenesis: A review of molecular mechanisms. Calcified Tissue International 95: 495–505.CrossRefPubMedPubMedCentral Xia, B., D. Chen, J. Zhang, S. Hu, H. Jin, and P. Tong. 2014. Osteoarthritis pathogenesis: A review of molecular mechanisms. Calcified Tissue International 95: 495–505.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Kraan, V.P.M. 2012. Osteoarthritis year 2012 in review: Biology. Osteoarthritis and Cartilage 20: 1447–1450.CrossRefPubMed Kraan, V.P.M. 2012. Osteoarthritis year 2012 in review: Biology. Osteoarthritis and Cartilage 20: 1447–1450.CrossRefPubMed
25.
Zurück zum Zitat Koolpe, M., D. Pearson, and H.P. Benton. 1999. Expression of both P1 and P2 purine receptor genes by human articular chondrocytes and profile of ligand-mediated prostaglandin E2 release. Arthritis and Rheumatism 42: 258–267.CrossRefPubMed Koolpe, M., D. Pearson, and H.P. Benton. 1999. Expression of both P1 and P2 purine receptor genes by human articular chondrocytes and profile of ligand-mediated prostaglandin E2 release. Arthritis and Rheumatism 42: 258–267.CrossRefPubMed
26.
Zurück zum Zitat Benton, H.P., and M.H. MacDonald. 2002. Effects of adenosine on bacterial lipopolysaccharide-and interleukin 1-induced nitric oxide release from equine articular chondrocytes, American Journal of Veterinary Research 63(2): 204–10. Benton, H.P., and M.H. MacDonald. 2002. Effects of adenosine on bacterial lipopolysaccharide-and interleukin 1-induced nitric oxide release from equine articular chondrocytes, American Journal of Veterinary Research 63(2): 204–10.
27.
Zurück zum Zitat Tesch, A.M., M.H. MacDonald, and C. Kollias-Baker. 2004. Endogenously produced adenosine regulates articular cartilage matrix homeostasis: Enzymatic depletion of adenosine stimulates matrix degradation. Osteoarthritis and Cartilage 12: 349–359.CrossRefPubMed Tesch, A.M., M.H. MacDonald, and C. Kollias-Baker. 2004. Endogenously produced adenosine regulates articular cartilage matrix homeostasis: Enzymatic depletion of adenosine stimulates matrix degradation. Osteoarthritis and Cartilage 12: 349–359.CrossRefPubMed
28.
Zurück zum Zitat Campo, G.M., A. Avenoso, and A. D’Ascola. 2012. Adenosine A2A receptor activation and hyaluronan fragment inhibition reduce inflammation in mouse articular chondrocytes stimulated with interleukin-1β. The FEBS Journal 279: 2120–2133.CrossRefPubMed Campo, G.M., A. Avenoso, and A. D’Ascola. 2012. Adenosine A2A receptor activation and hyaluronan fragment inhibition reduce inflammation in mouse articular chondrocytes stimulated with interleukin-1β. The FEBS Journal 279: 2120–2133.CrossRefPubMed
29.
Zurück zum Zitat Picher, M., R.D. Graff, and G.M. Lee. 2003. Extracellular nucleotide metabolism and signaling in the pathophysiology of articular cartilage. Arthritis & Rheumatology 48: 2722–2736.CrossRef Picher, M., R.D. Graff, and G.M. Lee. 2003. Extracellular nucleotide metabolism and signaling in the pathophysiology of articular cartilage. Arthritis & Rheumatology 48: 2722–2736.CrossRef
30.
Zurück zum Zitat Tesch, A.M., M.H. MacDonald, C. Kollias-Baker, and H.P. Benton. 2002. Effects of an adenosine kinase inhibitor and an adenosine deaminase inhibitor on accumulation of extracellular adenosine by equine articular chondrocytes. American Journal of Veterinary Research 63: 1512–1519.CrossRefPubMed Tesch, A.M., M.H. MacDonald, C. Kollias-Baker, and H.P. Benton. 2002. Effects of an adenosine kinase inhibitor and an adenosine deaminase inhibitor on accumulation of extracellular adenosine by equine articular chondrocytes. American Journal of Veterinary Research 63: 1512–1519.CrossRefPubMed
31.
Zurück zum Zitat Mistry, D., M.G. Chambers, and R.M. Mason. 2006. The role of adenosine in chondrocyte death in murine osteoarthritis and in a murine chondrocyte cell line. Osteoarthritis and Cartilage 14: 486–495.CrossRefPubMed Mistry, D., M.G. Chambers, and R.M. Mason. 2006. The role of adenosine in chondrocyte death in murine osteoarthritis and in a murine chondrocyte cell line. Osteoarthritis and Cartilage 14: 486–495.CrossRefPubMed
32.
Zurück zum Zitat Tesch, A.M., M.H. MacDonald, C. Kollias-Baker, and H.P. Benton. 2002. Chondrocytes respond to adenosine via A(2)receptors and activity is potentiated by an adenosine deaminase inhibitor and a phosphodiesterase inhibitor. Osteoarthritis and Cartilage 10: 34–43.CrossRefPubMed Tesch, A.M., M.H. MacDonald, C. Kollias-Baker, and H.P. Benton. 2002. Chondrocytes respond to adenosine via A(2)receptors and activity is potentiated by an adenosine deaminase inhibitor and a phosphodiesterase inhibitor. Osteoarthritis and Cartilage 10: 34–43.CrossRefPubMed
33.
Zurück zum Zitat Tesch, A.M., M.H. MacDonald, C. Kollias-Baker, and H.P. Benton. 2004. Endogenously produced adenosine regulates articular cartilage matrix homeostasis: Enzymatic depletion of adenosine stimulates matrix degradation. Osteoarthritis and Cartilage 12: 349–359.CrossRefPubMed Tesch, A.M., M.H. MacDonald, C. Kollias-Baker, and H.P. Benton. 2004. Endogenously produced adenosine regulates articular cartilage matrix homeostasis: Enzymatic depletion of adenosine stimulates matrix degradation. Osteoarthritis and Cartilage 12: 349–359.CrossRefPubMed
34.
Zurück zum Zitat Cederbaum, S.D., I. Kaitila, D.L. Rimoin, and E.R. Stiehm. 1976. The chondro-osseous dysplasia of adenosine deaminase deficiency with severe combined immunodeficiency. The Journal of Pediatrics 89: 737–742.CrossRefPubMed Cederbaum, S.D., I. Kaitila, D.L. Rimoin, and E.R. Stiehm. 1976. The chondro-osseous dysplasia of adenosine deaminase deficiency with severe combined immunodeficiency. The Journal of Pediatrics 89: 737–742.CrossRefPubMed
35.
Zurück zum Zitat Benton, H.P., M.H. MacDonald, and A.M. Tesch. 2002. Effects of adenosine on bacterial lipopolysaccharide- and interleukin 1-induced nitric oxide release from equine articular chondrocytes. American Journal of Veterinary Research 63: 204–210.CrossRefPubMed Benton, H.P., M.H. MacDonald, and A.M. Tesch. 2002. Effects of adenosine on bacterial lipopolysaccharide- and interleukin 1-induced nitric oxide release from equine articular chondrocytes. American Journal of Veterinary Research 63: 204–210.CrossRefPubMed
36.
Zurück zum Zitat Sari, R.A., S. Taysi, O. Yilmaz, and N. Bakan. 2003. Correlation of serum levels of adenosine deaminase activity and its isoenzymes with disease activity in rheumatoid arthritis. Clinical and Experimental Rheumatology 21: 87–90.PubMed Sari, R.A., S. Taysi, O. Yilmaz, and N. Bakan. 2003. Correlation of serum levels of adenosine deaminase activity and its isoenzymes with disease activity in rheumatoid arthritis. Clinical and Experimental Rheumatology 21: 87–90.PubMed
37.
Zurück zum Zitat Nakamachi, Y., M. Koshiba, T. Nakazawa, S. Hatachi, R. Saura, M. Kurosaka, H. Kusaka, and S. Kumagai. 2003. Specific increase in enzymatic activity of adenosine deaminase 1 in rheumatoid synovial fibroblasts. Arthritis and Rheumatism 48: 668–674.CrossRefPubMed Nakamachi, Y., M. Koshiba, T. Nakazawa, S. Hatachi, R. Saura, M. Kurosaka, H. Kusaka, and S. Kumagai. 2003. Specific increase in enzymatic activity of adenosine deaminase 1 in rheumatoid synovial fibroblasts. Arthritis and Rheumatism 48: 668–674.CrossRefPubMed
38.
Zurück zum Zitat Mazzon, E., E. Esposito, D. Impellizzeri, R. DI Paola, A. Melani, P. Bramanti, F. Pedata, and S. Cuzzocrea. 2011. CGS 21680, an agonist of the adenosine (A2A) receptor, reduces progression of murine type II collagen-induced arthritis. The Journal of Rheumatology 38: 2119–2129.CrossRefPubMed Mazzon, E., E. Esposito, D. Impellizzeri, R. DI Paola, A. Melani, P. Bramanti, F. Pedata, and S. Cuzzocrea. 2011. CGS 21680, an agonist of the adenosine (A2A) receptor, reduces progression of murine type II collagen-induced arthritis. The Journal of Rheumatology 38: 2119–2129.CrossRefPubMed
39.
Zurück zum Zitat Cronstein, B.N., M.A. Eberle, H.E. Gruber, and R.I. Levin. 1991. Methotrexate inhibits neutrophil function by stimulating adenosine release from connective tissue cells. Proceedings of the National Academy of Sciences of the United States of America 88: 2441–2445.CrossRefPubMedPubMedCentral Cronstein, B.N., M.A. Eberle, H.E. Gruber, and R.I. Levin. 1991. Methotrexate inhibits neutrophil function by stimulating adenosine release from connective tissue cells. Proceedings of the National Academy of Sciences of the United States of America 88: 2441–2445.CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Cronstein, B.N., D. Naime, and E. Ostad. 1993. The antiinflammatory mechanism of methotrexate. Increased adenosine release at inflamed sites diminishes leukocyte accumulation in an in vivo model of inflammation. The Journal of Clinical Investigation 92: 2675–2682.CrossRefPubMedPubMedCentral Cronstein, B.N., D. Naime, and E. Ostad. 1993. The antiinflammatory mechanism of methotrexate. Increased adenosine release at inflamed sites diminishes leukocyte accumulation in an in vivo model of inflammation. The Journal of Clinical Investigation 92: 2675–2682.CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat Gadangi, P., M. Longaker, D. Naime, R.I. Levin, P.A. Recht, M.C. Montesinos, M.T. Buckley, G. Carlin, and B.N. Cronstein. 1996. The anti-inflammatory mechanism of sulfasalazine is related to adenosine release at inflamed sites. Journal of Immunology 156: 1937–1941. Gadangi, P., M. Longaker, D. Naime, R.I. Levin, P.A. Recht, M.C. Montesinos, M.T. Buckley, G. Carlin, and B.N. Cronstein. 1996. The anti-inflammatory mechanism of sulfasalazine is related to adenosine release at inflamed sites. Journal of Immunology 156: 1937–1941.
42.
Zurück zum Zitat Mediero, A., M. Perez-Aso, and B.N. Cronstein. 2013. Activation of adenosine A(2A) receptor reduces osteoclast formation via PKA- and ERK1/2-mediated suppression of NFkappaB nuclear translocation. British Journal of Pharmacology 169: 1372–1388.CrossRefPubMedPubMedCentral Mediero, A., M. Perez-Aso, and B.N. Cronstein. 2013. Activation of adenosine A(2A) receptor reduces osteoclast formation via PKA- and ERK1/2-mediated suppression of NFkappaB nuclear translocation. British Journal of Pharmacology 169: 1372–1388.CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Mediero, A., T. Wilder, M. Perez-Aso, and B.N. Cronstein. 2015. Direct or indirect stimulation of adenosine A2A receptors enhances bone regeneration as well as bone morphogenetic protein-2. The FASEB Journal 29: 1577–1590.CrossRefPubMedPubMedCentral Mediero, A., T. Wilder, M. Perez-Aso, and B.N. Cronstein. 2015. Direct or indirect stimulation of adenosine A2A receptors enhances bone regeneration as well as bone morphogenetic protein-2. The FASEB Journal 29: 1577–1590.CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Morabito, L., M.C. Montesinos, D.M. Schreibman, L. Balter, L.F. Thompson, R. Resta, G. Carlin, M.A. Huie, and B.N. Cronstein. 1998. Methotrexate and sulfasalazine promote adenosine release by a mechanism that requires ecto-5′-nucleotidase-mediated conversion of adenine nucleotides. The Journal of Clinical Investigation 101: 295–300.CrossRefPubMedPubMedCentral Morabito, L., M.C. Montesinos, D.M. Schreibman, L. Balter, L.F. Thompson, R. Resta, G. Carlin, M.A. Huie, and B.N. Cronstein. 1998. Methotrexate and sulfasalazine promote adenosine release by a mechanism that requires ecto-5′-nucleotidase-mediated conversion of adenine nucleotides. The Journal of Clinical Investigation 101: 295–300.CrossRefPubMedPubMedCentral
45.
Zurück zum Zitat Gennero, L., T. Denysenko, G.F. Calisti, A. Vercelli, C.M. Vercelli, S. Amedeo, S. Mioletti, E. Parino, M. Montanaro, A. Melcarne, C. Juenemann, E. De Vivo, A. Longo, G. Cavallo, and R. De Siena. 2013. Protective effects of polydeoxyribonucleotides on cartilage degradation in experimental cultures. Cell Biochemistry and Function 31: 214–227.CrossRefPubMed Gennero, L., T. Denysenko, G.F. Calisti, A. Vercelli, C.M. Vercelli, S. Amedeo, S. Mioletti, E. Parino, M. Montanaro, A. Melcarne, C. Juenemann, E. De Vivo, A. Longo, G. Cavallo, and R. De Siena. 2013. Protective effects of polydeoxyribonucleotides on cartilage degradation in experimental cultures. Cell Biochemistry and Function 31: 214–227.CrossRefPubMed
46.
Zurück zum Zitat Bitto, A., F. Polito, N. Irrera, A. D’Ascola, A. Avenoso, G. Nastasi, G.M. Campo, A. Micali, G. Bagnato, L. Minutoli, H. Marini, M. Rinaldi, F. Squadrito, and D. Altavilla. 2011. Polydeoxyribonucleotide reduces cytokine production and the severity of collagen-induced arthritis by stimulation of adenosine A((2)A) receptor. Arthritis and Rheumatism 63: 3364–3371.CrossRefPubMed Bitto, A., F. Polito, N. Irrera, A. D’Ascola, A. Avenoso, G. Nastasi, G.M. Campo, A. Micali, G. Bagnato, L. Minutoli, H. Marini, M. Rinaldi, F. Squadrito, and D. Altavilla. 2011. Polydeoxyribonucleotide reduces cytokine production and the severity of collagen-induced arthritis by stimulation of adenosine A((2)A) receptor. Arthritis and Rheumatism 63: 3364–3371.CrossRefPubMed
47.
Zurück zum Zitat Vanelli, R., P. Costa, S.M. Rossi, and F. Benazzo. 2010. Efficacy of intra-articular polynucleotides in the treatment of knee osteoarthritis: A randomized, double-blind clinical trial. Knee Surgery, Sports Traumatology, Arthroscopy 18: 901–907.CrossRefPubMed Vanelli, R., P. Costa, S.M. Rossi, and F. Benazzo. 2010. Efficacy of intra-articular polynucleotides in the treatment of knee osteoarthritis: A randomized, double-blind clinical trial. Knee Surgery, Sports Traumatology, Arthroscopy 18: 901–907.CrossRefPubMed
48.
Zurück zum Zitat Giarratana, L.S., B.M. Marelli, C. Crapanzano, S.E. De Martinis, L. Gala, M. Ferraro, N. Marelli, and W. Albisetti. 2014. A randomized double-blind clinical trial on the treatment of knee osteoarthritis: The efficacy of polynucleotides compared to standard hyaluronian viscosupplementation. The Knee 21: 661–668.CrossRefPubMed Giarratana, L.S., B.M. Marelli, C. Crapanzano, S.E. De Martinis, L. Gala, M. Ferraro, N. Marelli, and W. Albisetti. 2014. A randomized double-blind clinical trial on the treatment of knee osteoarthritis: The efficacy of polynucleotides compared to standard hyaluronian viscosupplementation. The Knee 21: 661–668.CrossRefPubMed
49.
Zurück zum Zitat Allen, T.M., and P.R. Cullis. 2013. Liposomal drug delivery systems: From concept to clinical applications. Advanced Drug Delivery Reviews 65: 36–48.CrossRefPubMed Allen, T.M., and P.R. Cullis. 2013. Liposomal drug delivery systems: From concept to clinical applications. Advanced Drug Delivery Reviews 65: 36–48.CrossRefPubMed
50.
Zurück zum Zitat Corciulo, C., M. Lendhey, T. Wilder, H. Schoen, A.S. Cornelissen, G. Chang, O.D. Kennedy, and B.N. Cronstein. 2017. Endogenous adenosine maintains cartilage homeostasis and exogenous adenosine inhibits osteoarthritis progression. Nature Communications 8: 15019.CrossRefPubMedPubMedCentral Corciulo, C., M. Lendhey, T. Wilder, H. Schoen, A.S. Cornelissen, G. Chang, O.D. Kennedy, and B.N. Cronstein. 2017. Endogenous adenosine maintains cartilage homeostasis and exogenous adenosine inhibits osteoarthritis progression. Nature Communications 8: 15019.CrossRefPubMedPubMedCentral
51.
Zurück zum Zitat Katebi, M., M. Soleimani, and B.N. Cronstein. 2009. Adenosine A2A receptors play an active role in mouse bone marrow-derived mesenchymal stem cell development. Journal of Leukocyte Biology 85: 438–444.CrossRefPubMedPubMedCentral Katebi, M., M. Soleimani, and B.N. Cronstein. 2009. Adenosine A2A receptors play an active role in mouse bone marrow-derived mesenchymal stem cell development. Journal of Leukocyte Biology 85: 438–444.CrossRefPubMedPubMedCentral
52.
Zurück zum Zitat Song, L., N.E. Webb, Y. Song, and R.S. Tuan. 2006. Identification and functional analysis of candidate genes regulating mesenchymal stem cell self-renewal and multipotency. Stem Cells 24: 1707–1718.CrossRefPubMed Song, L., N.E. Webb, Y. Song, and R.S. Tuan. 2006. Identification and functional analysis of candidate genes regulating mesenchymal stem cell self-renewal and multipotency. Stem Cells 24: 1707–1718.CrossRefPubMed
53.
Zurück zum Zitat Delorme, B., J. Ringe, N. Gallay, Y. Le Vern, D. Kerboeuf, C. Jorgensen, P. Rosset, L. Sensebe, P. Layrolle, T. Haupl, and P. Charbord. 2008. Specific plasma membrane protein phenotype of culture-amplified and native human bone marrow mesenchymal stem cells. Blood 111: 2631–2635.CrossRefPubMed Delorme, B., J. Ringe, N. Gallay, Y. Le Vern, D. Kerboeuf, C. Jorgensen, P. Rosset, L. Sensebe, P. Layrolle, T. Haupl, and P. Charbord. 2008. Specific plasma membrane protein phenotype of culture-amplified and native human bone marrow mesenchymal stem cells. Blood 111: 2631–2635.CrossRefPubMed
54.
Zurück zum Zitat Chamberlain, G., J. Fox, B. Ashton, and J. Middleton. 2007. Concise review: Mesenchymal stem cells: Their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25: 2739–2749.CrossRefPubMed Chamberlain, G., J. Fox, B. Ashton, and J. Middleton. 2007. Concise review: Mesenchymal stem cells: Their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25: 2739–2749.CrossRefPubMed
55.
Zurück zum Zitat Ode, A., J. Kopf, A. Kurtz, K. Schmidt-Bleek, P. Schrade, P. Kolar, F. Buttgereit, K. Lehmann, D.W. Hutmacher, G.N. Duda, and G. Kasper. 2011. CD73 and CD29 concurrently mediate the mechanically induced decrease of migratory capacity of mesenchymal stromal cells. European Cells & Materials 22: 26–42.CrossRef Ode, A., J. Kopf, A. Kurtz, K. Schmidt-Bleek, P. Schrade, P. Kolar, F. Buttgereit, K. Lehmann, D.W. Hutmacher, G.N. Duda, and G. Kasper. 2011. CD73 and CD29 concurrently mediate the mechanically induced decrease of migratory capacity of mesenchymal stromal cells. European Cells & Materials 22: 26–42.CrossRef
56.
Zurück zum Zitat Kang, M.N., H.H. Yoon, Y.K. Seo, and J.K. Park. 2012. Effect of mechanical stimulation on the differentiation of cord stem cells. Connective Tissue Research 53: 149–159.CrossRefPubMed Kang, M.N., H.H. Yoon, Y.K. Seo, and J.K. Park. 2012. Effect of mechanical stimulation on the differentiation of cord stem cells. Connective Tissue Research 53: 149–159.CrossRefPubMed
57.
Zurück zum Zitat Ode, A., J. Schoon, A. Kurtz, M. Gaetjen, J.E. Ode, S. Geissler, and G.N. Duda. 2013. CD73/5′-ecto-nucleotidase acts as a regulatory factor in osteo−/chondrogenic differentiation of mechanically stimulated mesenchymal stromal cells. European Cells & Materials 25: 37–47.CrossRef Ode, A., J. Schoon, A. Kurtz, M. Gaetjen, J.E. Ode, S. Geissler, and G.N. Duda. 2013. CD73/5′-ecto-nucleotidase acts as a regulatory factor in osteo−/chondrogenic differentiation of mechanically stimulated mesenchymal stromal cells. European Cells & Materials 25: 37–47.CrossRef
58.
Zurück zum Zitat Napieralski, R., B. Kempkes, and W. Gutensohn. 2003. Evidence for coordinated induction and repression of ecto-5′-nucleotidase (CD73) and the A2a adenosine receptor in a human B cell line. Biological Chemistry 384: 483–487.CrossRefPubMed Napieralski, R., B. Kempkes, and W. Gutensohn. 2003. Evidence for coordinated induction and repression of ecto-5′-nucleotidase (CD73) and the A2a adenosine receptor in a human B cell line. Biological Chemistry 384: 483–487.CrossRefPubMed
Metadaten
Titel
The Role of Adenosine Receptor Activation in Attenuating Cartilaginous Inflammation
verfasst von
Jonathan M. Bekisz
Christopher D. Lopez
Carmen Corciulo
Aranzazu Mediero
Paulo G. Coelho
Lukasz Witek
Roberto L. Flores
Bruce N. Cronstein
Publikationsdatum
14.04.2018
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 4/2018
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-018-0781-z

Weitere Artikel der Ausgabe 4/2018

Inflammation 4/2018 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.