Skip to main content
Erschienen in: Reviews in Endocrine and Metabolic Disorders 2/2014

01.06.2014

The role of adiponectin signaling in metabolic syndrome and cancer

verfasst von: Michael P. Scheid, Gary Sweeney

Erschienen in: Reviews in Endocrine and Metabolic Disorders | Ausgabe 2/2014

Einloggen, um Zugang zu erhalten

Abstract

The increased prevalence of obesity has mandated extensive research focused on mechanisms responsible for associated clinical complications. Emerging from the focus on adipose tissue biology as a vitally important adipokine is adiponectin which is now believed to mediate anti-diabetic, anti-atherosclerotic, anti-inflammatory, cardioprotective and cancer modifying actions. Adiponectin mediates these primarily beneficial effects via direct signaling effects and via enhancing insulin sensitivity via crosstalk with insulin signaling pathways. Reduced adiponectin action is detrimental and occurs in obesity via decreased circulating levels of adiponectin action or development of adiponectin resistance. This review will focus on cellular mechanisms of adiponectin action, their crosstalk with insulin signaling and the resultant role of adiponectin in cardiovascular disease, diabetes and cancer and reviews data from in vitro cell based studies through animal models to clinical observations.
Literatur
4.
7.
Zurück zum Zitat Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Kita S, et al. Cloning of adiponectin receptors that mediate Antidiabetic metabolic effects. [Research support, Non-U.S. Gov’t]. Nature. 2003;423(6941):762–9. doi:10.1038/nature01705.PubMed Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Kita S, et al. Cloning of adiponectin receptors that mediate Antidiabetic metabolic effects. [Research support, Non-U.S. Gov’t]. Nature. 2003;423(6941):762–9. doi:10.​1038/​nature01705.PubMed
8.
Zurück zum Zitat Hall J, Roberts R, Vora N. Energy homoeostasis: The roles of adipose tissue-derived hormones, peptide YY and Ghrelin. Obesity Facts. 2009;2(2):117–25.PubMed Hall J, Roberts R, Vora N. Energy homoeostasis: The roles of adipose tissue-derived hormones, peptide YY and Ghrelin. Obesity Facts. 2009;2(2):117–25.PubMed
11.
Zurück zum Zitat Nemoto S, Fergusson MM, Finkel T. SIRT1 Functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1Œ±. J Biol Chem. 2005;280(16):16456–60. doi:10.1074/jbc.M501485200.PubMed Nemoto S, Fergusson MM, Finkel T. SIRT1 Functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1Œ±. J Biol Chem. 2005;280(16):16456–60. doi:10.​1074/​jbc.​M501485200.PubMed
12.
Zurück zum Zitat Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature. 2005;434(7029):113–8. doi:10.1038/nature03354.PubMed Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature. 2005;434(7029):113–8. doi:10.​1038/​nature03354.PubMed
13.
Zurück zum Zitat Canto C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, et al. AMPK regulates energy expenditure by modulating NAD + metabolism and SIRT1 activity. Nature. 2009;458(7241):1056–60. doi:10.1038/nature07813.PubMedCentralPubMed Canto C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, et al. AMPK regulates energy expenditure by modulating NAD + metabolism and SIRT1 activity. Nature. 2009;458(7241):1056–60. doi:10.​1038/​nature07813.PubMedCentralPubMed
16.
Zurück zum Zitat Boudeau J, Baas AF, Deak M, Morrice NA, Kieloch A, Schutkowski M, et al. MO25alpha/beta interact with STRADalpha/beta enhancing their ability to bind, activate and localize LKB1 in the cytoplasm. EMBO J. 2003;22(19):5102–14. doi:10.1093/emboj/cdg490.PubMedCentralPubMed Boudeau J, Baas AF, Deak M, Morrice NA, Kieloch A, Schutkowski M, et al. MO25alpha/beta interact with STRADalpha/beta enhancing their ability to bind, activate and localize LKB1 in the cytoplasm. EMBO J. 2003;22(19):5102–14. doi:10.​1093/​emboj/​cdg490.PubMedCentralPubMed
18.
Zurück zum Zitat Woods A, Dickerson K, Heath R, Hong SP, Momcilovic M, Johnstone SR, et al. Ca2+/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab. 2005;2(1):21–33. doi:10.1016/j.cmet.2005.06.005.PubMed Woods A, Dickerson K, Heath R, Hong SP, Momcilovic M, Johnstone SR, et al. Ca2+/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab. 2005;2(1):21–33. doi:10.​1016/​j.​cmet.​2005.​06.​005.PubMed
19.
Zurück zum Zitat Hawley SA, Pan DA, Mustard KJ, Ross L, Bain J, Edelman AM, et al. Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab. 2005;2(1):9–19. doi:10.1016/j.cmet.2005.05.009.PubMed Hawley SA, Pan DA, Mustard KJ, Ross L, Bain J, Edelman AM, et al. Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab. 2005;2(1):9–19. doi:10.​1016/​j.​cmet.​2005.​05.​009.PubMed
20.
Zurück zum Zitat Herrero-Martin G, Hoyer-Hansen M, Garcia-Garcia C, Fumarola C, Farkas T, Lopez-Rivas A, et al. TAK1 activates AMPK-dependent cytoprotective autophagy in TRAIL-treated epithelial cells. EMBO J. 2009;28(6):677–85. doi:10.1038/emboj.2009.8.PubMedCentralPubMed Herrero-Martin G, Hoyer-Hansen M, Garcia-Garcia C, Fumarola C, Farkas T, Lopez-Rivas A, et al. TAK1 activates AMPK-dependent cytoprotective autophagy in TRAIL-treated epithelial cells. EMBO J. 2009;28(6):677–85. doi:10.​1038/​emboj.​2009.​8.PubMedCentralPubMed
21.
Zurück zum Zitat Momcilovic M, Hong SP, Carlson M. Mammalian TAK1 activates Snf1 protein kinase in yeast and phosphorylates AMP-activated protein kinase in vitro. J Biol Chem. 2006;281(35):25336–43. doi:10.1074/jbc.M604399200.PubMed Momcilovic M, Hong SP, Carlson M. Mammalian TAK1 activates Snf1 protein kinase in yeast and phosphorylates AMP-activated protein kinase in vitro. J Biol Chem. 2006;281(35):25336–43. doi:10.​1074/​jbc.​M604399200.PubMed
22.
Zurück zum Zitat Faubert B, Boily G, Izreig S, Griss T, Samborska B, Dong Z, et al. AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo. Cell Metab. 2013;17(1):113–24.PubMedCentralPubMed Faubert B, Boily G, Izreig S, Griss T, Samborska B, Dong Z, et al. AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo. Cell Metab. 2013;17(1):113–24.PubMedCentralPubMed
24.
Zurück zum Zitat Iwabu M, Yamauchi T, Okada-Iwabu M, Sato K, Nakagawa T, Funata M, et al. Adiponectin and AdipoR1 regulate PGC-1alpha and mitochondria by Ca(2+) and AMPK/SIRT1. [Research support, Non-U.S. Gov’t]. Nature. 2010;464(7293):1313–9. doi:10.1038/nature08991.PubMed Iwabu M, Yamauchi T, Okada-Iwabu M, Sato K, Nakagawa T, Funata M, et al. Adiponectin and AdipoR1 regulate PGC-1alpha and mitochondria by Ca(2+) and AMPK/SIRT1. [Research support, Non-U.S. Gov’t]. Nature. 2010;464(7293):1313–9. doi:10.​1038/​nature08991.PubMed
25.
Zurück zum Zitat Wang C, Mao X, Wang L, Liu M, Wetzel MD, Guan KL, et al. Adiponectin sensitizes insulin signaling by reducing p70 S6 kinase-mediated serine phosphorylation of IRS-1. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. The Journal of biological chemistry. 2007;282(11):7991–6. doi:10.1074/jbc.M700098200.PubMed Wang C, Mao X, Wang L, Liu M, Wetzel MD, Guan KL, et al. Adiponectin sensitizes insulin signaling by reducing p70 S6 kinase-mediated serine phosphorylation of IRS-1. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. The Journal of biological chemistry. 2007;282(11):7991–6. doi:10.​1074/​jbc.​M700098200.PubMed
26.
Zurück zum Zitat Moore T, Beltran L, Carbajal S, Strom S, Traag J, Hursting SD, et al. Dietary energy balance modulates signaling through the Akt/mammalian target of rapamycin pathways in multiple epithelial tissues. Cancer prevention research. 2008;1(1):65–76. doi:10.1158/1940-6207.capr-08-0022.PubMed Moore T, Beltran L, Carbajal S, Strom S, Traag J, Hursting SD, et al. Dietary energy balance modulates signaling through the Akt/mammalian target of rapamycin pathways in multiple epithelial tissues. Cancer prevention research. 2008;1(1):65–76. doi:10.​1158/​1940-6207.​capr-08-0022.PubMed
27.
Zurück zum Zitat Taliaferro-Smith L, Nagalingam A, Zhong D, Zhou W, Saxena NK, Sharma D. LKB1 is required for adiponectin-mediated modulation of AMPK-S6K axis and inhibition of migration and invasion of breast cancer cells. Oncogene. 2009;28(29):2621–33. doi:10.1038/onc.2009.129.PubMedCentralPubMed Taliaferro-Smith L, Nagalingam A, Zhong D, Zhou W, Saxena NK, Sharma D. LKB1 is required for adiponectin-mediated modulation of AMPK-S6K axis and inhibition of migration and invasion of breast cancer cells. Oncogene. 2009;28(29):2621–33. doi:10.​1038/​onc.​2009.​129.PubMedCentralPubMed
28.
Zurück zum Zitat Mao X, Kikani CK, Riojas RA, Langlais P, Wang L, Ramos FJ, et al. APPL1 binds to adiponectin receptors and mediates adiponectin signaling and function. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Nature cell biology. 2006;8(5):516–23. doi:10.1038/ncb1404.PubMed Mao X, Kikani CK, Riojas RA, Langlais P, Wang L, Ramos FJ, et al. APPL1 binds to adiponectin receptors and mediates adiponectin signaling and function. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Nature cell biology. 2006;8(5):516–23. doi:10.​1038/​ncb1404.PubMed
29.
Zurück zum Zitat Kubota N, Yano W, Kubota T, Yamauchi T, Itoh S, Kumagai H, et al. Adiponectin stimulates AMP-activated protein kinase in the hypothalamus and increases food intake. Cell Metab. 2007;6(1):55–68. doi:10.1016/j.cmet.2007.06.003.PubMed Kubota N, Yano W, Kubota T, Yamauchi T, Itoh S, Kumagai H, et al. Adiponectin stimulates AMP-activated protein kinase in the hypothalamus and increases food intake. Cell Metab. 2007;6(1):55–68. doi:10.​1016/​j.​cmet.​2007.​06.​003.PubMed
30.
Zurück zum Zitat Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nature medicine. 2002;8(11):1288–95. doi:10.1038/nm788.PubMed Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nature medicine. 2002;8(11):1288–95. doi:10.​1038/​nm788.PubMed
31.
Zurück zum Zitat Zhou L, Deepa SS, Etzler JC, Ryu J, Mao X, Fang Q, et al. Adiponectin activates AMP-activated protein kinase in muscle cells via APPL1/LKB1-dependent and Phospholipase C/Ca2+/Ca2+/calmodulin-dependent protein kinase kinase-dependent pathways. J Biol Chem. 2009;284(33):22426–35. doi:10.1074/jbc.M109.028357.PubMedCentralPubMed Zhou L, Deepa SS, Etzler JC, Ryu J, Mao X, Fang Q, et al. Adiponectin activates AMP-activated protein kinase in muscle cells via APPL1/LKB1-dependent and Phospholipase C/Ca2+/Ca2+/calmodulin-dependent protein kinase kinase-dependent pathways. J Biol Chem. 2009;284(33):22426–35. doi:10.​1074/​jbc.​M109.​028357.PubMedCentralPubMed
32.
Zurück zum Zitat Mitsuuchi Y, Johnson SW, Sonoda G, Tanno S, Golemis EA, Testa JR. Identification of a chromosome 3p14.3-21.1 gene, APPL, encoding an adaptor molecule that interacts with the oncoprotein-serine/threonine kinase AKT2. Oncogene. 1999;18(35):4891–8. doi:10.1038/sj.onc.1203080.PubMed Mitsuuchi Y, Johnson SW, Sonoda G, Tanno S, Golemis EA, Testa JR. Identification of a chromosome 3p14.3-21.1 gene, APPL, encoding an adaptor molecule that interacts with the oncoprotein-serine/threonine kinase AKT2. Oncogene. 1999;18(35):4891–8. doi:10.​1038/​sj.​onc.​1203080.PubMed
33.
Zurück zum Zitat Boudeau J, Scott JW, Resta N, Deak M, Kieloch A, Komander D, et al. Analysis of the LKB1-STRAD-MO25 complex. J Cell Sci. 2004;117(Pt 26):6365–75. doi:10.1242/jcs.01571.PubMed Boudeau J, Scott JW, Resta N, Deak M, Kieloch A, Komander D, et al. Analysis of the LKB1-STRAD-MO25 complex. J Cell Sci. 2004;117(Pt 26):6365–75. doi:10.​1242/​jcs.​01571.PubMed
34.
Zurück zum Zitat Xie Z, Dong Y, Zhang J, Scholz R, Neumann D, Zou MH. Identification of the serine 307 of LKB1 as a novel phosphorylation site essential for its nucleocytoplasmic transport and endothelial cell angiogenesis. Mol Cell Biol. 2009;29(13):3582–96. doi:10.1128/mcb.01417-08.PubMedCentralPubMed Xie Z, Dong Y, Zhang J, Scholz R, Neumann D, Zou MH. Identification of the serine 307 of LKB1 as a novel phosphorylation site essential for its nucleocytoplasmic transport and endothelial cell angiogenesis. Mol Cell Biol. 2009;29(13):3582–96. doi:10.​1128/​mcb.​01417-08.PubMedCentralPubMed
35.
37.
Zurück zum Zitat Scheid MP, Woodgett JR. Unravelling the activation mechanisms of protein kinase B/Akt. FEBS Lett. 2003;546(1):108–12.PubMed Scheid MP, Woodgett JR. Unravelling the activation mechanisms of protein kinase B/Akt. FEBS Lett. 2003;546(1):108–12.PubMed
38.
Zurück zum Zitat Patel SA, Hoehn KL, Lawrence RT, Sawbridge L, Talbot NA, Tomsig JL, et al. Overexpression of the adiponectin receptor AdipoR1 in rat skeletal muscle amplifies local insulin sensitivity. Endocrinology. 2012;153(11):5231–46. doi:10.1210/en.2012-1368.PubMedCentralPubMed Patel SA, Hoehn KL, Lawrence RT, Sawbridge L, Talbot NA, Tomsig JL, et al. Overexpression of the adiponectin receptor AdipoR1 in rat skeletal muscle amplifies local insulin sensitivity. Endocrinology. 2012;153(11):5231–46. doi:10.​1210/​en.​2012-1368.PubMedCentralPubMed
39.
Zurück zum Zitat Maruyama S, Shibata R, Ohashi K, Ohashi T, Daida H, Walsh K, et al. Adiponectin ameliorates doxorubicin-induced cardiotoxicity through Akt protein-dependent mechanism. [Research Support, Non-U.S. Gov’t]. The Journal of biological chemistry. 2011;286(37):32790–800. doi:10.1074/jbc.M111.245985.PubMedCentralPubMed Maruyama S, Shibata R, Ohashi K, Ohashi T, Daida H, Walsh K, et al. Adiponectin ameliorates doxorubicin-induced cardiotoxicity through Akt protein-dependent mechanism. [Research Support, Non-U.S. Gov’t]. The Journal of biological chemistry. 2011;286(37):32790–800. doi:10.​1074/​jbc.​M111.​245985.PubMedCentralPubMed
40.
Zurück zum Zitat Saito T, Jones CC, Huang S, Czech MP, Pilch PF. The interaction of Akt with APPL1 is required for insulin-stimulated Glut4 translocation. J Biol Chem. 2007;282(44):32280–7. doi:10.1074/jbc.M704150200.PubMed Saito T, Jones CC, Huang S, Czech MP, Pilch PF. The interaction of Akt with APPL1 is required for insulin-stimulated Glut4 translocation. J Biol Chem. 2007;282(44):32280–7. doi:10.​1074/​jbc.​M704150200.PubMed
41.
Zurück zum Zitat Cheng KKY, Iglesias MA, Lam KSL, Wang Y, Sweeney G, Zhu W, et al. APPL1 Potentiates Insulin-Mediated Inhibition of Hepatic Glucose Production and Alleviates Diabetes via Akt Activation in Mice. Cell Metab. 2009;9(5):417–27.PubMed Cheng KKY, Iglesias MA, Lam KSL, Wang Y, Sweeney G, Zhu W, et al. APPL1 Potentiates Insulin-Mediated Inhibition of Hepatic Glucose Production and Alleviates Diabetes via Akt Activation in Mice. Cell Metab. 2009;9(5):417–27.PubMed
42.
Zurück zum Zitat Wijesekara N, Krishnamurthy M, Bhattacharjee A, Suhail A, Sweeney G, Wheeler MB. Adiponectin-induced ERK and Akt phosphorylation protects against pancreatic beta cell apoptosis and increases insulin gene expression and secretion. J Biol Chem. 2010;285(44):33623–31. doi:10.1074/jbc.M109.085084.PubMedCentralPubMed Wijesekara N, Krishnamurthy M, Bhattacharjee A, Suhail A, Sweeney G, Wheeler MB. Adiponectin-induced ERK and Akt phosphorylation protects against pancreatic beta cell apoptosis and increases insulin gene expression and secretion. J Biol Chem. 2010;285(44):33623–31. doi:10.​1074/​jbc.​M109.​085084.PubMedCentralPubMed
43.
Zurück zum Zitat Tsuchida A, Yamauchi T, Ito Y, Hada Y, Maki T, Takekawa S, et al. Insulin/Foxo1 pathway regulates expression levels of adiponectin receptors and adiponectin sensitivity. J Biol Chem. 2004;279(29):30817–22. doi:10.1074/jbc.M402367200.PubMed Tsuchida A, Yamauchi T, Ito Y, Hada Y, Maki T, Takekawa S, et al. Insulin/Foxo1 pathway regulates expression levels of adiponectin receptors and adiponectin sensitivity. J Biol Chem. 2004;279(29):30817–22. doi:10.​1074/​jbc.​M402367200.PubMed
44.
Zurück zum Zitat Backer JM, Myers Jr MG, Shoelson SE, Chin DJ, Sun XJ, Miralpeix M, et al. Phosphatidylinositol 3′-kinase is activated by association with IRS-1 during insulin stimulation. EMBO J. 1992;11(9):3469–79.PubMedCentralPubMed Backer JM, Myers Jr MG, Shoelson SE, Chin DJ, Sun XJ, Miralpeix M, et al. Phosphatidylinositol 3′-kinase is activated by association with IRS-1 during insulin stimulation. EMBO J. 1992;11(9):3469–79.PubMedCentralPubMed
46.
Zurück zum Zitat Magnuson B, Ekim B, Fingar DC. Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signaling networks. Biochem J. 2012;441(1):1–21. doi:10.1042/bj20110892.PubMed Magnuson B, Ekim B, Fingar DC. Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signaling networks. Biochem J. 2012;441(1):1–21. doi:10.​1042/​bj20110892.PubMed
47.
Zurück zum Zitat Werner ED, Lee J, Hansen L, Yuan M, Shoelson SE. Insulin resistance Due to phosphorylation of insulin receptor substrate-1 at serine 302. J Biol Chem. 2004;279(34):35298–305. doi:10.1074/jbc.M405203200.PubMed Werner ED, Lee J, Hansen L, Yuan M, Shoelson SE. Insulin resistance Due to phosphorylation of insulin receptor substrate-1 at serine 302. J Biol Chem. 2004;279(34):35298–305. doi:10.​1074/​jbc.​M405203200.PubMed
48.
Zurück zum Zitat Harrington LS, Findlay GM, Gray A, Tolkacheva T, Wigfield S, Rebholz H, et al. The TSC1-2 tumor suppressor controls insulin‚ÄìPI3K signaling via regulation of IRS proteins. The Journal of Cell Biology. 2004;166(2):213–23. doi:10.1083/jcb.200403069.PubMedCentralPubMed Harrington LS, Findlay GM, Gray A, Tolkacheva T, Wigfield S, Rebholz H, et al. The TSC1-2 tumor suppressor controls insulin‚ÄìPI3K signaling via regulation of IRS proteins. The Journal of Cell Biology. 2004;166(2):213–23. doi:10.​1083/​jcb.​200403069.PubMedCentralPubMed
49.
Zurück zum Zitat Vu V, Kim W, Fang X, Liu YT, Xu A, Sweeney G. Coculture with primary visceral rat adipocytes from control but not Streptozotocin-induced diabetic animals increases glucose uptake in rat skeletal muscle cells: Role of adiponectin. [Research support, Non-U.S. Gov’t]. Endocrinology. 2007;148(9):4411–9. doi:10.1210/en.2007-0020.PubMed Vu V, Kim W, Fang X, Liu YT, Xu A, Sweeney G. Coculture with primary visceral rat adipocytes from control but not Streptozotocin-induced diabetic animals increases glucose uptake in rat skeletal muscle cells: Role of adiponectin. [Research support, Non-U.S. Gov’t]. Endocrinology. 2007;148(9):4411–9. doi:10.​1210/​en.​2007-0020.PubMed
50.
51.
Zurück zum Zitat Anker SD, von Haehling S. The obesity paradox in heart failure: Accepting reality and making rational decisions. [Research support, Non-U.S. Gov’t Review]. Clin Pharmacol Ther. 2011;90(1):188–90. doi:10.1038/clpt.2011.72.PubMed Anker SD, von Haehling S. The obesity paradox in heart failure: Accepting reality and making rational decisions. [Research support, Non-U.S. Gov’t Review]. Clin Pharmacol Ther. 2011;90(1):188–90. doi:10.​1038/​clpt.​2011.​72.PubMed
53.
Zurück zum Zitat Fujita K, Maeda N, Sonoda M, Ohashi K, Hibuse T, Nishizawa H, et al. Adiponectin protects against angiotensin II-induced cardiac fibrosis through activation of PPAR-alpha. Arterioscler Thromb Vasc Biol. 2008;28(5):863–70.PubMed Fujita K, Maeda N, Sonoda M, Ohashi K, Hibuse T, Nishizawa H, et al. Adiponectin protects against angiotensin II-induced cardiac fibrosis through activation of PPAR-alpha. Arterioscler Thromb Vasc Biol. 2008;28(5):863–70.PubMed
54.
Zurück zum Zitat Shibata R, Sato K, Pimentel DR, Takemura Y, Kihara S, Ohashi K, et al. Adiponectin protects against myocardial ischemia-reperfusion injury through AMPK- and COX-2-dependent mechanisms. Nat Med. 2005;11(10):1096–103.PubMedCentralPubMed Shibata R, Sato K, Pimentel DR, Takemura Y, Kihara S, Ohashi K, et al. Adiponectin protects against myocardial ischemia-reperfusion injury through AMPK- and COX-2-dependent mechanisms. Nat Med. 2005;11(10):1096–103.PubMedCentralPubMed
55.
Zurück zum Zitat Shibata R, Ouchi N, Ito M, Kihara S, Shiojima I, Pimentel DR, et al. Adiponectin-mediated modulation of hypertrophic signals in the heart. Nat Med. 2004;10(12):1384–9.PubMedCentralPubMed Shibata R, Ouchi N, Ito M, Kihara S, Shiojima I, Pimentel DR, et al. Adiponectin-mediated modulation of hypertrophic signals in the heart. Nat Med. 2004;10(12):1384–9.PubMedCentralPubMed
56.
Zurück zum Zitat Shibata R, Izumiya Y, Sato K, Papanicolaou K, Kihara S, Colucci WS, et al. Adiponectin protects against the development of systolic dysfunction following myocardial infarction. J Mol Cell Cardiol. 2007;42(6):1065–74.PubMedCentralPubMed Shibata R, Izumiya Y, Sato K, Papanicolaou K, Kihara S, Colucci WS, et al. Adiponectin protects against the development of systolic dysfunction following myocardial infarction. J Mol Cell Cardiol. 2007;42(6):1065–74.PubMedCentralPubMed
57.
Zurück zum Zitat Sam F, Duhaney TA, Sato K, Wilson RM, Ohashi K, Sono-Romanelli S, et al. Adiponectin deficiency, diastolic dysfunction, and diastolic heart failure. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Endocrinology. 2010;151(1):322–31. doi:10.1210/en.2009-0806.PubMedCentralPubMed Sam F, Duhaney TA, Sato K, Wilson RM, Ohashi K, Sono-Romanelli S, et al. Adiponectin deficiency, diastolic dysfunction, and diastolic heart failure. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Endocrinology. 2010;151(1):322–31. doi:10.​1210/​en.​2009-0806.PubMedCentralPubMed
58.
Zurück zum Zitat Shimano M, Ouchi N, Shibata R, Ohashi K, Pimentel DR, Murohara T, et al. Adiponectin deficiency exacerbates cardiac dysfunction following pressure overload through disruption of an AMPK-dependent angiogenic response. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. J Mol Cell Cardiol. 2010;49(2):210–20. doi:10.1016/j.yjmcc.2010.02.021.PubMedCentralPubMed Shimano M, Ouchi N, Shibata R, Ohashi K, Pimentel DR, Murohara T, et al. Adiponectin deficiency exacerbates cardiac dysfunction following pressure overload through disruption of an AMPK-dependent angiogenic response. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. J Mol Cell Cardiol. 2010;49(2):210–20. doi:10.​1016/​j.​yjmcc.​2010.​02.​021.PubMedCentralPubMed
61.
Zurück zum Zitat Despres JP, Cartier A, Cote M, Arsenault BJ. The concept of cardiometabolic risk: Bridging the fields of diabetology and cardiology. [Research Support, Non-U.S. Gov’t Review]. Ann Med. 2008;40(7):514–23. doi:10.1080/07853890802004959.PubMed Despres JP, Cartier A, Cote M, Arsenault BJ. The concept of cardiometabolic risk: Bridging the fields of diabetology and cardiology. [Research Support, Non-U.S. Gov’t Review]. Ann Med. 2008;40(7):514–23. doi:10.​1080/​0785389080200495​9.PubMed
62.
Zurück zum Zitat Fang X, Palanivel R, Cresser J, Schram K, Ganguly R, Thong FS, et al. An APPL1-AMPK signaling axis mediates beneficial metabolic effects of adiponectin in the heart. [In Vitro Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Am J Physiol Endocrinol Metab. 2010;299(5):E721–729. doi:10.1152/ajpendo.00086.2010.PubMedCentralPubMed Fang X, Palanivel R, Cresser J, Schram K, Ganguly R, Thong FS, et al. An APPL1-AMPK signaling axis mediates beneficial metabolic effects of adiponectin in the heart. [In Vitro Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Am J Physiol Endocrinol Metab. 2010;299(5):E721–729. doi:10.​1152/​ajpendo.​00086.​2010.PubMedCentralPubMed
63.
Zurück zum Zitat Palanivel R, Fang X, Park M, Eguchi M, Pallan S, De Girolamo S, et al. Globular and full-length forms of adiponectin mediate specific changes in glucose and fatty acid uptake and metabolism in cardiomyocytes. Cardiovasc Res. 2007;75(1):148–57.PubMed Palanivel R, Fang X, Park M, Eguchi M, Pallan S, De Girolamo S, et al. Globular and full-length forms of adiponectin mediate specific changes in glucose and fatty acid uptake and metabolism in cardiomyocytes. Cardiovasc Res. 2007;75(1):148–57.PubMed
68.
Zurück zum Zitat Skurk C, Wittchen F, Suckau L, Witt H, Noutsias M, Fechner H, et al. Description of a local cardiac adiponectin system and its deregulation in dilated cardiomyopathy. [Research Support, Non-U.S. Gov’t]. Eur Heart J. 2008;29(9):1168–80. doi:10.1093/eurheartj/ehn136.PubMed Skurk C, Wittchen F, Suckau L, Witt H, Noutsias M, Fechner H, et al. Description of a local cardiac adiponectin system and its deregulation in dilated cardiomyopathy. [Research Support, Non-U.S. Gov’t]. Eur Heart J. 2008;29(9):1168–80. doi:10.​1093/​eurheartj/​ehn136.PubMed
69.
Zurück zum Zitat Ma Y, Liu Y, Liu S, Qu Y, Wang R, Xia C, et al. Dynamic alteration of adiponectin/adiponectin receptor expression and its impact on myocardial ischemia/reperfusion in type 1 diabetic mice. Am J Physiol Endocrinol Metab. 2011;301(3):E447–455. doi:10.1152/ajpendo.00687.2010.PubMed Ma Y, Liu Y, Liu S, Qu Y, Wang R, Xia C, et al. Dynamic alteration of adiponectin/adiponectin receptor expression and its impact on myocardial ischemia/reperfusion in type 1 diabetic mice. Am J Physiol Endocrinol Metab. 2011;301(3):E447–455. doi:10.​1152/​ajpendo.​00687.​2010.PubMed
71.
Zurück zum Zitat Cui XB, Wang C, Li L, Fan D, Zhou Y, Wu D, et al. Insulin decreases myocardial adiponectin receptor 1 expression via PI3K/Akt and FoxO1 pathway. [Research Support, Non-U.S. Gov’t]. Cardiovasc Res. 2012;93(1):69–78. doi:10.1093/cvr/cvr273.PubMed Cui XB, Wang C, Li L, Fan D, Zhou Y, Wu D, et al. Insulin decreases myocardial adiponectin receptor 1 expression via PI3K/Akt and FoxO1 pathway. [Research Support, Non-U.S. Gov’t]. Cardiovasc Res. 2012;93(1):69–78. doi:10.​1093/​cvr/​cvr273.PubMed
72.
Zurück zum Zitat Fang X, Palanivel R, Zhou X, Liu Y, Xu A, Wang Y, et al. Hyperglycemia-and hyperinsulinemia-induced alteration of adiponectin receptor expression and adiponectin effects in L6 myoblasts. [Research Support, Non-U.S. Gov’t]. J Mol Endocrinol. 2005;35(3):465–76. doi:10.1677/jme.1.01877.PubMed Fang X, Palanivel R, Zhou X, Liu Y, Xu A, Wang Y, et al. Hyperglycemia-and hyperinsulinemia-induced alteration of adiponectin receptor expression and adiponectin effects in L6 myoblasts. [Research Support, Non-U.S. Gov’t]. J Mol Endocrinol. 2005;35(3):465–76. doi:10.​1677/​jme.​1.​01877.PubMed
73.
Zurück zum Zitat Yi W, Sun Y, Gao E, Wei X, Lau WB, Zheng Q, et al. Reduced cardioprotective action of adiponectin in high-fat diet-induced type II diabetic mice and its underlying mechanisms. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Antioxid Redox Signal. 2011;15(7):1779–88. doi:10.1089/ars.2010.3722.PubMedCentralPubMed Yi W, Sun Y, Gao E, Wei X, Lau WB, Zheng Q, et al. Reduced cardioprotective action of adiponectin in high-fat diet-induced type II diabetic mice and its underlying mechanisms. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Antioxid Redox Signal. 2011;15(7):1779–88. doi:10.​1089/​ars.​2010.​3722.PubMedCentralPubMed
74.
Zurück zum Zitat Wang C, Li L, Zhang ZG, Fan D, Zhu Y, Wu LL. Globular adiponectin inhibits angiotensin II-induced nuclear factor kappaB activation through AMP-activated protein kinase in cardiac hypertrophy. [Research Support, Non-U.S. Gov’t]. J Cell Physiol. 2010;222(1):149–55. doi:10.1002/jcp.21931.PubMed Wang C, Li L, Zhang ZG, Fan D, Zhu Y, Wu LL. Globular adiponectin inhibits angiotensin II-induced nuclear factor kappaB activation through AMP-activated protein kinase in cardiac hypertrophy. [Research Support, Non-U.S. Gov’t]. J Cell Physiol. 2010;222(1):149–55. doi:10.​1002/​jcp.​21931.PubMed
75.
Zurück zum Zitat Cheng KK, Lam KS, Wang Y, Huang Y, Carling D, Wu D, et al. Adiponectin-induced endothelial nitric oxide synthase activation and nitric oxide production are mediated by APPL1 in endothelial cells. Diabetes. 2007;56(5):1387–94. doi:10.2337/db06-1580.PubMed Cheng KK, Lam KS, Wang Y, Huang Y, Carling D, Wu D, et al. Adiponectin-induced endothelial nitric oxide synthase activation and nitric oxide production are mediated by APPL1 in endothelial cells. Diabetes. 2007;56(5):1387–94. doi:10.​2337/​db06-1580.PubMed
76.
Zurück zum Zitat Wu X, Mahadev K, Fuchsel L, Ouedraogo R, Xu SQ, Goldstein BJ. Adiponectin suppresses IkappaB kinase activation induced by tumor necrosis factor-alpha or high glucose in endothelial cells: role of cAMP and AMP kinase signaling. Am J Physiol Endocrinol Metab. 2007;293(6):E1836–1844. doi:10.1152/ajpendo.00115.2007.PubMed Wu X, Mahadev K, Fuchsel L, Ouedraogo R, Xu SQ, Goldstein BJ. Adiponectin suppresses IkappaB kinase activation induced by tumor necrosis factor-alpha or high glucose in endothelial cells: role of cAMP and AMP kinase signaling. Am J Physiol Endocrinol Metab. 2007;293(6):E1836–1844. doi:10.​1152/​ajpendo.​00115.​2007.PubMed
77.
Zurück zum Zitat Ouchi N, Kihara S, Arita Y, Okamoto Y, Maeda K, Kuriyama H, et al. Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-kappaB signaling through a cAMP-dependent pathway. Circulation. 2000;102(11):1296–301.PubMed Ouchi N, Kihara S, Arita Y, Okamoto Y, Maeda K, Kuriyama H, et al. Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-kappaB signaling through a cAMP-dependent pathway. Circulation. 2000;102(11):1296–301.PubMed
78.
Zurück zum Zitat Wang Y, Cheng KK, Lam KS, Wu D, Huang Y, Vanhoutte PM, et al. APPL1 counteracts obesity-induced vascular insulin resistance and endothelial dysfunction by modulating the endothelial production of nitric oxide and endothelin-1 in mice. Diabetes. 2011;60(11):3044–54. doi:10.2337/db11-0666.PubMedCentralPubMed Wang Y, Cheng KK, Lam KS, Wu D, Huang Y, Vanhoutte PM, et al. APPL1 counteracts obesity-induced vascular insulin resistance and endothelial dysfunction by modulating the endothelial production of nitric oxide and endothelin-1 in mice. Diabetes. 2011;60(11):3044–54. doi:10.​2337/​db11-0666.PubMedCentralPubMed
79.
Zurück zum Zitat Schmid PM, Resch M, Steege A, Fredersdorf-Hahn S, Stoelcker B, Birner C, et al. Globular and full-length adiponectin induce NO-dependent vasodilation in resistance arteries of Zucker lean but not Zucker diabetic fatty rats. Am J Hypertens. 2011;24(3):270–7. doi:10.1038/ajh.2010.239.PubMed Schmid PM, Resch M, Steege A, Fredersdorf-Hahn S, Stoelcker B, Birner C, et al. Globular and full-length adiponectin induce NO-dependent vasodilation in resistance arteries of Zucker lean but not Zucker diabetic fatty rats. Am J Hypertens. 2011;24(3):270–7. doi:10.​1038/​ajh.​2010.​239.PubMed
83.
Zurück zum Zitat Ordelheide, A. M., Heni, M., Gommer, N., Gasse, L., Haas, C., Guirguis, A., et al. The myocyte expression of adiponectin receptors and PPARdelta is highly coordinated and reflects lipid metabolism of the human donors. [Research Support, Non-U.S. Gov’t]. Exp Diabetes Res, 2011, 692536, doi:10.1155/2011/692536. Ordelheide, A. M., Heni, M., Gommer, N., Gasse, L., Haas, C., Guirguis, A., et al. The myocyte expression of adiponectin receptors and PPARdelta is highly coordinated and reflects lipid metabolism of the human donors. [Research Support, Non-U.S. Gov’t]. Exp Diabetes Res, 2011, 692536, doi:10.​1155/​2011/​692536.
84.
Zurück zum Zitat Ceddia RB, Somwar R, Maida A, Fang X, Bikopoulos G, Sweeney G. Globular adiponectin increases GLUT4 translocation and glucose uptake but reduces glycogen synthesis in rat skeletal muscle cells. Diabetologia. 2005;48(1):132–9. doi:10.1007/s00125-004-1609-y.PubMed Ceddia RB, Somwar R, Maida A, Fang X, Bikopoulos G, Sweeney G. Globular adiponectin increases GLUT4 translocation and glucose uptake but reduces glycogen synthesis in rat skeletal muscle cells. Diabetologia. 2005;48(1):132–9. doi:10.​1007/​s00125-004-1609-y.PubMed
85.
Zurück zum Zitat Liu Y, Chewchuk S, Lavigne C, Brule S, Pilon G, Houde V, et al. Functional significance of skeletal muscle adiponectin production, changes in animal models of obesity and diabetes, and regulation by rosiglitazone treatment. Am J Physiol Endocrinol Metab. 2009;297(3):E657–664. doi:10.1152/ajpendo.00186.2009.PubMed Liu Y, Chewchuk S, Lavigne C, Brule S, Pilon G, Houde V, et al. Functional significance of skeletal muscle adiponectin production, changes in animal models of obesity and diabetes, and regulation by rosiglitazone treatment. Am J Physiol Endocrinol Metab. 2009;297(3):E657–664. doi:10.​1152/​ajpendo.​00186.​2009.PubMed
86.
Zurück zum Zitat Wang Y, Zhou M, Lam KS, Xu A. Protective roles of adiponectin in obesity-related fatty liver diseases: Mechanisms and therapeutic implications. Arq Bras Endocrinol Metabol. 2009;53(2):201–12.PubMed Wang Y, Zhou M, Lam KS, Xu A. Protective roles of adiponectin in obesity-related fatty liver diseases: Mechanisms and therapeutic implications. Arq Bras Endocrinol Metabol. 2009;53(2):201–12.PubMed
87.
Zurück zum Zitat Ma K, Cabrero A, Saha PK, Kojima H, Li L, Chang BH, et al. Increased beta -oxidation but no insulin resistance or glucose intolerance in mice lacking adiponectin. J Biol Chem. 2002;277(38):34658–61. doi:10.1074/jbc.C200362200.PubMed Ma K, Cabrero A, Saha PK, Kojima H, Li L, Chang BH, et al. Increased beta -oxidation but no insulin resistance or glucose intolerance in mice lacking adiponectin. J Biol Chem. 2002;277(38):34658–61. doi:10.​1074/​jbc.​C200362200.PubMed
88.
Zurück zum Zitat Maeda N, Shimomura I, Kishida K, Nishizawa H, Matsuda M, Nagaretani H, et al. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nature medicine. 2002;8(7):731–7. doi:10.1038/nm724.PubMed Maeda N, Shimomura I, Kishida K, Nishizawa H, Matsuda M, Nagaretani H, et al. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nature medicine. 2002;8(7):731–7. doi:10.​1038/​nm724.PubMed
89.
Zurück zum Zitat Kubota N, Terauchi Y, Yamauchi T, Kubota T, Moroi M, Matsui J, et al. Disruption of adiponectin causes insulin resistance and neointimal formation. J Biol Chem. 2002;277(29):25863–6. doi:10.1074/jbc.C200251200.PubMed Kubota N, Terauchi Y, Yamauchi T, Kubota T, Moroi M, Matsui J, et al. Disruption of adiponectin causes insulin resistance and neointimal formation. J Biol Chem. 2002;277(29):25863–6. doi:10.​1074/​jbc.​C200251200.PubMed
90.
Zurück zum Zitat Yamauchi T, Nio Y, Maki T, Kobayashi M, Takazawa T, Iwabu M, et al. Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nat Med. 2007;13(3):332–9. doi:10.1038/nm1557.PubMed Yamauchi T, Nio Y, Maki T, Kobayashi M, Takazawa T, Iwabu M, et al. Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nat Med. 2007;13(3):332–9. doi:10.​1038/​nm1557.PubMed
91.
Zurück zum Zitat Bjursell M, Ahnmark A, Bohlooly YM, William-Olsson L, Rhedin M, Peng XR, et al. Opposing effects of adiponectin receptors 1 and 2 on energy metabolism. Diabetes. 2007;56(3):583–93. doi:10.2337/db06-1432.PubMed Bjursell M, Ahnmark A, Bohlooly YM, William-Olsson L, Rhedin M, Peng XR, et al. Opposing effects of adiponectin receptors 1 and 2 on energy metabolism. Diabetes. 2007;56(3):583–93. doi:10.​2337/​db06-1432.PubMed
92.
Zurück zum Zitat Cleasby ME, Lau Q, Polkinghorne E, Patel SA, Leslie SJ, Turner N, et al. The adaptor protein APPL1 increases glycogen accumulation in rat skeletal muscle through activation of the PI3-kinase signaling pathway. J Endocrinol. 2011. doi:10.1530/JOE-11-0039.PubMedCentralPubMed Cleasby ME, Lau Q, Polkinghorne E, Patel SA, Leslie SJ, Turner N, et al. The adaptor protein APPL1 increases glycogen accumulation in rat skeletal muscle through activation of the PI3-kinase signaling pathway. J Endocrinol. 2011. doi:10.​1530/​JOE-11-0039.PubMedCentralPubMed
93.
Zurück zum Zitat Tan Y, You H, Wu C, Altomare DA, Testa JR. Appl1 is dispensable for mouse development, and loss of Appl1 has growth factor-selective effects on Akt signaling in murine embryonic fibroblasts. J Biol Chem. 2010;285(9):6377–89. doi:10.1074/jbc.M109.068452.PubMedCentralPubMed Tan Y, You H, Wu C, Altomare DA, Testa JR. Appl1 is dispensable for mouse development, and loss of Appl1 has growth factor-selective effects on Akt signaling in murine embryonic fibroblasts. J Biol Chem. 2010;285(9):6377–89. doi:10.​1074/​jbc.​M109.​068452.PubMedCentralPubMed
94.
Zurück zum Zitat Qiao L, Kinney B, Yoo HS, Lee B, Schaack J, Shao J. Adiponectin increases skeletal muscle mitochondrial biogenesis by suppressing mitogen-activated protein kinase phosphatase-1. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Diabetes. 2012;61(6):1463–70. doi:10.2337/db11-1475.PubMedCentralPubMed Qiao L, Kinney B, Yoo HS, Lee B, Schaack J, Shao J. Adiponectin increases skeletal muscle mitochondrial biogenesis by suppressing mitogen-activated protein kinase phosphatase-1. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Diabetes. 2012;61(6):1463–70. doi:10.​2337/​db11-1475.PubMedCentralPubMed
96.
Zurück zum Zitat Vu V, Riddell MC, Sweeney G. Circulating adiponectin and adiponectin receptor expression in skeletal muscle: Effects of exercise. Diabetes Metab Res Rev. 2007;23(8):600–11. doi:10.1002/dmrr.778.PubMed Vu V, Riddell MC, Sweeney G. Circulating adiponectin and adiponectin receptor expression in skeletal muscle: Effects of exercise. Diabetes Metab Res Rev. 2007;23(8):600–11. doi:10.​1002/​dmrr.​778.PubMed
97.
Zurück zum Zitat Marinho R, Ropelle ER, Cintra DE, De Souza CT, Da Silva AS, Bertoli FC, et al. Endurance exercise training increases APPL1 expression and improves insulin signaling in the hepatic tissue of diet-induced obese mice, independently of weight loss. [Research Support, Non-U.S. Gov’t]. J Cell Physiol. 2012;227(7):2917–26. doi:10.1002/jcp.23037.PubMed Marinho R, Ropelle ER, Cintra DE, De Souza CT, Da Silva AS, Bertoli FC, et al. Endurance exercise training increases APPL1 expression and improves insulin signaling in the hepatic tissue of diet-induced obese mice, independently of weight loss. [Research Support, Non-U.S. Gov’t]. J Cell Physiol. 2012;227(7):2917–26. doi:10.​1002/​jcp.​23037.PubMed
98.
Zurück zum Zitat Farias JM, Maggi RM, Tromm CB, Silva LA, Luciano TF, Marques SO, et al. Exercise training performed simultaneously to a high-fat diet reduces the degree of insulin resistance and improves adipoR1-2/APPL1 protein levels in mice. [Research Support, Non-U.S. Gov’t]. Lipids Health Dis. 2012;11:134. doi:10.1186/1476-511X-11-134.PubMedCentralPubMed Farias JM, Maggi RM, Tromm CB, Silva LA, Luciano TF, Marques SO, et al. Exercise training performed simultaneously to a high-fat diet reduces the degree of insulin resistance and improves adipoR1-2/APPL1 protein levels in mice. [Research Support, Non-U.S. Gov’t]. Lipids Health Dis. 2012;11:134. doi:10.​1186/​1476-511X-11-134.PubMedCentralPubMed
99.
Zurück zum Zitat Holmes RM, Yi Z, De Filippis E, Berria R, Shahani S, Sathyanarayana P, et al. Increased abundance of the adaptor protein containing pleckstrin homology domain, phosphotyrosine binding domain and leucine zipper motif (APPL1) in patients with obesity and type 2 diabetes: evidence for altered adiponectin signaling. Diabetologia. 2011. doi:10.1007/s00125-011-2173-x. Holmes RM, Yi Z, De Filippis E, Berria R, Shahani S, Sathyanarayana P, et al. Increased abundance of the adaptor protein containing pleckstrin homology domain, phosphotyrosine binding domain and leucine zipper motif (APPL1) in patients with obesity and type 2 diabetes: evidence for altered adiponectin signaling. Diabetologia. 2011. doi:10.​1007/​s00125-011-2173-x.
100.
Zurück zum Zitat Koppenol WH, Bounds PL, Dang CV. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer. 2011;11(5):325–37. doi:10.1038/nrc3038.PubMed Koppenol WH, Bounds PL, Dang CV. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer. 2011;11(5):325–37. doi:10.​1038/​nrc3038.PubMed
103.
Zurück zum Zitat Bergstrom A, Pisani P, Tenet V, Wolk A, Adami HO. Overweight as an avoidable cause of cancer in Europe. International journal of cancer. Journal international du cancer. 2001;91(3):421–30.PubMed Bergstrom A, Pisani P, Tenet V, Wolk A, Adami HO. Overweight as an avoidable cause of cancer in Europe. International journal of cancer. Journal international du cancer. 2001;91(3):421–30.PubMed
104.
Zurück zum Zitat Kritchevsky D. Diet and cancer: What’s Next? The Journal of nutrition. 2003;133(11):3827S–9S.PubMed Kritchevsky D. Diet and cancer: What’s Next? The Journal of nutrition. 2003;133(11):3827S–9S.PubMed
105.
Zurück zum Zitat Shehzad A, Iqbal W, Shehzad O, Lee YS. Adiponectin: Regulation of its production and its role in human diseases. Hormones (Athens). 2012;11(1):8–20. Shehzad A, Iqbal W, Shehzad O, Lee YS. Adiponectin: Regulation of its production and its role in human diseases. Hormones (Athens). 2012;11(1):8–20.
107.
Zurück zum Zitat Hotta K, Funahashi T, Bodkin NL, Ortmeyer HK, Arita Y, Hansen BC, et al. Circulating concentrations of the adipocyte protein adiponectin Are decreased in parallel with reduced insulin sensitivity during the progression to type 2 diabetes in rhesus monkeys. Diabetes. 2001;50(5):1126–33. doi:10.2337/diabetes.50.5.1126.PubMed Hotta K, Funahashi T, Bodkin NL, Ortmeyer HK, Arita Y, Hansen BC, et al. Circulating concentrations of the adipocyte protein adiponectin Are decreased in parallel with reduced insulin sensitivity during the progression to type 2 diabetes in rhesus monkeys. Diabetes. 2001;50(5):1126–33. doi:10.​2337/​diabetes.​50.​5.​1126.PubMed
108.
Zurück zum Zitat Korner A, Pazaitou-Panayiotou K, Kelesidis T, Kelesidis I, Williams CJ, Kaprara A, et al. Total and high-molecular-weight adiponectin in breast cancer: In vitro and in vivo studies. Journal of Clinical Endocrinology & Metabolism. 2007;92(3):1041–8. doi:10.1210/jc.2006-1858. Korner A, Pazaitou-Panayiotou K, Kelesidis T, Kelesidis I, Williams CJ, Kaprara A, et al. Total and high-molecular-weight adiponectin in breast cancer: In vitro and in vivo studies. Journal of Clinical Endocrinology & Metabolism. 2007;92(3):1041–8. doi:10.​1210/​jc.​2006-1858.
109.
Zurück zum Zitat Mantzoros C, Petridou E, Dessypris N, Chavelas C, Dalamaga M, Alexe DM, et al. Adiponectin and breast cancer risk. Journal of Clinical Endocrinology & Metabolism. 2004;89(3):1102–7. doi:10.1210/jc.2003-031804. Mantzoros C, Petridou E, Dessypris N, Chavelas C, Dalamaga M, Alexe DM, et al. Adiponectin and breast cancer risk. Journal of Clinical Endocrinology & Metabolism. 2004;89(3):1102–7. doi:10.​1210/​jc.​2003-031804.
110.
Zurück zum Zitat Miyoshi Y, Funahashi T, Kihara S, Taguchi T, Tamaki Y, Matsuzawa Y, et al. Association of serum adiponectin levels with breast cancer risk. Clin Cancer Res. 2003;9(15):5699–704.PubMed Miyoshi Y, Funahashi T, Kihara S, Taguchi T, Tamaki Y, Matsuzawa Y, et al. Association of serum adiponectin levels with breast cancer risk. Clin Cancer Res. 2003;9(15):5699–704.PubMed
111.
Zurück zum Zitat Chen D-C, Chung Y-F, Yeh Y-T, Chaung H-C, Kuo F-C, Fu O-Y, et al. Serum adiponectin and leptin levels in Taiwanese breast cancer patients. Cancer letters. 2006;237(1):109–14.PubMed Chen D-C, Chung Y-F, Yeh Y-T, Chaung H-C, Kuo F-C, Fu O-Y, et al. Serum adiponectin and leptin levels in Taiwanese breast cancer patients. Cancer letters. 2006;237(1):109–14.PubMed
113.
Zurück zum Zitat Dieudonne M-N, Bussiere M, Dos Santos E, Leneveu M-C, Giudicelli Y, Pecquery R. Adiponectin mediates antiproliferative and apoptotic responses in human MCF7 breast cancer cells. Biochem Biophys Res Commun. 2006;345(1):271–9. doi:10.1016/j.bbrc.2006.04.076.PubMed Dieudonne M-N, Bussiere M, Dos Santos E, Leneveu M-C, Giudicelli Y, Pecquery R. Adiponectin mediates antiproliferative and apoptotic responses in human MCF7 breast cancer cells. Biochem Biophys Res Commun. 2006;345(1):271–9. doi:10.​1016/​j.​bbrc.​2006.​04.​076.PubMed
115.
Zurück zum Zitat Li G, Cong L, Gasser J, Zhao J, Chen K, Li F. Mechanisms underlying the anti-proliferative actions of adiponectin in human breast cancer cells, MCF7‚ÄìDependency on the cAMP/protein kinase-a pathway. Nutrition and Cancer. 2010;63(1):80–8. doi:10.1080/01635581.2010.516472. Li G, Cong L, Gasser J, Zhao J, Chen K, Li F. Mechanisms underlying the anti-proliferative actions of adiponectin in human breast cancer cells, MCF7‚ÄìDependency on the cAMP/protein kinase-a pathway. Nutrition and Cancer. 2010;63(1):80–8. doi:10.​1080/​01635581.​2010.​516472.
116.
Zurück zum Zitat Pfeiler GH, Buechler C, Neumeier M, Schaffler A, Schmitz G, Ortmann O, et al. Adiponectin effects on human breast cancer cells are dependent on 17-beta estradiol. Oncol Rep. 2008;19(3):787–93.PubMed Pfeiler GH, Buechler C, Neumeier M, Schaffler A, Schmitz G, Ortmann O, et al. Adiponectin effects on human breast cancer cells are dependent on 17-beta estradiol. Oncol Rep. 2008;19(3):787–93.PubMed
117.
Zurück zum Zitat Taliaferro-Smith L, Nagalingam A, Knight BB, Oberlick E, Saxena NK, Sharma D. Integral role of PTP1B in adiponectin-mediated inhibition of oncogenic actions of leptin in breast carcinogenesis. Neoplasia. 2013;15(1):23–38.PubMedCentralPubMed Taliaferro-Smith L, Nagalingam A, Knight BB, Oberlick E, Saxena NK, Sharma D. Integral role of PTP1B in adiponectin-mediated inhibition of oncogenic actions of leptin in breast carcinogenesis. Neoplasia. 2013;15(1):23–38.PubMedCentralPubMed
118.
Zurück zum Zitat Nkhata KJ, Ray A, Schuster TF, Grossmann ME, Cleary MP. Effects of adiponectin and leptin co-treatment on human breast cancer cell growth. Oncol Rep. 2009;21(6):1611–9.PubMed Nkhata KJ, Ray A, Schuster TF, Grossmann ME, Cleary MP. Effects of adiponectin and leptin co-treatment on human breast cancer cell growth. Oncol Rep. 2009;21(6):1611–9.PubMed
119.
Zurück zum Zitat Kim KY, Baek A, Hwang JE, Choi YA, Jeong J, Lee MS, et al. Adiponectin-activated AMPK stimulates dephosphorylation of AKT through protein phosphatase 2A activation. Cancer Res. 2009;69(9):4018–26. doi:10.1158/0008-5472.can-08-2641.PubMed Kim KY, Baek A, Hwang JE, Choi YA, Jeong J, Lee MS, et al. Adiponectin-activated AMPK stimulates dephosphorylation of AKT through protein phosphatase 2A activation. Cancer Res. 2009;69(9):4018–26. doi:10.​1158/​0008-5472.​can-08-2641.PubMed
120.
Zurück zum Zitat Wang Y, Lam JB, Lam KS, Liu J, Lam MC, Hoo RL, et al. Adiponectin modulates the glycogen synthase kinase-3beta/beta-catenin signaling pathway and attenuates mammary tumorigenesis of MDA-MB-231 cells in nude mice. Cancer Res. 2006;66(23):11462–70. doi:10.1158/0008-5472.can-06-1969.PubMed Wang Y, Lam JB, Lam KS, Liu J, Lam MC, Hoo RL, et al. Adiponectin modulates the glycogen synthase kinase-3beta/beta-catenin signaling pathway and attenuates mammary tumorigenesis of MDA-MB-231 cells in nude mice. Cancer Res. 2006;66(23):11462–70. doi:10.​1158/​0008-5472.​can-06-1969.PubMed
121.
Zurück zum Zitat Liu J, Lam JB, Chow KH, Xu A, Lam KS, Moon RT, et al. Adiponectin stimulates Wnt inhibitory factor-1 expression through epigenetic regulations involving the transcription factor specificity protein 1. Carcinogenesis. 2008;29(11):2195–202. doi:10.1093/carcin/bgn194.PubMed Liu J, Lam JB, Chow KH, Xu A, Lam KS, Moon RT, et al. Adiponectin stimulates Wnt inhibitory factor-1 expression through epigenetic regulations involving the transcription factor specificity protein 1. Carcinogenesis. 2008;29(11):2195–202. doi:10.​1093/​carcin/​bgn194.PubMed
126.
Zurück zum Zitat Inoki K, Zhu T, Guan K-L. TSC2 Mediates cellular energy response to control cell growth and survival. Cell. 2003;115(5):577–90.PubMed Inoki K, Zhu T, Guan K-L. TSC2 Mediates cellular energy response to control cell growth and survival. Cell. 2003;115(5):577–90.PubMed
127.
Zurück zum Zitat Kimura N, Tokunaga C, Dalal S, Richardson C, Yoshino K, Hara K, et al. A possible linkage between AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) signaling pathway. Genes Cells. 2003;8(1):65–79.PubMed Kimura N, Tokunaga C, Dalal S, Richardson C, Yoshino K, Hara K, et al. A possible linkage between AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) signaling pathway. Genes Cells. 2003;8(1):65–79.PubMed
128.
Zurück zum Zitat Shaw RJ, Bardeesy N, Manning BD, Lopez L, Kosmatka M, DePinho RA, et al. The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer cell. 2004;6(1):91–9.PubMed Shaw RJ, Bardeesy N, Manning BD, Lopez L, Kosmatka M, DePinho RA, et al. The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer cell. 2004;6(1):91–9.PubMed
129.
Zurück zum Zitat Hardie DG. AMP-activated/SNF1 protein kinases: Conserved guardians of cellular energy. Nat Rev Mol Cell Biol. 2007;8(10):774–85. doi:10.1038/nrm2249.PubMed Hardie DG. AMP-activated/SNF1 protein kinases: Conserved guardians of cellular energy. Nat Rev Mol Cell Biol. 2007;8(10):774–85. doi:10.​1038/​nrm2249.PubMed
130.
131.
Zurück zum Zitat Karaduman M, Bilici A, Ozet A, Sengul A, Musabak U, Alomeroglu M. Tissue levels of adiponectin in breast cancer patients. Med Oncol. 2007;24(4):361–6.PubMed Karaduman M, Bilici A, Ozet A, Sengul A, Musabak U, Alomeroglu M. Tissue levels of adiponectin in breast cancer patients. Med Oncol. 2007;24(4):361–6.PubMed
Metadaten
Titel
The role of adiponectin signaling in metabolic syndrome and cancer
verfasst von
Michael P. Scheid
Gary Sweeney
Publikationsdatum
01.06.2014
Verlag
Springer US
Erschienen in
Reviews in Endocrine and Metabolic Disorders / Ausgabe 2/2014
Print ISSN: 1389-9155
Elektronische ISSN: 1573-2606
DOI
https://doi.org/10.1007/s11154-013-9265-5

Weitere Artikel der Ausgabe 2/2014

Reviews in Endocrine and Metabolic Disorders 2/2014 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.