Skip to main content
Erschienen in: Medical Oncology 11/2023

01.11.2023 | Review Article

Theranostic signature of tumor-derived exosomes in cancer

verfasst von: Samruti Kumar, Rajib Dhar, Lokesh Babu Sirkali Suresh Kumar, Gauresh Gurudas Shivji, Rama Jayaraj, Arikketh Devi

Erschienen in: Medical Oncology | Ausgabe 11/2023

Einloggen, um Zugang zu erhalten

Abstract

Cancer is the most challenging global health crisis. In the recent times, studies on extracellular vesicles (EVs) are adding a new chapter to cancer research and reports on EVs explores cancer in a new dimension. Exosomes are a group of subpopulations of EVs. It originates from the endosomes and carries biologically active molecules to the neighboring cells which in turn transforms the recipient cell activity. In general, it plays a role in cellular communication. The correlation between exosomes and cancer is fascinating. Tumor-derived exosomes (TEXs) play a dynamic role in cancer progression and are associated with uncontrolled cell growth, angiogenesis, immune suppression, and metastasis. Its molecular cargo is an excellent source of cancer biomarkers. Several advanced molecular profiling approaches assist in exploring the TEXs in depth. This paves the way for a strong foundation for identifying and detecting more specific and efficient biomarkers. TEXs are also gaining importance in scientific society for its role in cancer therapy and several clinical trials based on TEXs is a proof of its significance. In this review, we have highlighted the role of TEXs in mediating immune cell reprogramming, cancer development, metastasis, EMT, organ-specific metastasis, and its clinical significance in cancer theranostics. TEXs profiling is an effective method to understand the complications associated with cancer leading to good health and well-being of the individual and society as a whole.

Graphical abstract

Literatur
3.
Zurück zum Zitat Thery C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol. 2002;2(8):569–79.PubMedCrossRef Thery C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol. 2002;2(8):569–79.PubMedCrossRef
5.
Zurück zum Zitat Baig MS, et al. Tumor-derived exosomes in the regulation of macrophage polarization. Inflamm Res. 2020;69(5):435–51.PubMedCrossRef Baig MS, et al. Tumor-derived exosomes in the regulation of macrophage polarization. Inflamm Res. 2020;69(5):435–51.PubMedCrossRef
7.
Zurück zum Zitat Ghosh, S., et al., Clinical impact of exosomes in colorectal cancer metastasis. ACS Appl Bio Mater. 2023. Ghosh, S., et al., Clinical impact of exosomes in colorectal cancer metastasis. ACS Appl Bio Mater. 2023.
8.
Zurück zum Zitat Mukherjee, S., et al., Exosomal miRNAs and breast cancer: a complex theranostics interlink with clinical significance. Biomarkers. 2023. 1–17. Mukherjee, S., et al., Exosomal miRNAs and breast cancer: a complex theranostics interlink with clinical significance. Biomarkers. 2023. 1–17.
9.
Zurück zum Zitat Mathivanan, S., et al., ExoCarta 2012: database of exosomal proteins, RNA and lipids. Nucleic Acids Res, 2012. 40(Database issue): pp D1241–4. Mathivanan, S., et al., ExoCarta 2012: database of exosomal proteins, RNA and lipids. Nucleic Acids Res, 2012. 40(Database issue): pp D1241–4.
12.
Zurück zum Zitat Dhar R, Devi A, Patil S, Tovani-Palone MR. Exosomes in cancer therapy: advances and current challenges. Electron J Gen Med. 2023;20(5):em524.CrossRef Dhar R, Devi A, Patil S, Tovani-Palone MR. Exosomes in cancer therapy: advances and current challenges. Electron J Gen Med. 2023;20(5):em524.CrossRef
15.
Zurück zum Zitat Saleem SN, Abdel-Mageed AB. Tumor-derived exosomes in oncogenic reprogramming and cancer progression. Cell Mol Life Sci. 2015;72(1):1–10.PubMedCrossRef Saleem SN, Abdel-Mageed AB. Tumor-derived exosomes in oncogenic reprogramming and cancer progression. Cell Mol Life Sci. 2015;72(1):1–10.PubMedCrossRef
16.
Zurück zum Zitat Colombo M, Raposo G, Thery C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30:255–89.PubMedCrossRef Colombo M, Raposo G, Thery C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30:255–89.PubMedCrossRef
18.
Zurück zum Zitat Bhattacharya B, et al. Exosome DNA: An untold story of cancer. Clin Transl Disc. 2023;3: e218.CrossRef Bhattacharya B, et al. Exosome DNA: An untold story of cancer. Clin Transl Disc. 2023;3: e218.CrossRef
19.
Zurück zum Zitat Shivji GG, et al. Role of exosomes and its emerging therapeutic applications in the pathophysiology of non-infectious diseases. Biomarkers. 2022;27(6):534–48.PubMedCrossRef Shivji GG, et al. Role of exosomes and its emerging therapeutic applications in the pathophysiology of non-infectious diseases. Biomarkers. 2022;27(6):534–48.PubMedCrossRef
20.
Zurück zum Zitat Abels ER, Breakefield XO. Introduction to extracellular vesicles: biogenesis, RNA cargo selection, content, release, and uptake. Cell Mol Neurobiol. 2016;36(3):301–12.PubMedPubMedCentralCrossRef Abels ER, Breakefield XO. Introduction to extracellular vesicles: biogenesis, RNA cargo selection, content, release, and uptake. Cell Mol Neurobiol. 2016;36(3):301–12.PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Tricarico C, Clancy J, D’Souza-Schorey C. Biology and biogenesis of shed microvesicles. Small GTPases. 2017;8(4):220–32.PubMedCrossRef Tricarico C, Clancy J, D’Souza-Schorey C. Biology and biogenesis of shed microvesicles. Small GTPases. 2017;8(4):220–32.PubMedCrossRef
22.
Zurück zum Zitat Guo X, Tan W, Wang C. The emerging roles of exosomal circRNAs in diseases. Clin Transl Oncol. 2021;23(6):1020–33.PubMedCrossRef Guo X, Tan W, Wang C. The emerging roles of exosomal circRNAs in diseases. Clin Transl Oncol. 2021;23(6):1020–33.PubMedCrossRef
23.
Zurück zum Zitat Dhar R, et al. Exosome and epithelial–mesenchymal transition: a complex secret of cancer progression. J Cell Mol Med. 2023. Dhar R, et al. Exosome and epithelial–mesenchymal transition: a complex secret of cancer progression. J Cell Mol Med. 2023.
24.
Zurück zum Zitat Miller IV, Grunewald TG. Tumour-derived exosomes: tiny envelopes for big stories. Biol Cell. 2015;107(9):287–305.PubMedCrossRef Miller IV, Grunewald TG. Tumour-derived exosomes: tiny envelopes for big stories. Biol Cell. 2015;107(9):287–305.PubMedCrossRef
25.
26.
Zurück zum Zitat Jabbari N, et al. Tumor-derived extracellular vesicles: insights into bystander effects of exosomes after irradiation. Lasers Med Sci. 2020;35(3):531–45.PubMedCrossRef Jabbari N, et al. Tumor-derived extracellular vesicles: insights into bystander effects of exosomes after irradiation. Lasers Med Sci. 2020;35(3):531–45.PubMedCrossRef
27.
Zurück zum Zitat Jafari A, et al. Exosomes and cancer: from molecular mechanisms to clinical applications. Med Oncol. 2021;38(4):45.PubMedCrossRef Jafari A, et al. Exosomes and cancer: from molecular mechanisms to clinical applications. Med Oncol. 2021;38(4):45.PubMedCrossRef
29.
Zurück zum Zitat Meehan K, Vella LJ. The contribution of tumour-derived exosomes to the hallmarks of cancer. Crit Rev Clin Lab Sci. 2016;53(2):121–31.PubMedCrossRef Meehan K, Vella LJ. The contribution of tumour-derived exosomes to the hallmarks of cancer. Crit Rev Clin Lab Sci. 2016;53(2):121–31.PubMedCrossRef
30.
Zurück zum Zitat Yang R, et al. Galectin-9 interacts with PD-1 and TIM-3 to regulate T cell death and is a target for cancer immunotherapy. Nat Commun. 2021;12(1):832.PubMedPubMedCentralCrossRef Yang R, et al. Galectin-9 interacts with PD-1 and TIM-3 to regulate T cell death and is a target for cancer immunotherapy. Nat Commun. 2021;12(1):832.PubMedPubMedCentralCrossRef
31.
32.
Zurück zum Zitat Fontana S, et al. Contribution of proteomics to understanding the role of tumor-derived exosomes in cancer progression: state of the art and new perspectives. Proteomics. 2013;13(10–11):1581–94.PubMed Fontana S, et al. Contribution of proteomics to understanding the role of tumor-derived exosomes in cancer progression: state of the art and new perspectives. Proteomics. 2013;13(10–11):1581–94.PubMed
33.
Zurück zum Zitat Rak J, Guha A. Extracellular vesicles–vehicles that spread cancer genes. BioEssays. 2012;34(6):489–97.PubMedCrossRef Rak J, Guha A. Extracellular vesicles–vehicles that spread cancer genes. BioEssays. 2012;34(6):489–97.PubMedCrossRef
35.
Zurück zum Zitat Niu L, et al. Tumor-derived exosomal proteins as diagnostic biomarkers in non-small cell lung cancer. Cancer Sci. 2019;110(1):433–42.PubMedCrossRef Niu L, et al. Tumor-derived exosomal proteins as diagnostic biomarkers in non-small cell lung cancer. Cancer Sci. 2019;110(1):433–42.PubMedCrossRef
36.
Zurück zum Zitat Sharma S, et al. Tumor-derived exosomes in ovarian cancer - liquid biopsies for early detection and real-time monitoring of cancer progression. Oncotarget. 2017;8(61):104687–703.PubMedPubMedCentralCrossRef Sharma S, et al. Tumor-derived exosomes in ovarian cancer - liquid biopsies for early detection and real-time monitoring of cancer progression. Oncotarget. 2017;8(61):104687–703.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Pashoutan Sarvar, D., K. Shamsasenjan, and P. Akbarzadehlaleh, Mesenchymal Stem Cell-Derived Exosomes: New Opportunity in Cell-Free Therapy. Adv Pharm Bull, 2016. 6(3): 293–299. Pashoutan Sarvar, D., K. Shamsasenjan, and P. Akbarzadehlaleh, Mesenchymal Stem Cell-Derived Exosomes: New Opportunity in Cell-Free Therapy. Adv Pharm Bull, 2016. 6(3): 293–299.
39.
Zurück zum Zitat Kharaziha P, et al. Tumor cell-derived exosomes: a message in a bottle. Biochim Biophys Acta. 2012;1826(1):103–11.PubMed Kharaziha P, et al. Tumor cell-derived exosomes: a message in a bottle. Biochim Biophys Acta. 2012;1826(1):103–11.PubMed
41.
Zurück zum Zitat Mathieu M, et al. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol. 2019;21(1):9–17.PubMedCrossRef Mathieu M, et al. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol. 2019;21(1):9–17.PubMedCrossRef
42.
Zurück zum Zitat Admyre C, et al. Exosomes with immune modulatory features are present in human breast milk. J Immunol. 2007;179(3):1969–78.PubMedCrossRef Admyre C, et al. Exosomes with immune modulatory features are present in human breast milk. J Immunol. 2007;179(3):1969–78.PubMedCrossRef
43.
44.
Zurück zum Zitat Cheng H, et al. The tumor microenvironment shapes the molecular characteristics of exhausted CD8(+) T cells. Cancer Lett. 2021;506:55–66.PubMedCrossRef Cheng H, et al. The tumor microenvironment shapes the molecular characteristics of exhausted CD8(+) T cells. Cancer Lett. 2021;506:55–66.PubMedCrossRef
45.
Zurück zum Zitat Whiteside, T.L., B. Diergaarde, and C.S. Hong, Tumor-Derived Exosomes (TEX) and Their Role in Immuno-Oncology. Int J Mol Sci, 2021. 22(12). Whiteside, T.L., B. Diergaarde, and C.S. Hong, Tumor-Derived Exosomes (TEX) and Their Role in Immuno-Oncology. Int J Mol Sci, 2021. 22(12).
46.
Zurück zum Zitat Diaz Bessone MI, et al. The tumor microenvironment as a regulator of endocrine resistance in breast cancer. Front Endocrinol (Lausanne). 2019;10:547.PubMedPubMedCentralCrossRef Diaz Bessone MI, et al. The tumor microenvironment as a regulator of endocrine resistance in breast cancer. Front Endocrinol (Lausanne). 2019;10:547.PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Naito Y, et al. How cancer cells dictate their microenvironment: present roles of extracellular vesicles. Cell Mol Life Sci. 2017;74(4):697–713.PubMedCrossRef Naito Y, et al. How cancer cells dictate their microenvironment: present roles of extracellular vesicles. Cell Mol Life Sci. 2017;74(4):697–713.PubMedCrossRef
50.
Zurück zum Zitat Malla RR, Shailender G, Kamal MA. Exosomes: critical mediators of tumour microenvironment reprogramming. Curr Med Chem. 2021;28(39):8182–202.PubMedCrossRef Malla RR, Shailender G, Kamal MA. Exosomes: critical mediators of tumour microenvironment reprogramming. Curr Med Chem. 2021;28(39):8182–202.PubMedCrossRef
51.
Zurück zum Zitat Lan J, et al. M2 macrophage-derived exosomes promote cell migration and invasion in colon cancer. Cancer Res. 2019;79(1):146–58.PubMedCrossRef Lan J, et al. M2 macrophage-derived exosomes promote cell migration and invasion in colon cancer. Cancer Res. 2019;79(1):146–58.PubMedCrossRef
52.
Zurück zum Zitat Milane L, et al. Exosome mediated communication within the tumor microenvironment. J Control Release. 2015;219:278–94.PubMedCrossRef Milane L, et al. Exosome mediated communication within the tumor microenvironment. J Control Release. 2015;219:278–94.PubMedCrossRef
53.
55.
Zurück zum Zitat Kara-Terki L et al. Critical Roles of Tumor Extracellular Vesicles in the Microenvironment of Thoracic Cancers. Int J Mol Sci, 2020. 21(17). Kara-Terki L et al. Critical Roles of Tumor Extracellular Vesicles in the Microenvironment of Thoracic Cancers. Int J Mol Sci, 2020. 21(17).
57.
Zurück zum Zitat Desage AL et al. The Immune Microenvironment of Malignant Pleural Mesothelioma: A Literature Review. Cancers (Basel), 2021. 13(13) Desage AL et al. The Immune Microenvironment of Malignant Pleural Mesothelioma: A Literature Review. Cancers (Basel), 2021. 13(13)
59.
Zurück zum Zitat Whiteside TL. Exosomes in cancer: another mechanism of tumor-induced immune suppression. Adv Exp Med Biol. 2017;1036:81–9.PubMedCrossRef Whiteside TL. Exosomes in cancer: another mechanism of tumor-induced immune suppression. Adv Exp Med Biol. 2017;1036:81–9.PubMedCrossRef
61.
Zurück zum Zitat Maji S, et al. Exosomal Annexin II promotes angiogenesis and breast cancer metastasis. Mol Cancer Res. 2017;15(1):93–105.PubMedCrossRef Maji S, et al. Exosomal Annexin II promotes angiogenesis and breast cancer metastasis. Mol Cancer Res. 2017;15(1):93–105.PubMedCrossRef
62.
Zurück zum Zitat Fabbri M, et al. MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc Natl Acad Sci USA. 2012;109(31):E2110–6.PubMedPubMedCentralCrossRef Fabbri M, et al. MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc Natl Acad Sci USA. 2012;109(31):E2110–6.PubMedPubMedCentralCrossRef
63.
64.
Zurück zum Zitat Ying X, et al. Epithelial ovarian cancer-secreted exosomal miR-222-3p induces polarization of tumor-associated macrophages. Oncotarget. 2016;7(28):43076–87.PubMedPubMedCentralCrossRef Ying X, et al. Epithelial ovarian cancer-secreted exosomal miR-222-3p induces polarization of tumor-associated macrophages. Oncotarget. 2016;7(28):43076–87.PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Worbs T, Hammerschmidt SI, Forster R. Dendritic cell migration in health and disease. Nat Rev Immunol. 2017;17(1):30–48.PubMedCrossRef Worbs T, Hammerschmidt SI, Forster R. Dendritic cell migration in health and disease. Nat Rev Immunol. 2017;17(1):30–48.PubMedCrossRef
66.
Zurück zum Zitat Yu S, et al. Tumor exosomes inhibit differentiation of bone marrow dendritic cells. J Immunol. 2007;178(11):6867–75.PubMedCrossRef Yu S, et al. Tumor exosomes inhibit differentiation of bone marrow dendritic cells. J Immunol. 2007;178(11):6867–75.PubMedCrossRef
67.
Zurück zum Zitat Zhou M, et al. Pancreatic cancer derived exosomes regulate the expression of TLR4 in dendritic cells via miR-203. Cell Immunol. 2014;292(1–2):65–9.PubMedCrossRef Zhou M, et al. Pancreatic cancer derived exosomes regulate the expression of TLR4 in dendritic cells via miR-203. Cell Immunol. 2014;292(1–2):65–9.PubMedCrossRef
69.
Zurück zum Zitat Reiners KS, et al. Soluble ligands for NK cell receptors promote evasion of chronic lymphocytic leukemia cells from NK cell anti-tumor activity. Blood. 2013;121(18):3658–65.PubMedPubMedCentralCrossRef Reiners KS, et al. Soluble ligands for NK cell receptors promote evasion of chronic lymphocytic leukemia cells from NK cell anti-tumor activity. Blood. 2013;121(18):3658–65.PubMedPubMedCentralCrossRef
70.
Zurück zum Zitat Garcia-Iglesias T, et al. Low NKp30, NKp46 and NKG2D expression and reduced cytotoxic activity on NK cells in cervical cancer and precursor lesions. BMC Cancer. 2009;9:186.PubMedPubMedCentralCrossRef Garcia-Iglesias T, et al. Low NKp30, NKp46 and NKG2D expression and reduced cytotoxic activity on NK cells in cervical cancer and precursor lesions. BMC Cancer. 2009;9:186.PubMedPubMedCentralCrossRef
71.
Zurück zum Zitat Clayton A, et al. Human tumor-derived exosomes down-modulate NKG2D expression. J Immunol. 2008;180(11):7249–58.PubMedCrossRef Clayton A, et al. Human tumor-derived exosomes down-modulate NKG2D expression. J Immunol. 2008;180(11):7249–58.PubMedCrossRef
72.
Zurück zum Zitat Szczepanski MJ, et al. Blast-derived microvesicles in sera from patients with acute myeloid leukemia suppress natural killer cell function via membrane-associated transforming growth factor-beta1. Haematologica. 2011;96(9):1302–9.PubMedPubMedCentralCrossRef Szczepanski MJ, et al. Blast-derived microvesicles in sera from patients with acute myeloid leukemia suppress natural killer cell function via membrane-associated transforming growth factor-beta1. Haematologica. 2011;96(9):1302–9.PubMedPubMedCentralCrossRef
73.
Zurück zum Zitat Berchem G, et al. Hypoxic tumor-derived microvesicles negatively regulate NK cell function by a mechanism involving TGF-beta and miR23a transfer. Oncoimmunology. 2016;5(4): e1062968.PubMedCrossRef Berchem G, et al. Hypoxic tumor-derived microvesicles negatively regulate NK cell function by a mechanism involving TGF-beta and miR23a transfer. Oncoimmunology. 2016;5(4): e1062968.PubMedCrossRef
74.
Zurück zum Zitat Ye L, et al. Tumor-derived exosomal HMGB1 fosters hepatocellular carcinoma immune evasion by promoting TIM-1(+) regulatory B cell expansion. J Immunother Cancer. 2018;6(1):145.PubMedPubMedCentralCrossRef Ye L, et al. Tumor-derived exosomal HMGB1 fosters hepatocellular carcinoma immune evasion by promoting TIM-1(+) regulatory B cell expansion. J Immunother Cancer. 2018;6(1):145.PubMedPubMedCentralCrossRef
75.
Zurück zum Zitat Schroeder JC et al. Circulating exosomes inhibit b cell proliferation and activity. Cancers (Basel), 2020. 12(8) Schroeder JC et al. Circulating exosomes inhibit b cell proliferation and activity. Cancers (Basel), 2020. 12(8)
77.
Zurück zum Zitat Mao Y, et al. Circulating exosomes from esophageal squamous cell carcinoma mediate the generation of B10 and PD-1(high) Breg cells. Cancer Sci. 2019;110(9):2700–10.PubMedPubMedCentralCrossRef Mao Y, et al. Circulating exosomes from esophageal squamous cell carcinoma mediate the generation of B10 and PD-1(high) Breg cells. Cancer Sci. 2019;110(9):2700–10.PubMedPubMedCentralCrossRef
78.
Zurück zum Zitat Wieckowski EU, et al. Tumor-derived microvesicles promote regulatory T cell expansion and induce apoptosis in tumor-reactive activated CD8+ T lymphocytes. J Immunol. 2009;183(6):3720–30.PubMedCrossRef Wieckowski EU, et al. Tumor-derived microvesicles promote regulatory T cell expansion and induce apoptosis in tumor-reactive activated CD8+ T lymphocytes. J Immunol. 2009;183(6):3720–30.PubMedCrossRef
79.
Zurück zum Zitat Montes CL, et al. Tumor-induced senescent T cells with suppressor function: a potential form of tumor immune evasion. Cancer Res. 2008;68(3):870–9.PubMedCrossRef Montes CL, et al. Tumor-induced senescent T cells with suppressor function: a potential form of tumor immune evasion. Cancer Res. 2008;68(3):870–9.PubMedCrossRef
80.
Zurück zum Zitat Zhang Y, et al. Interleukin-7 inhibits tumor-induced CD27-CD28- suppressor T cells: implications for cancer immunotherapy. Clin Cancer Res. 2011;17(15):4975–86.PubMedPubMedCentralCrossRef Zhang Y, et al. Interleukin-7 inhibits tumor-induced CD27-CD28- suppressor T cells: implications for cancer immunotherapy. Clin Cancer Res. 2011;17(15):4975–86.PubMedPubMedCentralCrossRef
81.
82.
Zurück zum Zitat Siegel RM, et al. The multifaceted role of Fas signaling in immune cell homeostasis and autoimmunity. Nat Immunol. 2000;1(6):469–74.CrossRef Siegel RM, et al. The multifaceted role of Fas signaling in immune cell homeostasis and autoimmunity. Nat Immunol. 2000;1(6):469–74.CrossRef
83.
Zurück zum Zitat Kim JW, et al. Fas ligand-positive membranous vesicles isolated from sera of patients with oral cancer induce apoptosis of activated T lymphocytes. Clin Cancer Res. 2005;11(3):1010–20.PubMedCrossRef Kim JW, et al. Fas ligand-positive membranous vesicles isolated from sera of patients with oral cancer induce apoptosis of activated T lymphocytes. Clin Cancer Res. 2005;11(3):1010–20.PubMedCrossRef
84.
Zurück zum Zitat Abusamra AJ, et al. Tumor exosomes expressing Fas ligand mediate CD8+ T-cell apoptosis. Blood Cells Mol Dis. 2005;35(2):169–73.PubMedCrossRef Abusamra AJ, et al. Tumor exosomes expressing Fas ligand mediate CD8+ T-cell apoptosis. Blood Cells Mol Dis. 2005;35(2):169–73.PubMedCrossRef
85.
Zurück zum Zitat Contini P, et al. Apoptosis of antigen-specific T lymphocytes upon the engagement of CD8 by soluble HLA class I molecules is Fas ligand/Fas mediated: evidence for the involvement of p56lck, calcium calmodulin kinase II, and Calcium-independent protein kinase C signaling pathways and for NF-kappaB and NF-AT nuclear translocation. J Immunol. 2005;175(11):7244–54.PubMedCrossRef Contini P, et al. Apoptosis of antigen-specific T lymphocytes upon the engagement of CD8 by soluble HLA class I molecules is Fas ligand/Fas mediated: evidence for the involvement of p56lck, calcium calmodulin kinase II, and Calcium-independent protein kinase C signaling pathways and for NF-kappaB and NF-AT nuclear translocation. J Immunol. 2005;175(11):7244–54.PubMedCrossRef
86.
87.
Zurück zum Zitat Del Re M, et al. PD-L1 mRNA expression in plasma-derived exosomes is associated with response to anti-PD-1 antibodies in melanoma and NSCLC. Br J Cancer. 2018;118(6):820–4.PubMedPubMedCentralCrossRef Del Re M, et al. PD-L1 mRNA expression in plasma-derived exosomes is associated with response to anti-PD-1 antibodies in melanoma and NSCLC. Br J Cancer. 2018;118(6):820–4.PubMedPubMedCentralCrossRef
88.
Zurück zum Zitat Theodoraki MN, et al. Clinical significance of PD-L1(+) exosomes in plasma of head and neck cancer patients. Clin Cancer Res. 2018;24(4):896–905.PubMedCrossRef Theodoraki MN, et al. Clinical significance of PD-L1(+) exosomes in plasma of head and neck cancer patients. Clin Cancer Res. 2018;24(4):896–905.PubMedCrossRef
89.
Zurück zum Zitat Mincheva-Nilsson L, Baranov V. Cancer exosomes and NKG2D receptor-ligand interactions: impairing NKG2D-mediated cytotoxicity and anti-tumour immune surveillance. Semin Cancer Biol. 2014;28:24–30.PubMedCrossRef Mincheva-Nilsson L, Baranov V. Cancer exosomes and NKG2D receptor-ligand interactions: impairing NKG2D-mediated cytotoxicity and anti-tumour immune surveillance. Semin Cancer Biol. 2014;28:24–30.PubMedCrossRef
90.
Zurück zum Zitat Skog J, et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol. 2008;10(12):1470–6.PubMedPubMedCentralCrossRef Skog J, et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol. 2008;10(12):1470–6.PubMedPubMedCentralCrossRef
91.
Zurück zum Zitat Balaj L, et al. Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat Commun. 2011;2:180.PubMedCrossRef Balaj L, et al. Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat Commun. 2011;2:180.PubMedCrossRef
92.
Zurück zum Zitat Ye SB, et al. Tumor-derived exosomes promote tumor progression and T-cell dysfunction through the regulation of enriched exosomal microRNAs in human nasopharyngeal carcinoma. Oncotarget. 2014;5(14):5439–52.PubMedPubMedCentralCrossRef Ye SB, et al. Tumor-derived exosomes promote tumor progression and T-cell dysfunction through the regulation of enriched exosomal microRNAs in human nasopharyngeal carcinoma. Oncotarget. 2014;5(14):5439–52.PubMedPubMedCentralCrossRef
94.
Zurück zum Zitat Liu Y, et al. Contribution of MyD88 to the tumor exosome-mediated induction of myeloid derived suppressor cells. Am J Pathol. 2010;176(5):2490–9.PubMedPubMedCentralCrossRef Liu Y, et al. Contribution of MyD88 to the tumor exosome-mediated induction of myeloid derived suppressor cells. Am J Pathol. 2010;176(5):2490–9.PubMedPubMedCentralCrossRef
95.
Zurück zum Zitat Diao J, et al. Exosomal Hsp70 mediates immunosuppressive activity of the myeloid-derived suppressor cells via phosphorylation of Stat3. Med Oncol. 2015;32(2):453.PubMedCrossRef Diao J, et al. Exosomal Hsp70 mediates immunosuppressive activity of the myeloid-derived suppressor cells via phosphorylation of Stat3. Med Oncol. 2015;32(2):453.PubMedCrossRef
96.
Zurück zum Zitat Gobbo J et al. Restoring anticancer immune response by targeting tumor-derived exosomes with a HSP70 peptide aptamer. J Natl Cancer Inst; 2016. 108(3) Gobbo J et al. Restoring anticancer immune response by targeting tumor-derived exosomes with a HSP70 peptide aptamer. J Natl Cancer Inst; 2016. 108(3)
98.
99.
Zurück zum Zitat Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.PubMedCrossRef Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.PubMedCrossRef
100.
Zurück zum Zitat Roma-Rodrigues C, et al. Smuggling gold nanoparticles across cell types—a new role for exosomes in gene silencing. Nanomedicine. 2017;13(4):1389–98.PubMedCrossRef Roma-Rodrigues C, et al. Smuggling gold nanoparticles across cell types—a new role for exosomes in gene silencing. Nanomedicine. 2017;13(4):1389–98.PubMedCrossRef
101.
Zurück zum Zitat Sung BH, et al. Directional cell movement through tissues is controlled by exosome secretion. Nat Commun. 2015;6:7164.PubMedCrossRef Sung BH, et al. Directional cell movement through tissues is controlled by exosome secretion. Nat Commun. 2015;6:7164.PubMedCrossRef
102.
Zurück zum Zitat Koumangoye RB, et al. Detachment of breast tumor cells induces rapid secretion of exosomes which subsequently mediate cellular adhesion and spreading. PLoS ONE. 2011;6(9): e24234.PubMedPubMedCentralCrossRef Koumangoye RB, et al. Detachment of breast tumor cells induces rapid secretion of exosomes which subsequently mediate cellular adhesion and spreading. PLoS ONE. 2011;6(9): e24234.PubMedPubMedCentralCrossRef
103.
104.
Zurück zum Zitat Luga V, et al. Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell. 2012;151(7):1542–56.PubMedCrossRef Luga V, et al. Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell. 2012;151(7):1542–56.PubMedCrossRef
105.
Zurück zum Zitat Paolillo M, Schinelli S Integrins and exosomes, a dangerous liaison in cancer progression. Cancers (Basel), 2017. 9(8) Paolillo M, Schinelli S Integrins and exosomes, a dangerous liaison in cancer progression. Cancers (Basel), 2017. 9(8)
106.
Zurück zum Zitat Bai S, et al. Role of tumour-derived exosomes in metastasis. Biomed Pharmacother. 2022;147: 112657.PubMedCrossRef Bai S, et al. Role of tumour-derived exosomes in metastasis. Biomed Pharmacother. 2022;147: 112657.PubMedCrossRef
107.
Zurück zum Zitat Webber J, et al. Cancer exosomes trigger fibroblast to myofibroblast differentiation. Cancer Res. 2010;70(23):9621–30.PubMedCrossRef Webber J, et al. Cancer exosomes trigger fibroblast to myofibroblast differentiation. Cancer Res. 2010;70(23):9621–30.PubMedCrossRef
108.
Zurück zum Zitat Zhang Q, Peng C. Cancer-associated fibroblasts regulate the biological behavior of cancer cells and stroma in gastric cancer. Oncol Lett. 2018;15(1):691–8.PubMed Zhang Q, Peng C. Cancer-associated fibroblasts regulate the biological behavior of cancer cells and stroma in gastric cancer. Oncol Lett. 2018;15(1):691–8.PubMed
110.
Zurück zum Zitat Hicklin DJ, Ellis LM. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol. 2005;23(5):1011–27.PubMedCrossRef Hicklin DJ, Ellis LM. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol. 2005;23(5):1011–27.PubMedCrossRef
111.
Zurück zum Zitat Spannuth WA, Sood AK, Coleman RL. Angiogenesis as a strategic target for ovarian cancer therapy. Nat Clin Pract Oncol. 2008;5(4):194–204.PubMedCrossRef Spannuth WA, Sood AK, Coleman RL. Angiogenesis as a strategic target for ovarian cancer therapy. Nat Clin Pract Oncol. 2008;5(4):194–204.PubMedCrossRef
112.
Zurück zum Zitat Momeny M, et al. Anti-tumour activity of tivozanib, a pan-inhibitor of VEGF receptors, in therapy-resistant ovarian carcinoma cells. Sci Rep. 2017;7:45954.PubMedPubMedCentralCrossRef Momeny M, et al. Anti-tumour activity of tivozanib, a pan-inhibitor of VEGF receptors, in therapy-resistant ovarian carcinoma cells. Sci Rep. 2017;7:45954.PubMedPubMedCentralCrossRef
113.
Zurück zum Zitat Katoh M. Therapeutics targeting angiogenesis: genetics and epigenetics, extracellular miRNAs and signaling networks (Review). Int J Mol Med. 2013;32(4):763–7.PubMedPubMedCentralCrossRef Katoh M. Therapeutics targeting angiogenesis: genetics and epigenetics, extracellular miRNAs and signaling networks (Review). Int J Mol Med. 2013;32(4):763–7.PubMedPubMedCentralCrossRef
115.
Zurück zum Zitat Gesierich S et al. Systemic induction of the angiogenesis switch by the tetraspanin D6.1A/CO-029. Cancer Res, 2006; 66(14): 7083–94. Gesierich S et al. Systemic induction of the angiogenesis switch by the tetraspanin D6.1A/CO-029. Cancer Res, 2006; 66(14): 7083–94.
116.
118.
Zurück zum Zitat Syn N, et al. Exosome-mediated metastasis: from epithelial-mesenchymal transition to escape from immunosurveillance. Trends Pharmacol Sci. 2016;37(7):606–17.PubMedCrossRef Syn N, et al. Exosome-mediated metastasis: from epithelial-mesenchymal transition to escape from immunosurveillance. Trends Pharmacol Sci. 2016;37(7):606–17.PubMedCrossRef
119.
Zurück zum Zitat Sanchez CA, et al. Exosomes from bulk and stem cells from human prostate cancer have a differential microRNA content that contributes cooperatively over local and pre-metastatic niche. Oncotarget. 2016;7(4):3993–4008.PubMedCrossRef Sanchez CA, et al. Exosomes from bulk and stem cells from human prostate cancer have a differential microRNA content that contributes cooperatively over local and pre-metastatic niche. Oncotarget. 2016;7(4):3993–4008.PubMedCrossRef
120.
Zurück zum Zitat Dhar R et al. Exosomal microRNAs (exoMIRs): micromolecules with macro impact in oral cancer. 3 Biotech. 2022(12):155. Dhar R et al. Exosomal microRNAs (exoMIRs): micromolecules with macro impact in oral cancer. 3 Biotech. 2022(12):155.
121.
Zurück zum Zitat Geiger TR, Peeper DS. Metastasis mechanisms. Biochim Biophys Acta. 2009;1796(2):293–308.PubMed Geiger TR, Peeper DS. Metastasis mechanisms. Biochim Biophys Acta. 2009;1796(2):293–308.PubMed
122.
Zurück zum Zitat Gout S, Huot J. Role of cancer microenvironment in metastasis: focus on colon cancer. Cancer Microenviron. 2008;1(1):69–83.PubMedCentralCrossRef Gout S, Huot J. Role of cancer microenvironment in metastasis: focus on colon cancer. Cancer Microenviron. 2008;1(1):69–83.PubMedCentralCrossRef
124.
Zurück zum Zitat Whiteside TL. The role of tumor-derived exosomes in epithelial mesenchymal transition (EMT). Transl Cancer Res. 2017;6(Suppl 1):S90–2.CrossRef Whiteside TL. The role of tumor-derived exosomes in epithelial mesenchymal transition (EMT). Transl Cancer Res. 2017;6(Suppl 1):S90–2.CrossRef
125.
Zurück zum Zitat Wang X, et al. Hypoxic tumor-derived exosomal miR-301a mediates M2 macrophage polarization via PTEN/PI3Kgamma to promote pancreatic cancer metastasis. Cancer Res. 2018;78(16):4586–98.CrossRef Wang X, et al. Hypoxic tumor-derived exosomal miR-301a mediates M2 macrophage polarization via PTEN/PI3Kgamma to promote pancreatic cancer metastasis. Cancer Res. 2018;78(16):4586–98.CrossRef
126.
127.
Zurück zum Zitat Dhar R et al. Interrelation between extracellular vesicles miRNAs with chronic lung diseases. J Cell Physiol, 237(11):4021–4036. Dhar R et al. Interrelation between extracellular vesicles miRNAs with chronic lung diseases. J Cell Physiol, 237(11):4021–4036.
129.
130.
Zurück zum Zitat Ferlay J et al. Cancer statistics for the year 2020: an overview. Int J Cancer, 2021. Ferlay J et al. Cancer statistics for the year 2020: an overview. Int J Cancer, 2021.
131.
Zurück zum Zitat Chen Y, et al. The function of LncRNAs and their role in the prediction, diagnosis, and prognosis of lung cancer. Clin Transl Med. 2021;11(4): e367.PubMedPubMedCentralCrossRef Chen Y, et al. The function of LncRNAs and their role in the prediction, diagnosis, and prognosis of lung cancer. Clin Transl Med. 2021;11(4): e367.PubMedPubMedCentralCrossRef
132.
133.
Zurück zum Zitat Seijo LM, et al. Biomarkers in lung cancer screening: achievements, promises, and challenges. J Thorac Oncol. 2019;14(3):343–57.PubMedCrossRef Seijo LM, et al. Biomarkers in lung cancer screening: achievements, promises, and challenges. J Thorac Oncol. 2019;14(3):343–57.PubMedCrossRef
134.
Zurück zum Zitat Cheng N, et al. Recent advances in biosensors for detecting cancer-derived exosomes. Trends Biotechnol. 2019;37(11):1236–54.PubMedCrossRef Cheng N, et al. Recent advances in biosensors for detecting cancer-derived exosomes. Trends Biotechnol. 2019;37(11):1236–54.PubMedCrossRef
135.
Zurück zum Zitat Gowri A, Ashwin Kumar N, Suresh Anand BS, Recent advances in nanomaterials based biosensors for point of care (PoC) diagnosis of Covid-19—a minireview. Trends Analyt Chem, 2021;137: 116205. Gowri A, Ashwin Kumar N, Suresh Anand BS, Recent advances in nanomaterials based biosensors for point of care (PoC) diagnosis of Covid-19—a minireview. Trends Analyt Chem, 2021;137: 116205.
136.
Zurück zum Zitat Sardini E, Serpelloni M, Tonello S, Printed electrochemical biosensors: opportunities and metrological challenges. Biosensors (Basel), 2020. 10(11). Sardini E, Serpelloni M, Tonello S, Printed electrochemical biosensors: opportunities and metrological challenges. Biosensors (Basel), 2020. 10(11).
137.
Zurück zum Zitat Moss JL, et al. Persistent poverty and cancer mortality rates: an analysis of county-level poverty designations. Cancer Epidemiol Biomarkers Prev. 2020;29(10):1949–54.PubMedPubMedCentralCrossRef Moss JL, et al. Persistent poverty and cancer mortality rates: an analysis of county-level poverty designations. Cancer Epidemiol Biomarkers Prev. 2020;29(10):1949–54.PubMedPubMedCentralCrossRef
138.
Zurück zum Zitat Yoshida K, et al. Exploring designability of electrostatic complementarity at an antigen-antibody interface directed by mutagenesis, biophysical analysis, and molecular dynamics simulations. Sci Rep. 2019;9(1):4482.PubMedPubMedCentralCrossRef Yoshida K, et al. Exploring designability of electrostatic complementarity at an antigen-antibody interface directed by mutagenesis, biophysical analysis, and molecular dynamics simulations. Sci Rep. 2019;9(1):4482.PubMedPubMedCentralCrossRef
139.
Zurück zum Zitat Xia Y, et al. A visible and colorimetric aptasensor based on DNA-capped single-walled carbon nanotubes for detection of exosomes. Biosens Bioelectron. 2017;92:8–15.PubMedCrossRef Xia Y, et al. A visible and colorimetric aptasensor based on DNA-capped single-walled carbon nanotubes for detection of exosomes. Biosens Bioelectron. 2017;92:8–15.PubMedCrossRef
140.
Zurück zum Zitat Oliveira-Rodriguez M, et al. Development of a rapid lateral flow immunoassay test for detection of exosomes previously enriched from cell culture medium and body fluids. J Extracell Vesicles. 2016;5:31803.PubMedCrossRef Oliveira-Rodriguez M, et al. Development of a rapid lateral flow immunoassay test for detection of exosomes previously enriched from cell culture medium and body fluids. J Extracell Vesicles. 2016;5:31803.PubMedCrossRef
141.
Zurück zum Zitat Chen X, et al. A paper-supported aptasensor based on upconversion luminescence resonance energy transfer for the accessible determination of exosomes. Biosens Bioelectron. 2018;102:582–8.PubMedCrossRef Chen X, et al. A paper-supported aptasensor based on upconversion luminescence resonance energy transfer for the accessible determination of exosomes. Biosens Bioelectron. 2018;102:582–8.PubMedCrossRef
142.
Zurück zum Zitat He F, et al. Quantification of exosome based on a copper-mediated signal amplification strategy. Anal Chem. 2018;90(13):8072–9.PubMedCrossRef He F, et al. Quantification of exosome based on a copper-mediated signal amplification strategy. Anal Chem. 2018;90(13):8072–9.PubMedCrossRef
143.
Zurück zum Zitat Zhu L, et al. Label-free quantitative detection of tumor-derived exosomes through surface plasmon resonance imaging. Anal Chem. 2014;86(17):8857–64.PubMedPubMedCentralCrossRef Zhu L, et al. Label-free quantitative detection of tumor-derived exosomes through surface plasmon resonance imaging. Anal Chem. 2014;86(17):8857–64.PubMedPubMedCentralCrossRef
144.
Zurück zum Zitat Sina AA, et al. Label-free detection of exosomes using a surface plasmon resonance biosensor. Anal Bioanal Chem. 2019;411(7):1311–8.PubMedCrossRef Sina AA, et al. Label-free detection of exosomes using a surface plasmon resonance biosensor. Anal Bioanal Chem. 2019;411(7):1311–8.PubMedCrossRef
145.
Zurück zum Zitat Kwizera EA, et al. Molecular detection and analysis of exosomes using surface-enhanced raman scattering gold nanorods and a miniaturized device. Theranostics. 2018;8(10):2722–38.PubMedPubMedCentralCrossRef Kwizera EA, et al. Molecular detection and analysis of exosomes using surface-enhanced raman scattering gold nanorods and a miniaturized device. Theranostics. 2018;8(10):2722–38.PubMedPubMedCentralCrossRef
146.
Zurück zum Zitat Zong S, et al. SERS-fluorescence-superresolution triple-mode nanoprobe based on surface enhanced Raman scattering and surface enhanced fluorescence. J Mater Chem B. 2020;8(36):8459–66.PubMedCrossRef Zong S, et al. SERS-fluorescence-superresolution triple-mode nanoprobe based on surface enhanced Raman scattering and surface enhanced fluorescence. J Mater Chem B. 2020;8(36):8459–66.PubMedCrossRef
147.
Zurück zum Zitat Wang Z, et al. Screening and multiple detection of cancer exosomes using an SERS-based method. Nanoscale. 2018;10(19):9053–62.PubMedCrossRef Wang Z, et al. Screening and multiple detection of cancer exosomes using an SERS-based method. Nanoscale. 2018;10(19):9053–62.PubMedCrossRef
148.
Zurück zum Zitat Park J, et al. An integrated magneto-electrochemical device for the rapid profiling of tumour extracellular vesicles from blood plasma. Nat Biomed Eng. 2021;5(7):678–89.PubMedPubMedCentralCrossRef Park J, et al. An integrated magneto-electrochemical device for the rapid profiling of tumour extracellular vesicles from blood plasma. Nat Biomed Eng. 2021;5(7):678–89.PubMedPubMedCentralCrossRef
149.
Zurück zum Zitat Song D, et al. Sandwich-type electrochemical immunosensor for CEA detection using magnetic hollow Ni/C@SiO(2) nanomatrix and boronic acid functionalized CPS@PANI@Au probe. Talanta. 2021;225: 122006.PubMedCrossRef Song D, et al. Sandwich-type electrochemical immunosensor for CEA detection using magnetic hollow Ni/C@SiO(2) nanomatrix and boronic acid functionalized CPS@PANI@Au probe. Talanta. 2021;225: 122006.PubMedCrossRef
150.
Zurück zum Zitat Wang S, et al. Aptasensor with expanded nucleotide using dna nanotetrahedra for electrochemical detection of cancerous exosomes. ACS Nano. 2017;11(4):3943–9.PubMedPubMedCentralCrossRef Wang S, et al. Aptasensor with expanded nucleotide using dna nanotetrahedra for electrochemical detection of cancerous exosomes. ACS Nano. 2017;11(4):3943–9.PubMedPubMedCentralCrossRef
151.
Zurück zum Zitat Azmi AS, Bao B, Sarkar FH. Exosomes in cancer development, metastasis, and drug resistance: a comprehensive review. Cancer Metastasis Rev. 2013;32(3–4):623–42.PubMedCrossRef Azmi AS, Bao B, Sarkar FH. Exosomes in cancer development, metastasis, and drug resistance: a comprehensive review. Cancer Metastasis Rev. 2013;32(3–4):623–42.PubMedCrossRef
152.
Zurück zum Zitat Rahbarghazi R, et al. Tumor-derived extracellular vesicles: reliable tools for Cancer diagnosis and clinical applications. Cell Commun Signal. 2019;17(1):73.PubMedPubMedCentralCrossRef Rahbarghazi R, et al. Tumor-derived extracellular vesicles: reliable tools for Cancer diagnosis and clinical applications. Cell Commun Signal. 2019;17(1):73.PubMedPubMedCentralCrossRef
153.
154.
Zurück zum Zitat Filipazzi P, et al. Recent advances on the role of tumor exosomes in immunosuppression and disease progression. Semin Cancer Biol. 2012;22(4):342–9.PubMedCrossRef Filipazzi P, et al. Recent advances on the role of tumor exosomes in immunosuppression and disease progression. Semin Cancer Biol. 2012;22(4):342–9.PubMedCrossRef
155.
Zurück zum Zitat Sun Y, Liu J. Potential of cancer cell-derived exosomes in clinical application: a review of recent research advances. Clin Ther. 2014;36(6):863–72.PubMedCrossRef Sun Y, Liu J. Potential of cancer cell-derived exosomes in clinical application: a review of recent research advances. Clin Ther. 2014;36(6):863–72.PubMedCrossRef
156.
Zurück zum Zitat Langevin S, et al. Comprehensive microRNA-sequencing of exosomes derived from head and neck carcinoma cells in vitro reveals common secretion profiles and potential utility as salivary biomarkers. Oncotarget. 2017;8(47):82459–74.PubMedPubMedCentralCrossRef Langevin S, et al. Comprehensive microRNA-sequencing of exosomes derived from head and neck carcinoma cells in vitro reveals common secretion profiles and potential utility as salivary biomarkers. Oncotarget. 2017;8(47):82459–74.PubMedPubMedCentralCrossRef
158.
Zurück zum Zitat An T, et al. Exosomes serve as tumour markers for personalized diagnostics owing to their important role in cancer metastasis. J Extracell Vesicles. 2015;4:27522.PubMedCrossRef An T, et al. Exosomes serve as tumour markers for personalized diagnostics owing to their important role in cancer metastasis. J Extracell Vesicles. 2015;4:27522.PubMedCrossRef
159.
Zurück zum Zitat Cheng G. Circulating miRNAs: roles in cancer diagnosis, prognosis and therapy. Adv Drug Deliv Rev. 2015;81:75–93.PubMedCrossRef Cheng G. Circulating miRNAs: roles in cancer diagnosis, prognosis and therapy. Adv Drug Deliv Rev. 2015;81:75–93.PubMedCrossRef
160.
Zurück zum Zitat Liao J, et al. Exosome-shuttling microRNA-21 promotes cell migration and invasion-targeting PDCD4 in esophageal cancer. Int J Oncol. 2016;48(6):2567–79.PubMedCrossRef Liao J, et al. Exosome-shuttling microRNA-21 promotes cell migration and invasion-targeting PDCD4 in esophageal cancer. Int J Oncol. 2016;48(6):2567–79.PubMedCrossRef
161.
Zurück zum Zitat Salomon C, et al. Exosomal signaling during hypoxia mediates microvascular endothelial cell migration and vasculogenesis. PLoS ONE. 2013;8(7): e68451.PubMedPubMedCentralCrossRef Salomon C, et al. Exosomal signaling during hypoxia mediates microvascular endothelial cell migration and vasculogenesis. PLoS ONE. 2013;8(7): e68451.PubMedPubMedCentralCrossRef
162.
Zurück zum Zitat Krishnan A, et al. Salivary exosomes: a theranostics secret of oral cancer—correspondence. Int J Surg. 2022;108: 106990.PubMedCrossRef Krishnan A, et al. Salivary exosomes: a theranostics secret of oral cancer—correspondence. Int J Surg. 2022;108: 106990.PubMedCrossRef
163.
Zurück zum Zitat Tanaka Y, et al. Clinical impact of serum exosomal microRNA-21 as a clinical biomarker in human esophageal squamous cell carcinoma. Cancer. 2013;119(6):1159–67.PubMedCrossRef Tanaka Y, et al. Clinical impact of serum exosomal microRNA-21 as a clinical biomarker in human esophageal squamous cell carcinoma. Cancer. 2013;119(6):1159–67.PubMedCrossRef
165.
Zurück zum Zitat Ghorbanmehr N, et al. miR-21-5p, miR-141-3p, and miR-205-5p levels in urine-promising biomarkers for the identification of prostate and bladder cancer. Prostate. 2019;79(1):88–95.PubMedCrossRef Ghorbanmehr N, et al. miR-21-5p, miR-141-3p, and miR-205-5p levels in urine-promising biomarkers for the identification of prostate and bladder cancer. Prostate. 2019;79(1):88–95.PubMedCrossRef
166.
Zurück zum Zitat Lin H, et al. Urinary exosomal miRNAs as biomarkers of bladder Cancer and experimental verification of mechanism of miR-93-5p in bladder Cancer. BMC Cancer. 2021;21(1):1293.PubMedPubMedCentralCrossRef Lin H, et al. Urinary exosomal miRNAs as biomarkers of bladder Cancer and experimental verification of mechanism of miR-93-5p in bladder Cancer. BMC Cancer. 2021;21(1):1293.PubMedPubMedCentralCrossRef
167.
Zurück zum Zitat Josson S, et al. Stromal fibroblast-derived miR-409 promotes epithelial-to-mesenchymal transition and prostate tumorigenesis. Oncogene. 2015;34(21):2690–9.PubMedCrossRef Josson S, et al. Stromal fibroblast-derived miR-409 promotes epithelial-to-mesenchymal transition and prostate tumorigenesis. Oncogene. 2015;34(21):2690–9.PubMedCrossRef
168.
Zurück zum Zitat Wolfers J, et al. Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat Med. 2001;7(3):297–303.PubMedCrossRef Wolfers J, et al. Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat Med. 2001;7(3):297–303.PubMedCrossRef
169.
Zurück zum Zitat Verdi J, et al. Development and clinical application of tumor-derived exosomes in patients with cancer. Curr Stem Cell Res Ther. 2022;17(1):91–102.PubMedCrossRef Verdi J, et al. Development and clinical application of tumor-derived exosomes in patients with cancer. Curr Stem Cell Res Ther. 2022;17(1):91–102.PubMedCrossRef
170.
Zurück zum Zitat Farhood B, Najafi M, Mortezaee K. CD8(+) cytotoxic T lymphocytes in cancer immunotherapy: a review. J Cell Physiol. 2019;234(6):8509–21.PubMedCrossRef Farhood B, Najafi M, Mortezaee K. CD8(+) cytotoxic T lymphocytes in cancer immunotherapy: a review. J Cell Physiol. 2019;234(6):8509–21.PubMedCrossRef
171.
Zurück zum Zitat Buchbinder EI, Desai A. CTLA-4 and PD-1 pathways: similarities, differences, and implications of their inhibition. Am J Clin Oncol. 2016;39(1):98–106.PubMedPubMedCentralCrossRef Buchbinder EI, Desai A. CTLA-4 and PD-1 pathways: similarities, differences, and implications of their inhibition. Am J Clin Oncol. 2016;39(1):98–106.PubMedPubMedCentralCrossRef
172.
Zurück zum Zitat Alsaab HO, et al. PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome. Front Pharmacol. 2017;8:561.PubMedPubMedCentralCrossRef Alsaab HO, et al. PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome. Front Pharmacol. 2017;8:561.PubMedPubMedCentralCrossRef
173.
Zurück zum Zitat Cheng L, et al. Exosomes from melatonin treated hepatocellularcarcinoma cells alter the immunosupression status through STAT3 pathway in macrophages. Int J Biol Sci. 2017;13(6):723–34.PubMedPubMedCentralCrossRef Cheng L, et al. Exosomes from melatonin treated hepatocellularcarcinoma cells alter the immunosupression status through STAT3 pathway in macrophages. Int J Biol Sci. 2017;13(6):723–34.PubMedPubMedCentralCrossRef
175.
Zurück zum Zitat Hou W, et al. A novel tetravalent bispecific antibody targeting programmed death 1 and tyrosine-protein kinase Met for treatment of gastric cancer. Invest New Drugs. 2019;37(5):876–89.PubMedCrossRef Hou W, et al. A novel tetravalent bispecific antibody targeting programmed death 1 and tyrosine-protein kinase Met for treatment of gastric cancer. Invest New Drugs. 2019;37(5):876–89.PubMedCrossRef
177.
Zurück zum Zitat Gao J, et al. Expression profiles and clinical value of plasma exosomal Tim-3 and Galectin-9 in non-small cell lung cancer. Biochem Biophys Res Commun. 2018;498(3):409–15.PubMedCrossRef Gao J, et al. Expression profiles and clinical value of plasma exosomal Tim-3 and Galectin-9 in non-small cell lung cancer. Biochem Biophys Res Commun. 2018;498(3):409–15.PubMedCrossRef
178.
Zurück zum Zitat Gu X, et al. Improved vaccine efficacy of tumor exosome compared to tumor lysate loaded dendritic cells in mice. Int J Cancer. 2015;136(4):E74-84.PubMedCrossRef Gu X, et al. Improved vaccine efficacy of tumor exosome compared to tumor lysate loaded dendritic cells in mice. Int J Cancer. 2015;136(4):E74-84.PubMedCrossRef
179.
Zurück zum Zitat Rezaei R, et al. Tumor-derived exosomes enriched by miRNA-124 promote anti-tumor immune response in CT-26 tumor-bearing mice. Front Med (Lausanne). 2021;8: 619939.PubMedPubMedCentralCrossRef Rezaei R, et al. Tumor-derived exosomes enriched by miRNA-124 promote anti-tumor immune response in CT-26 tumor-bearing mice. Front Med (Lausanne). 2021;8: 619939.PubMedPubMedCentralCrossRef
180.
Zurück zum Zitat Batista IA, Melo SA Exosomes and the future of immunotherapy in pancreatic cancer. Int J Mol Sci, 2019. 20(3) Batista IA, Melo SA Exosomes and the future of immunotherapy in pancreatic cancer. Int J Mol Sci, 2019. 20(3)
182.
Zurück zum Zitat Dhar R, et al. Exosome-based cancer vaccine: a cutting-edge approach—correspondence. Int J Surg. 2022;108: 106993.PubMedCrossRef Dhar R, et al. Exosome-based cancer vaccine: a cutting-edge approach—correspondence. Int J Surg. 2022;108: 106993.PubMedCrossRef
183.
Zurück zum Zitat Chen YS, et al. Exosomes in clinical trial and their production in compliance with good manufacturing practice. Ci Ji Yi Xue Za Zhi. 2019;32(2):113–20.PubMed Chen YS, et al. Exosomes in clinical trial and their production in compliance with good manufacturing practice. Ci Ji Yi Xue Za Zhi. 2019;32(2):113–20.PubMed
185.
Zurück zum Zitat Huang Y, et al. Exosomes function in tumor immune microenvironment. Adv Exp Med Biol. 2018;1056:109–22.PubMedCrossRef Huang Y, et al. Exosomes function in tumor immune microenvironment. Adv Exp Med Biol. 2018;1056:109–22.PubMedCrossRef
186.
Zurück zum Zitat Rezaie J, Feghhi M, Etemadi T. A review on exosomes application in clinical trials: perspective, questions, and challenges. Cell Commun Signal. 2022;20(1):145.PubMedPubMedCentralCrossRef Rezaie J, Feghhi M, Etemadi T. A review on exosomes application in clinical trials: perspective, questions, and challenges. Cell Commun Signal. 2022;20(1):145.PubMedPubMedCentralCrossRef
188.
Zurück zum Zitat Brinton LT, et al. Formation and role of exosomes in cancer. Cell Mol Life Sci. 2015;72(4):659–71.PubMedCrossRef Brinton LT, et al. Formation and role of exosomes in cancer. Cell Mol Life Sci. 2015;72(4):659–71.PubMedCrossRef
189.
190.
Zurück zum Zitat Dhar R et al. Decoding of exosome heterogeneity for cancer theranostics. Clin Transl Med. 2023;e1288. Dhar R et al. Decoding of exosome heterogeneity for cancer theranostics. Clin Transl Med. 2023;e1288.
191.
Zurück zum Zitat Gould SJ, Raposo G As we wait: coping with an imperfect nomenclature for extracellular vesicles. J Extracell Vesicles, 2013. 2 Gould SJ, Raposo G As we wait: coping with an imperfect nomenclature for extracellular vesicles. J Extracell Vesicles, 2013. 2
192.
193.
Zurück zum Zitat Harding C, et al. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J Cell Biol. 1983;97(2):329–39.PubMedCrossRef Harding C, et al. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J Cell Biol. 1983;97(2):329–39.PubMedCrossRef
194.
Zurück zum Zitat Martins VR, et al. Tumor-cell-derived microvesicles as carriers of molecular information in cancer. Curr Opin Oncol. 2013;25(1):66–75.PubMedCrossRef Martins VR, et al. Tumor-cell-derived microvesicles as carriers of molecular information in cancer. Curr Opin Oncol. 2013;25(1):66–75.PubMedCrossRef
195.
Zurück zum Zitat Kar R, et al, Exosome-based smart drug delivery tool for cancer theranostics. ACS Biomater Sci Eng. 2023. Kar R, et al, Exosome-based smart drug delivery tool for cancer theranostics. ACS Biomater Sci Eng. 2023.
196.
Zurück zum Zitat Wilson DH, et al. The simoa HD-1 analyzer: a novel fully automated digital immunoassay analyzer with single-molecule sensitivity and multiplexing. J Lab Autom. 2016;21(4):533–47.PubMedCrossRef Wilson DH, et al. The simoa HD-1 analyzer: a novel fully automated digital immunoassay analyzer with single-molecule sensitivity and multiplexing. J Lab Autom. 2016;21(4):533–47.PubMedCrossRef
197.
Zurück zum Zitat Dhar R, et al. Exosome: a megastar of future cancer personalized and precision medicine. Clin Transl Disc. 2023;3: e208.CrossRef Dhar R, et al. Exosome: a megastar of future cancer personalized and precision medicine. Clin Transl Disc. 2023;3: e208.CrossRef
198.
Zurück zum Zitat Huda MN, et al. Potential use of exosomes as diagnostic biomarkers and in targeted drug delivery: progress in clinical and preclinical applications. ACS Biomater Sci Eng. 2021;7(6):2106–49.PubMedPubMedCentralCrossRef Huda MN, et al. Potential use of exosomes as diagnostic biomarkers and in targeted drug delivery: progress in clinical and preclinical applications. ACS Biomater Sci Eng. 2021;7(6):2106–49.PubMedPubMedCentralCrossRef
Metadaten
Titel
Theranostic signature of tumor-derived exosomes in cancer
verfasst von
Samruti Kumar
Rajib Dhar
Lokesh Babu Sirkali Suresh Kumar
Gauresh Gurudas Shivji
Rama Jayaraj
Arikketh Devi
Publikationsdatum
01.11.2023
Verlag
Springer US
Erschienen in
Medical Oncology / Ausgabe 11/2023
Print ISSN: 1357-0560
Elektronische ISSN: 1559-131X
DOI
https://doi.org/10.1007/s12032-023-02176-6

Weitere Artikel der Ausgabe 11/2023

Medical Oncology 11/2023 Zur Ausgabe

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Erhöhte Mortalität bei postpartalem Brustkrebs

07.05.2024 Mammakarzinom Nachrichten

Auch für Trägerinnen von BRCA-Varianten gilt: Erkranken sie fünf bis zehn Jahre nach der letzten Schwangerschaft an Brustkrebs, ist das Sterberisiko besonders hoch.

Hypertherme Chemotherapie bietet Chance auf Blasenerhalt

07.05.2024 Harnblasenkarzinom Nachrichten

Eine hypertherme intravesikale Chemotherapie mit Mitomycin kann für Patienten mit hochriskantem nicht muskelinvasivem Blasenkrebs eine Alternative zur radikalen Zystektomie darstellen. Kölner Urologen berichten über ihre Erfahrungen.

Ein Drittel der jungen Ärztinnen und Ärzte erwägt abzuwandern

07.05.2024 Klinik aktuell Nachrichten

Extreme Arbeitsverdichtung und kaum Supervision: Dr. Andrea Martini, Sprecherin des Bündnisses Junge Ärztinnen und Ärzte (BJÄ) über den Frust des ärztlichen Nachwuchses und die Vorteile des Rucksack-Modells.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.