Skip to main content
Erschienen in: Brain Structure and Function 4/2019

07.03.2019 | Original Article

The rostrodorsal periaqueductal gray influences both innate fear responses and acquisition of fear memory in animals exposed to a live predator

verfasst von: Rodrigo de Andrade Rufino, Sandra Regina Mota-Ortiz, Miguel Antonio Xavier De Lima, Marcus Vinicius C. Baldo, Newton Sabino Canteras

Erschienen in: Brain Structure and Function | Ausgabe 4/2019

Einloggen, um Zugang zu erhalten

Abstract

A few studies have evaluated the behavioral roles of the periaqueductal gray (PAG) in animals facing ethologically relevant threats. Exposure to a live cat induces striking activation in the rostrodorsal and caudal ventral PAG. In the present investigation, we first showed that cytotoxic lesions of the rostrodorsal and caudal ventral PAG had similar effects on innate fear responses during cat exposure, practically abolishing freezing and increasing risk assessment responses. Conversely, rostrodorsal PAG lesions but not caudal ventral lesions disrupted learned contextual fear responses to cat exposure. Next, we examined how muscimol inactivation of the rostrodorsal PAG at different times (i.e., during, immediately after and 20 min after cat exposure) influences learned contextual fear responses, and we found that inactivation of the rostrodorsal PAG during or immediately after cat exposure but not 20 min later impaired contextual fear learning. Thus, suggesting that the rostrodorsal PAG is involved in the acquisition, but not the consolidation, of contextual fear memory to predatory threat. Notably, the dosolateral PAG contains a distinct population of neurons containing the neuronal nitric oxide synthase (nNOS) enzyme, and in the last experiment, we investigated how nitric oxide released in rostrodorsal PAG influences contextual fear memory processing. Accordingly, injection of a selective nNOS inhibitor into the rostrodorsal PAG immediately after cat exposure disrupted learned contextual responses. Overall, the present findings suggest that the acquisition of contextual fear learning is influenced by an optimum level of dorsal PAG activation, which extends from during to shortly after predator exposure and depends on local NO release.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Aguiar DC, Guimarães FS (2009) Blockade of NMDA receptors and nitric oxide synthesis in the dorsolateral periaqueductal gray attenuates behavioral and cellular responses of rats exposed to a live predator. J Neurosci Res 87:2418–2429CrossRefPubMed Aguiar DC, Guimarães FS (2009) Blockade of NMDA receptors and nitric oxide synthesis in the dorsolateral periaqueductal gray attenuates behavioral and cellular responses of rats exposed to a live predator. J Neurosci Res 87:2418–2429CrossRefPubMed
Zurück zum Zitat Assareh N, Sarrami M, Carrive P, McNally GP (2016) The organization of defensive behavior elicited by optogenetic excitation of rat lateral or ventrolateral periaqueductal gray. Behav Neurosci 130:406–414CrossRefPubMed Assareh N, Sarrami M, Carrive P, McNally GP (2016) The organization of defensive behavior elicited by optogenetic excitation of rat lateral or ventrolateral periaqueductal gray. Behav Neurosci 130:406–414CrossRefPubMed
Zurück zum Zitat Back FP, Carobrez AP (2018) Periaqueductal gray glutamatergic, cannabinoid and, vanilloid receptor interplay in defensive behavior and aversive memory formation. Neuropharmacology 135:399–411CrossRefPubMed Back FP, Carobrez AP (2018) Periaqueductal gray glutamatergic, cannabinoid and, vanilloid receptor interplay in defensive behavior and aversive memory formation. Neuropharmacology 135:399–411CrossRefPubMed
Zurück zum Zitat Bandler R, Keay KA (1996) Columnar organization in the midbrain periaqueductal gray and the integration of emotional expression. Prog Brain Res 107:285–300CrossRefPubMed Bandler R, Keay KA (1996) Columnar organization in the midbrain periaqueductal gray and the integration of emotional expression. Prog Brain Res 107:285–300CrossRefPubMed
Zurück zum Zitat Bandler R, Shipley MT (1994) Columnar organization of the midbrain periaqueductal gray: modules for emotional expression. Trends Neurosci 17:379–389CrossRefPubMed Bandler R, Shipley MT (1994) Columnar organization of the midbrain periaqueductal gray: modules for emotional expression. Trends Neurosci 17:379–389CrossRefPubMed
Zurück zum Zitat Bindi RP, Baldo MVC, Canteras NS (2018) Roles of the anterior basolateral amygdalar nucleus during exposure to a live predator and to a predator-associated context. Behav Brain Res 342:51–56CrossRefPubMed Bindi RP, Baldo MVC, Canteras NS (2018) Roles of the anterior basolateral amygdalar nucleus during exposure to a live predator and to a predator-associated context. Behav Brain Res 342:51–56CrossRefPubMed
Zurück zum Zitat Bittencourt AS, Carobrez AP, Zamprogno LP, Tufik S, Schenberg LC (2004) Organization of single components of defensive behaviors within distinct columns of periaqueductal gray matter of the rat: role of N-methyl-d-aspartic acid glutamate receptors. Neuroscience 125:71–89CrossRefPubMed Bittencourt AS, Carobrez AP, Zamprogno LP, Tufik S, Schenberg LC (2004) Organization of single components of defensive behaviors within distinct columns of periaqueductal gray matter of the rat: role of N-methyl-d-aspartic acid glutamate receptors. Neuroscience 125:71–89CrossRefPubMed
Zurück zum Zitat Blanchard RJ, Blanchard DC, Hori K (1989) Ethoexperimental approaches to the study of defensive behavior. In: Blanchard RJ, Brain PF, Blanchard DC, Parmigiani S (eds) Ethoexperimental approaches to the study of behavior. Academic Publishers, Dordrecht, pp 114–136CrossRef Blanchard RJ, Blanchard DC, Hori K (1989) Ethoexperimental approaches to the study of defensive behavior. In: Blanchard RJ, Brain PF, Blanchard DC, Parmigiani S (eds) Ethoexperimental approaches to the study of behavior. Academic Publishers, Dordrecht, pp 114–136CrossRef
Zurück zum Zitat Blanchard DC, Li CI, Hubbard D, Markham CM, Yang M, Takahashi LK, Blanchard RJ (2003) Dorsal premammillary nucleus differentially modulates defensive behaviors induced by different threat stimuli in rats. Neurosci Lett 345:145–148CrossRefPubMed Blanchard DC, Li CI, Hubbard D, Markham CM, Yang M, Takahashi LK, Blanchard RJ (2003) Dorsal premammillary nucleus differentially modulates defensive behaviors induced by different threat stimuli in rats. Neurosci Lett 345:145–148CrossRefPubMed
Zurück zum Zitat Blanchard DC, Griebel G, Pobbe R, Blanchard RJ (2011) Risk assessment as an evolved threat detection and analysis process. Neurosci Biobehav Rev 35:991–998CrossRefPubMed Blanchard DC, Griebel G, Pobbe R, Blanchard RJ (2011) Risk assessment as an evolved threat detection and analysis process. Neurosci Biobehav Rev 35:991–998CrossRefPubMed
Zurück zum Zitat Carrive P (1993) The periaqueductal gray and defensive behavior: functional representation and neuronal organization. Behav Brain Res 58:27–47CrossRefPubMed Carrive P (1993) The periaqueductal gray and defensive behavior: functional representation and neuronal organization. Behav Brain Res 58:27–47CrossRefPubMed
Zurück zum Zitat Cezário AF, Ribeiro-Barbosa ER, Baldo MV, Canteras NS (2008) Hypothalamic sites responding to predator threats—the role of the dorsal premammillary nucleus in unconditioned and conditioned antipredatory defensive behavior. Eur J Neurosci 28:1003–1015CrossRefPubMed Cezário AF, Ribeiro-Barbosa ER, Baldo MV, Canteras NS (2008) Hypothalamic sites responding to predator threats—the role of the dorsal premammillary nucleus in unconditioned and conditioned antipredatory defensive behavior. Eur J Neurosci 28:1003–1015CrossRefPubMed
Zurück zum Zitat Chiavegatto S, Scavone C, Canteras NS (1998) Nitric oxide synthase activity in the dorsal periaqueductal gray of rats expressing innate fear responses. Neuroreport 9:571 576CrossRef Chiavegatto S, Scavone C, Canteras NS (1998) Nitric oxide synthase activity in the dorsal periaqueductal gray of rats expressing innate fear responses. Neuroreport 9:571 576CrossRef
Zurück zum Zitat Comoli E, Ribeiro-Barbosa ER, Canteras NS (2000) Afferent connections of the dorsal premammillary nucleus. J Comp Neurol 423:83–98CrossRefPubMed Comoli E, Ribeiro-Barbosa ER, Canteras NS (2000) Afferent connections of the dorsal premammillary nucleus. J Comp Neurol 423:83–98CrossRefPubMed
Zurück zum Zitat Comoli E, Ribeiro-Barbosa ER, Canteras NS (2003) Predatory hunting and exposure to a live predator induce opposite patterns of Fos immunoreactivity in the PAG. Behav Brain Res 138:17–28CrossRefPubMed Comoli E, Ribeiro-Barbosa ER, Canteras NS (2003) Predatory hunting and exposure to a live predator induce opposite patterns of Fos immunoreactivity in the PAG. Behav Brain Res 138:17–28CrossRefPubMed
Zurück zum Zitat De Oca BM, DeCola JP, Maren S, Fanselow MS (1998) Distinct regions of the periaqueductal gray are involved in the acquisition and expression of defensive responses. J Neurosci 18:3426–3432CrossRefPubMed De Oca BM, DeCola JP, Maren S, Fanselow MS (1998) Distinct regions of the periaqueductal gray are involved in the acquisition and expression of defensive responses. J Neurosci 18:3426–3432CrossRefPubMed
Zurück zum Zitat de Lima MA, Baldo MV, Canteras NS (2017) A role for the anteromedial thalamic nucleus in the acquisition of contextual fear memory to predatory threats. Brain Struct Funct 222:113–129CrossRefPubMed de Lima MA, Baldo MV, Canteras NS (2017) A role for the anteromedial thalamic nucleus in the acquisition of contextual fear memory to predatory threats. Brain Struct Funct 222:113–129CrossRefPubMed
Zurück zum Zitat Deng H, Xiao X, Wang Z (2016) Periaqueductal gray neuronal activities underlie different aspects of defensive behaviors. J Neurosci 36:7580–7588CrossRefPubMed Deng H, Xiao X, Wang Z (2016) Periaqueductal gray neuronal activities underlie different aspects of defensive behaviors. J Neurosci 36:7580–7588CrossRefPubMed
Zurück zum Zitat Di Scala G, Sandner G (1989) Conditioned place aversion produced by microinjections of semicarbazide into the periaqueductal gray of the rat. Brain Res 483:91–97CrossRefPubMed Di Scala G, Sandner G (1989) Conditioned place aversion produced by microinjections of semicarbazide into the periaqueductal gray of the rat. Brain Res 483:91–97CrossRefPubMed
Zurück zum Zitat Di Scala G, Mana MJ, Jacobs WJ, Phillips AG (1987) Evidence of Pavlovian conditioned fear following electrical stimulation of the periaqueductal grey in the rat. Physiol Behav 40:55–63CrossRefPubMed Di Scala G, Mana MJ, Jacobs WJ, Phillips AG (1987) Evidence of Pavlovian conditioned fear following electrical stimulation of the periaqueductal grey in the rat. Physiol Behav 40:55–63CrossRefPubMed
Zurück zum Zitat Edeline JM, Hars B, Hennevin E, Cotillon N (2002) Muscimol diffusion after intracerebral microinjections: a reevaluation based on electrophysiological and autoradiographic quantifications. Neurobiol Learn Mem 78:100–124CrossRefPubMed Edeline JM, Hars B, Hennevin E, Cotillon N (2002) Muscimol diffusion after intracerebral microinjections: a reevaluation based on electrophysiological and autoradiographic quantifications. Neurobiol Learn Mem 78:100–124CrossRefPubMed
Zurück zum Zitat Fanselow MS (1991) The midbrain periaqueductal gray as a coordinator of action in response to fear and anxiety. In: Depaulis A, Bandler R (eds) The midbrain periaqueductal gray matter: functional, anatomical and neurochemical organization. Plenum Press, New York, pp 151–173CrossRef Fanselow MS (1991) The midbrain periaqueductal gray as a coordinator of action in response to fear and anxiety. In: Depaulis A, Bandler R (eds) The midbrain periaqueductal gray matter: functional, anatomical and neurochemical organization. Plenum Press, New York, pp 151–173CrossRef
Zurück zum Zitat Furlong TM, Cole S, Hamlin AS, McNally GP (2010) The role of prefrontal cortex in predictive fear learning. Behav Neurosci 124:574–586CrossRefPubMed Furlong TM, Cole S, Hamlin AS, McNally GP (2010) The role of prefrontal cortex in predictive fear learning. Behav Neurosci 124:574–586CrossRefPubMed
Zurück zum Zitat Goto M, Canteras NS, Burns G, Swanson LW (2005) Projections from the subfornical region of the lateral hypothalamic area. J Comp Neurol 493:412–438CrossRefPubMedPubMedCentral Goto M, Canteras NS, Burns G, Swanson LW (2005) Projections from the subfornical region of the lateral hypothalamic area. J Comp Neurol 493:412–438CrossRefPubMedPubMedCentral
Zurück zum Zitat Gray JA, McNaughton N (2000) The neuropsychology of anxiety, 2nd edn. University Press, Oxford Gray JA, McNaughton N (2000) The neuropsychology of anxiety, 2nd edn. University Press, Oxford
Zurück zum Zitat Guimarães FS, Beijamini V, Moreira FA, Aguiar DC, de Lucca AC (2005) Role of nitric oxide in brain regions related to defensive reactions. Neurosci Biobehav Rev 29:1313–1322CrossRefPubMed Guimarães FS, Beijamini V, Moreira FA, Aguiar DC, de Lucca AC (2005) Role of nitric oxide in brain regions related to defensive reactions. Neurosci Biobehav Rev 29:1313–1322CrossRefPubMed
Zurück zum Zitat Johansen JP, Tarpley JW, LeDoux JE, Blair HT (2010) Neural substrates for expectation-modulated fear learning in the amygdala and periaqueductal gray. Nat Neurosci 13:979–998CrossRefPubMedPubMedCentral Johansen JP, Tarpley JW, LeDoux JE, Blair HT (2010) Neural substrates for expectation-modulated fear learning in the amygdala and periaqueductal gray. Nat Neurosci 13:979–998CrossRefPubMedPubMedCentral
Zurück zum Zitat Kim EJ, Horovitz O, Pellman BA, Tan LM, Li Q, Richter-Levin G, Kim JJ (2013) Dorsal periaqueductal gray-amygdala pathway conveys both innate and learned fear responses in rats. Proc Natl Acad Sci USA 110:14795–14800CrossRefPubMed Kim EJ, Horovitz O, Pellman BA, Tan LM, Li Q, Richter-Levin G, Kim JJ (2013) Dorsal periaqueductal gray-amygdala pathway conveys both innate and learned fear responses in rats. Proc Natl Acad Sci USA 110:14795–14800CrossRefPubMed
Zurück zum Zitat Kincheski GC, Mota-Ortiz SR, Pavesi E, Canteras NS, Carobrez AP (2012) The dorsolateral periaqueductal gray and its role in mediating fear learning to life threatening events. PLoS One 7:e50361CrossRefPubMedPubMedCentral Kincheski GC, Mota-Ortiz SR, Pavesi E, Canteras NS, Carobrez AP (2012) The dorsolateral periaqueductal gray and its role in mediating fear learning to life threatening events. PLoS One 7:e50361CrossRefPubMedPubMedCentral
Zurück zum Zitat Koutsikou S, Crook JJ, Earl EV, Leith JL, Watson TC, Lumb BM, Apps R (2014) Neural substrates underlying fear-evoked freezing: the periaqueductal grey-cerebellar link. J Physiol 592:2197–2213CrossRefPubMedPubMedCentral Koutsikou S, Crook JJ, Earl EV, Leith JL, Watson TC, Lumb BM, Apps R (2014) Neural substrates underlying fear-evoked freezing: the periaqueductal grey-cerebellar link. J Physiol 592:2197–2213CrossRefPubMedPubMedCentral
Zurück zum Zitat Koutsikou S, Watson TC, Crook JJ, Leith JL, Lawrenson CL, Apps R, Lumb BM (2015) The periaqueductal gray orchestrates sensory and motor circuits at multiple levels of the neuraxis. J Neurosci 35:14132–14147CrossRefPubMedPubMedCentral Koutsikou S, Watson TC, Crook JJ, Leith JL, Lawrenson CL, Apps R, Lumb BM (2015) The periaqueductal gray orchestrates sensory and motor circuits at multiple levels of the neuraxis. J Neurosci 35:14132–14147CrossRefPubMedPubMedCentral
Zurück zum Zitat LeDoux JE, Iwata J, Cicchetti P, Reis DJ (1988) Different projections of the central amygdaloid nucleus mediate autonomic and behavioral correlates of conditioned fear. J Neurosci 8:2517–2529CrossRefPubMed LeDoux JE, Iwata J, Cicchetti P, Reis DJ (1988) Different projections of the central amygdaloid nucleus mediate autonomic and behavioral correlates of conditioned fear. J Neurosci 8:2517–2529CrossRefPubMed
Zurück zum Zitat Linke R, Braune G, Schwegler H (2000) Differential projection of the posterior paralaminar thalamic nuclei to the amygdaloid complex in the rat. Exp Brain Res 134:520–532CrossRefPubMed Linke R, Braune G, Schwegler H (2000) Differential projection of the posterior paralaminar thalamic nuclei to the amygdaloid complex in the rat. Exp Brain Res 134:520–532CrossRefPubMed
Zurück zum Zitat Martin JH (1991) Autoradiographic estimation of the extent of reversible inactivation produced by microinjection of lidocaine and muscimol in the rat. Neurosci Lett 127:160–164CrossRefPubMed Martin JH (1991) Autoradiographic estimation of the extent of reversible inactivation produced by microinjection of lidocaine and muscimol in the rat. Neurosci Lett 127:160–164CrossRefPubMed
Zurück zum Zitat Martinez RC, Carvalho-Netto EF, Ribeiro-Barbosa ER, Baldo MV, Canteras NS (2011) Amygdalar roles during exposure to a live predator and to a predator-associated context. Neuroscience 172:314–328CrossRefPubMed Martinez RC, Carvalho-Netto EF, Ribeiro-Barbosa ER, Baldo MV, Canteras NS (2011) Amygdalar roles during exposure to a live predator and to a predator-associated context. Neuroscience 172:314–328CrossRefPubMed
Zurück zum Zitat Motta SC, Carobrez AP, Canteras NS (2017) The periaqueductal gray and primal emotional processing critical to influence complex defensive responses, fear learning and reward seeking. Neurosci Biobehav Rev 76:39–47CrossRefPubMed Motta SC, Carobrez AP, Canteras NS (2017) The periaqueductal gray and primal emotional processing critical to influence complex defensive responses, fear learning and reward seeking. Neurosci Biobehav Rev 76:39–47CrossRefPubMed
Zurück zum Zitat Onstott D, Mayer B, Beitz AJ (1993) Nitric oxide synthase immunoreactive neurons anatomically define a longitudinal dorsolateral column within the midbrain periaqueductal gray of the rat: analysis using laser confocal microscopy. Brain Res 610:317–324CrossRefPubMed Onstott D, Mayer B, Beitz AJ (1993) Nitric oxide synthase immunoreactive neurons anatomically define a longitudinal dorsolateral column within the midbrain periaqueductal gray of the rat: analysis using laser confocal microscopy. Brain Res 610:317–324CrossRefPubMed
Zurück zum Zitat Ribeiro-Barbosa ER, Canteras NS, Cezário AF, Blanchard RJ, Blanchard DC (2005) An alternative experimental procedure for studying predator-related defensive responses. Neurosci Biobehav Rev 29:1255–1263CrossRefPubMed Ribeiro-Barbosa ER, Canteras NS, Cezário AF, Blanchard RJ, Blanchard DC (2005) An alternative experimental procedure for studying predator-related defensive responses. Neurosci Biobehav Rev 29:1255–1263CrossRefPubMed
Zurück zum Zitat Risold PY, Canteras NS, Swanson LW (1994) Organization of projections from the anterior hypothalamic nucleus: a Phaseolus vulgaris-leucoagglutinin study in the rat. J Comp Neurol 348:1–40CrossRefPubMed Risold PY, Canteras NS, Swanson LW (1994) Organization of projections from the anterior hypothalamic nucleus: a Phaseolus vulgaris-leucoagglutinin study in the rat. J Comp Neurol 348:1–40CrossRefPubMed
Zurück zum Zitat Rufino RA (2015) Investigation of periaqueductal gray (PAG) in the organization of defensive antipredatory behavior. Master Thesis. Institute of Biomedical Sciences, University of São Paulo Rufino RA (2015) Investigation of periaqueductal gray (PAG) in the organization of defensive antipredatory behavior. Master Thesis. Institute of Biomedical Sciences, University of São Paulo
Zurück zum Zitat Souza RR, Carobrez AP (2016) Acquisition and expression of fear memories are distinctly modulated along the dorsolateral periaqueductal gray axis of rats exposed to predator odor. Behav Brain Res 315:160–167CrossRefPubMed Souza RR, Carobrez AP (2016) Acquisition and expression of fear memories are distinctly modulated along the dorsolateral periaqueductal gray axis of rats exposed to predator odor. Behav Brain Res 315:160–167CrossRefPubMed
Zurück zum Zitat Swanson LW (2004) Brain maps structure of the rat brain, 3rd edn. Elsevier, Amesterdam Swanson LW (2004) Brain maps structure of the rat brain, 3rd edn. Elsevier, Amesterdam
Zurück zum Zitat Tabachnick BG, Fidell LS (2007) Using multivariate statistics, 5th edn. Pearson Education Inc, Boston Tabachnick BG, Fidell LS (2007) Using multivariate statistics, 5th edn. Pearson Education Inc, Boston
Zurück zum Zitat Tovote P, Esposito MS, Botta P, Chaudun F, Fadok JP, Markovic M, Wolff SB, Ramakrishnan C, Fenno L, Deisseroth K, Herry C, Arber S, Lüthi A (2016) Midbrain circuits for defensive behaviour. Nature 534:206–221CrossRefPubMed Tovote P, Esposito MS, Botta P, Chaudun F, Fadok JP, Markovic M, Wolff SB, Ramakrishnan C, Fenno L, Deisseroth K, Herry C, Arber S, Lüthi A (2016) Midbrain circuits for defensive behaviour. Nature 534:206–221CrossRefPubMed
Zurück zum Zitat van Groen T, Wyss JM (1992) Projections from the laterodorsal nucleus of the thalamus to the limbic and visual cortices in the rat. J Comp Neurol 324:427–448CrossRefPubMed van Groen T, Wyss JM (1992) Projections from the laterodorsal nucleus of the thalamus to the limbic and visual cortices in the rat. J Comp Neurol 324:427–448CrossRefPubMed
Zurück zum Zitat Vertes RP, Hoover WB, Do Valle AC, Sherman A, Rodriguez JJ (2006) Efferent projections of reuniens and rhomboid nuclei of the thalamus in the rat. J Comp Neurol 499:768–796CrossRefPubMed Vertes RP, Hoover WB, Do Valle AC, Sherman A, Rodriguez JJ (2006) Efferent projections of reuniens and rhomboid nuclei of the thalamus in the rat. J Comp Neurol 499:768–796CrossRefPubMed
Zurück zum Zitat Vianna DM, Landeira-Fernandez J, Brandão ML (2001) Dorsolateral and ventral regions of the periaqueductal gray matter are involved in distinct types of fear. Neurosci Biobehav Rev 25:711–719CrossRefPubMed Vianna DM, Landeira-Fernandez J, Brandão ML (2001) Dorsolateral and ventral regions of the periaqueductal gray matter are involved in distinct types of fear. Neurosci Biobehav Rev 25:711–719CrossRefPubMed
Zurück zum Zitat Vincent SR, Kimura H (1992) Histochemical mapping of nitric oxide synthase in the rat brain. Neuroscience 46:755–784CrossRefPubMed Vincent SR, Kimura H (1992) Histochemical mapping of nitric oxide synthase in the rat brain. Neuroscience 46:755–784CrossRefPubMed
Zurück zum Zitat Walker P, Carrive P (2003) Role of ventrolateral periaqueductal gray neurons in the behavioral and cardiovascular responses to contextual conditioned fear and poststress recovery. Neuroscience 116:897–912CrossRefPubMed Walker P, Carrive P (2003) Role of ventrolateral periaqueductal gray neurons in the behavioral and cardiovascular responses to contextual conditioned fear and poststress recovery. Neuroscience 116:897–912CrossRefPubMed
Metadaten
Titel
The rostrodorsal periaqueductal gray influences both innate fear responses and acquisition of fear memory in animals exposed to a live predator
verfasst von
Rodrigo de Andrade Rufino
Sandra Regina Mota-Ortiz
Miguel Antonio Xavier De Lima
Marcus Vinicius C. Baldo
Newton Sabino Canteras
Publikationsdatum
07.03.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Brain Structure and Function / Ausgabe 4/2019
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-019-01852-6

Weitere Artikel der Ausgabe 4/2019

Brain Structure and Function 4/2019 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Viel Bewegung in der Parkinsonforschung

25.04.2024 Parkinson-Krankheit Nachrichten

Neue arznei- und zellbasierte Ansätze, Frühdiagnose mit Bewegungssensoren, Rückenmarkstimulation gegen Gehblockaden – in der Parkinsonforschung tut sich einiges. Auf dem Deutschen Parkinsonkongress ging es auch viel um technische Innovationen.

Demenzkranke durch Antipsychotika vielfach gefährdet

23.04.2024 Demenz Nachrichten

Wenn Demenzkranke aufgrund von Symptomen wie Agitation oder Aggressivität mit Antipsychotika behandelt werden, sind damit offenbar noch mehr Risiken verbunden als bislang angenommen.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.