Skip to main content
Erschienen in: Inflammation 4/2017

10.05.2017 | ORIGINAL ARTICLE

Therapeutic Action of Honokiol on Postoperative Ileus via Downregulation of iNOS Gene Expression

verfasst von: Taiki Mihara, Shoma Mikawa, Noriyuki Kaji, Mari Endo, Tetsuro Oikawa, JAN Tong-Rong, Hiroshi Ozaki, Masatoshi Hori

Erschienen in: Inflammation | Ausgabe 4/2017

Einloggen, um Zugang zu erhalten

Abstract

Postoperative ileus is a common complication after intra-abdominal surgery. Nitric oxide produced by macrophages in the inflamed gastrointestinal tract plays a crucial role in the pathogeny of postoperative ileus. Honokiol, extracted from the bark of Magnolia spp., is a natural compound with a biphenolic structure. In the present study, we examined the effect of honokiol on postoperative ileus and discussed its site of action. Postoperative ileus model mice were generated by surgical intestinal manipulation. Mice were administered honokiol (10 mg kg−1, per os) 1 h before and after intestinal manipulation. Gastrointestinal transit, leukocyte infiltration, and messenger RNA (mRNA) expression of inflammatory mediators were measured in postoperative ileus model mice with or without honokiol. We also investigated the inflammatory effect of honokiol in lipopolysaccharide-stimulated peritoneal macrophages. Gastrointestinal transit was delayed in postoperative ileus model mice and honokiol recovered the impaired transit. Honokiol significantly inhibited leukocyte infiltration and upregulation of proinflammatory cytokines (tumor necrosis factor-α, interleukin-1β, and interleukin-6) and inducible nitric oxide synthase in the ileal muscle layer of postoperative ileus model mice. In peritoneal macrophages activated by lipopolysaccharide, honokiol significantly inhibited the upregulated mRNA expression of proinflammatory cytokines and inducible nitric oxide synthase. Honokiol significantly recovered gastrointestinal dysmotility and inhibited intestinal inflammation in postoperative ileus. Moreover, honokiol was suggested to have effects on macrophages, namely, inhibiting mRNA expression of proinflammatory cytokines and inducible nitric oxide synthase. Taken together, honokiol represents a potential novel therapeutic agent for postoperative ileus.
Literatur
1.
Zurück zum Zitat van Bree, S.H., et al. 2012. New therapeutic strategies for postoperative ileus. Nature Reviews. Gastroenterology & Hepatology 9 (11): 675–683.CrossRef van Bree, S.H., et al. 2012. New therapeutic strategies for postoperative ileus. Nature Reviews. Gastroenterology & Hepatology 9 (11): 675–683.CrossRef
2.
Zurück zum Zitat Kalff, J.C., et al. 2000. Role of inducible nitric oxide synthase in postoperative intestinal smooth muscle dysfunction in rodents. Gastroenterology 118 (2): 316–327.CrossRefPubMed Kalff, J.C., et al. 2000. Role of inducible nitric oxide synthase in postoperative intestinal smooth muscle dysfunction in rodents. Gastroenterology 118 (2): 316–327.CrossRefPubMed
3.
Zurück zum Zitat Bauer, A.J., and G.E. Boeckxstaens. 2004. Mechanisms of postoperative ileus. Neurogastroenterology and Motility 16 (Suppl 2): 54–60.CrossRefPubMed Bauer, A.J., and G.E. Boeckxstaens. 2004. Mechanisms of postoperative ileus. Neurogastroenterology and Motility 16 (Suppl 2): 54–60.CrossRefPubMed
4.
Zurück zum Zitat Wehner, S., et al. 2007. Inhibition of macrophage function prevents intestinal inflammation and postoperative ileus in rodents. Gut 56 (2): 176–185.CrossRefPubMed Wehner, S., et al. 2007. Inhibition of macrophage function prevents intestinal inflammation and postoperative ileus in rodents. Gut 56 (2): 176–185.CrossRefPubMed
5.
Zurück zum Zitat Augestad, K.M., and C.P. Delaney. 2010. Postoperative ileus: impact of pharmacological treatment, laparoscopic surgery and enhanced recovery pathways. World Journal of Gastroenterology: WJG 16 (17): 2067–2074.CrossRefPubMedPubMedCentral Augestad, K.M., and C.P. Delaney. 2010. Postoperative ileus: impact of pharmacological treatment, laparoscopic surgery and enhanced recovery pathways. World Journal of Gastroenterology: WJG 16 (17): 2067–2074.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Mattei, P., and J.L. Rombeau. 2006. Review of the pathophysiology and management of postoperative ileus. World Journal of Surgery 30 (8): 1382–1391.CrossRefPubMed Mattei, P., and J.L. Rombeau. 2006. Review of the pathophysiology and management of postoperative ileus. World Journal of Surgery 30 (8): 1382–1391.CrossRefPubMed
7.
Zurück zum Zitat Schwarz, N.T., et al. 2001. Prostanoid production via COX-2 as a causative mechanism of rodent postoperative ileus. Gastroenterology 121 (6): 1354–1371.CrossRefPubMed Schwarz, N.T., et al. 2001. Prostanoid production via COX-2 as a causative mechanism of rodent postoperative ileus. Gastroenterology 121 (6): 1354–1371.CrossRefPubMed
8.
Zurück zum Zitat Turler, A., et al. 2006. Leukocyte-derived inducible nitric oxide synthase mediates murine postoperative ileus. Annals of Surgery 244 (2): 220–229.CrossRefPubMedPubMedCentral Turler, A., et al. 2006. Leukocyte-derived inducible nitric oxide synthase mediates murine postoperative ileus. Annals of Surgery 244 (2): 220–229.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Tajima, T., et al. 2012. EP2 and EP4 receptors on muscularis resident macrophages mediate LPS-induced intestinal dysmotility via iNOS upregulation through cAMP/ERK signals. American Journal of Physiology. Gastrointestinal and Liver Physiology 302 (5): G524–G534.CrossRefPubMed Tajima, T., et al. 2012. EP2 and EP4 receptors on muscularis resident macrophages mediate LPS-induced intestinal dysmotility via iNOS upregulation through cAMP/ERK signals. American Journal of Physiology. Gastrointestinal and Liver Physiology 302 (5): G524–G534.CrossRefPubMed
10.
Zurück zum Zitat Lin, Y.R., et al. 2006. Neuroprotective activity of honokiol and magnolol in cerebellar granule cell damage. European Journal of Pharmacology 537 (1–3): 64–69.CrossRefPubMed Lin, Y.R., et al. 2006. Neuroprotective activity of honokiol and magnolol in cerebellar granule cell damage. European Journal of Pharmacology 537 (1–3): 64–69.CrossRefPubMed
11.
Zurück zum Zitat Hoi, C.P., et al. 2010. Neuroprotective effect of honokiol and magnolol, compounds from Magnolia officinalis, on beta-amyloid-induced toxicity in PC12 cells. Phytotherapy Research 24 (10): 1538–1542.CrossRefPubMed Hoi, C.P., et al. 2010. Neuroprotective effect of honokiol and magnolol, compounds from Magnolia officinalis, on beta-amyloid-induced toxicity in PC12 cells. Phytotherapy Research 24 (10): 1538–1542.CrossRefPubMed
12.
Zurück zum Zitat Hu, Z., et al. 2013. Honokiol protects brain against ischemia-reperfusion injury in rats through disrupting PSD95-nNOS interaction. Brain Research 1491: 204–212.CrossRefPubMed Hu, Z., et al. 2013. Honokiol protects brain against ischemia-reperfusion injury in rats through disrupting PSD95-nNOS interaction. Brain Research 1491: 204–212.CrossRefPubMed
13.
Zurück zum Zitat Kim, Y.S., et al. 2010. Synthesis and microbiological evaluation of honokiol derivatives as new antimicrobial agents. Archives of Pharmacal Research 33 (1): 61–65.CrossRefPubMed Kim, Y.S., et al. 2010. Synthesis and microbiological evaluation of honokiol derivatives as new antimicrobial agents. Archives of Pharmacal Research 33 (1): 61–65.CrossRefPubMed
14.
Zurück zum Zitat Kim, S.Y., et al. 2015. Antimicrobial effects and resistant regulation of magnolol and honokiol on methicillin-resistant Staphylococcus aureus. BioMed Research International 2015: 283630.PubMedPubMedCentral Kim, S.Y., et al. 2015. Antimicrobial effects and resistant regulation of magnolol and honokiol on methicillin-resistant Staphylococcus aureus. BioMed Research International 2015: 283630.PubMedPubMedCentral
15.
Zurück zum Zitat Xu, Q., et al. 2008. Antidepressant-like effects of the mixture of honokiol and magnolol from the barks of Magnolia officinalis in stressed rodents. Progress in Neuro-Psychopharmacology & Biological Psychiatry 32 (3): 715–725.CrossRef Xu, Q., et al. 2008. Antidepressant-like effects of the mixture of honokiol and magnolol from the barks of Magnolia officinalis in stressed rodents. Progress in Neuro-Psychopharmacology & Biological Psychiatry 32 (3): 715–725.CrossRef
16.
Zurück zum Zitat Fried, L.E., and J.L. Arbiser. 2009. Honokiol, a multifunctional antiangiogenic and antitumor agent. Antioxidants & Redox Signaling 11 (5): 1139–1148.CrossRef Fried, L.E., and J.L. Arbiser. 2009. Honokiol, a multifunctional antiangiogenic and antitumor agent. Antioxidants & Redox Signaling 11 (5): 1139–1148.CrossRef
17.
Zurück zum Zitat Pillai, V.B., et al. 2015. Honokiol blocks and reverses cardiac hypertrophy in mice by activating mitochondrial Sirt3. Nature Communications 6: 6656.CrossRefPubMedPubMedCentral Pillai, V.B., et al. 2015. Honokiol blocks and reverses cardiac hypertrophy in mice by activating mitochondrial Sirt3. Nature Communications 6: 6656.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Mochiki, E., et al. 2010. The effect of traditional Japanese medicine (Kampo) on gastrointestinal function. Surgery Today 40 (12): 1105–1111.CrossRefPubMed Mochiki, E., et al. 2010. The effect of traditional Japanese medicine (Kampo) on gastrointestinal function. Surgery Today 40 (12): 1105–1111.CrossRefPubMed
19.
Zurück zum Zitat Tsuchida, Y., et al. 2011. Neuronal stimulation with 5-hydroxytryptamine 4 receptor induces anti-inflammatory actions via alpha7nACh receptors on muscularis macrophages associated with postoperative ileus. Gut 60 (5): 638–647.CrossRefPubMed Tsuchida, Y., et al. 2011. Neuronal stimulation with 5-hydroxytryptamine 4 receptor induces anti-inflammatory actions via alpha7nACh receptors on muscularis macrophages associated with postoperative ileus. Gut 60 (5): 638–647.CrossRefPubMed
20.
Zurück zum Zitat Endo, M., et al. 2014. Daikenchuto, a traditional Japanese herbal medicine, ameliorates postoperative ileus by anti-inflammatory action through nicotinic acetylcholine receptors. Journal of Gastroenterology 49 (6): 1026–1039.CrossRefPubMed Endo, M., et al. 2014. Daikenchuto, a traditional Japanese herbal medicine, ameliorates postoperative ileus by anti-inflammatory action through nicotinic acetylcholine receptors. Journal of Gastroenterology 49 (6): 1026–1039.CrossRefPubMed
21.
Zurück zum Zitat Oikawa, T., et al. 2005. Prokinetic effect of a Kampo medicine, Hange-koboku-to (Banxia-houpo-tang), on patients with functional dyspepsia. Phytomedicine 12 (10): 730–734.CrossRefPubMed Oikawa, T., et al. 2005. Prokinetic effect of a Kampo medicine, Hange-koboku-to (Banxia-houpo-tang), on patients with functional dyspepsia. Phytomedicine 12 (10): 730–734.CrossRefPubMed
22.
Zurück zum Zitat Kim, C.B., J.N. Ver Hoeve, and T.M. Nork. 2012. The effect of pentobarbital sodium and propofol anesthesia on multifocal electroretinograms in rhesus macaques. Documenta Ophthalmologica 124 (1): 59–72.CrossRefPubMed Kim, C.B., J.N. Ver Hoeve, and T.M. Nork. 2012. The effect of pentobarbital sodium and propofol anesthesia on multifocal electroretinograms in rhesus macaques. Documenta Ophthalmologica 124 (1): 59–72.CrossRefPubMed
23.
Zurück zum Zitat Kiyosue, M., et al. 2006. Different susceptibilities of spontaneous rhythmicity and myogenic contractility to intestinal muscularis inflammation in the hapten-induced colitis. Neurogastroenterology and Motility 18 (11): 1019–1030.CrossRefPubMed Kiyosue, M., et al. 2006. Different susceptibilities of spontaneous rhythmicity and myogenic contractility to intestinal muscularis inflammation in the hapten-induced colitis. Neurogastroenterology and Motility 18 (11): 1019–1030.CrossRefPubMed
24.
Zurück zum Zitat Qu, W.M., et al. 2012. Honokiol promotes non-rapid eye movement sleep via the benzodiazepine site of the GABA(A) receptor in mice. British Journal of Pharmacology 167 (3): 587–598.CrossRefPubMedPubMedCentral Qu, W.M., et al. 2012. Honokiol promotes non-rapid eye movement sleep via the benzodiazepine site of the GABA(A) receptor in mice. British Journal of Pharmacology 167 (3): 587–598.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Singh, T., et al. 2015. Honokiol inhibits the growth of head and neck squamous cell carcinoma by targeting epidermal growth factor receptor. Oncotarget 6 (25): 21268–21282.CrossRefPubMedPubMedCentral Singh, T., et al. 2015. Honokiol inhibits the growth of head and neck squamous cell carcinoma by targeting epidermal growth factor receptor. Oncotarget 6 (25): 21268–21282.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Hori, M., et al. 2001. Upregulation of iNOS by COX-2 in muscularis resident macrophage of rat intestine stimulated with LPS. American Journal of Physiology. Gastrointestinal and Liver Physiology 280 (5): G930–G938.PubMed Hori, M., et al. 2001. Upregulation of iNOS by COX-2 in muscularis resident macrophage of rat intestine stimulated with LPS. American Journal of Physiology. Gastrointestinal and Liver Physiology 280 (5): G930–G938.PubMed
27.
Zurück zum Zitat Uchida, M., N. Endo, and K. Shimizu. 2005. Simple and noninvasive breath test using 13C-acetic acid to evaluate gastric emptying in conscious rats and its validation by metoclopramide. Journal of Pharmacological Sciences 98 (4): 388–395.CrossRefPubMed Uchida, M., N. Endo, and K. Shimizu. 2005. Simple and noninvasive breath test using 13C-acetic acid to evaluate gastric emptying in conscious rats and its validation by metoclopramide. Journal of Pharmacological Sciences 98 (4): 388–395.CrossRefPubMed
28.
Zurück zum Zitat Kinoshita, K., et al. 2007. Possible involvement of muscularis resident macrophages in impairment of interstitial cells of Cajal and myenteric nerve systems in rat models of TNBS-induced colitis. Histochemistry and Cell Biology 127 (1): 41–53.CrossRefPubMed Kinoshita, K., et al. 2007. Possible involvement of muscularis resident macrophages in impairment of interstitial cells of Cajal and myenteric nerve systems in rat models of TNBS-induced colitis. Histochemistry and Cell Biology 127 (1): 41–53.CrossRefPubMed
29.
Zurück zum Zitat Kanda, Y. 2013. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplantation 48 (3): 452–458.CrossRefPubMed Kanda, Y. 2013. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplantation 48 (3): 452–458.CrossRefPubMed
30.
Zurück zum Zitat Hori, M., et al. 2008. MCP-1 targeting inhibits muscularis macrophage recruitment and intestinal smooth muscle dysfunction in colonic inflammation. American Journal of Physiology. Cell Physiology 294 (2): C391–C401.CrossRefPubMed Hori, M., et al. 2008. MCP-1 targeting inhibits muscularis macrophage recruitment and intestinal smooth muscle dysfunction in colonic inflammation. American Journal of Physiology. Cell Physiology 294 (2): C391–C401.CrossRefPubMed
31.
Zurück zum Zitat Endo, M., et al. 2007. Pharmacological analysis for the optimal combination ratio of Shakuyaku and Kanzo in Shakuyakukanzoto. Journal of Traditional Medicines 24 (1): 39–42. Endo, M., et al. 2007. Pharmacological analysis for the optimal combination ratio of Shakuyaku and Kanzo in Shakuyakukanzoto. Journal of Traditional Medicines 24 (1): 39–42.
32.
Zurück zum Zitat Ghayur, M.N., and A.H. Gilani. 2005. Pharmacological basis for the medicinal use of ginger in gastrointestinal disorders. Digestive Diseases and Sciences 50 (10): 1889–1897.CrossRefPubMed Ghayur, M.N., and A.H. Gilani. 2005. Pharmacological basis for the medicinal use of ginger in gastrointestinal disorders. Digestive Diseases and Sciences 50 (10): 1889–1897.CrossRefPubMed
33.
Zurück zum Zitat Maehara, T., et al. 2015. Therapeutic action of 5-HT3 receptor antagonists targeting peritoneal macrophages in post-operative ileus. British Journal of Pharmacology 172 (4): 1136–1147.CrossRefPubMedPubMedCentral Maehara, T., et al. 2015. Therapeutic action of 5-HT3 receptor antagonists targeting peritoneal macrophages in post-operative ileus. British Journal of Pharmacology 172 (4): 1136–1147.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Olsen, R.W., and W. Sieghart. 2009. GABA A receptors: subtypes provide diversity of function and pharmacology. Neuropharmacology 56 (1): 141–148.CrossRefPubMed Olsen, R.W., and W. Sieghart. 2009. GABA A receptors: subtypes provide diversity of function and pharmacology. Neuropharmacology 56 (1): 141–148.CrossRefPubMed
35.
Zurück zum Zitat Alexeev, M., et al. 2012. The natural products magnolol and honokiol are positive allosteric modulators of both synaptic and extra-synaptic GABA(A) receptors. Neuropharmacology 62 (8): 2507–2514.CrossRefPubMedPubMedCentral Alexeev, M., et al. 2012. The natural products magnolol and honokiol are positive allosteric modulators of both synaptic and extra-synaptic GABA(A) receptors. Neuropharmacology 62 (8): 2507–2514.CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Reyes-Garcia, M.G., et al. 2007. GABA (A) receptor subunits RNA expression in mice peritoneal macrophages modulate their IL-6/IL-12 production. Journal of Neuroimmunology 188 (1–2): 64–68.CrossRefPubMed Reyes-Garcia, M.G., et al. 2007. GABA (A) receptor subunits RNA expression in mice peritoneal macrophages modulate their IL-6/IL-12 production. Journal of Neuroimmunology 188 (1–2): 64–68.CrossRefPubMed
37.
Zurück zum Zitat Bjurstom, H., et al. 2008. GABA, a natural immunomodulator of T lymphocytes. Journal of Neuroimmunology 205 (1–2): 44–50.CrossRefPubMed Bjurstom, H., et al. 2008. GABA, a natural immunomodulator of T lymphocytes. Journal of Neuroimmunology 205 (1–2): 44–50.CrossRefPubMed
38.
Zurück zum Zitat Bhat, R., et al. 2010. Inhibitory role for GABA in autoimmune inflammation. Proceedings of the National Academy of Sciences of the United States of America 107 (6): 2580–2585.CrossRefPubMedPubMedCentral Bhat, R., et al. 2010. Inhibitory role for GABA in autoimmune inflammation. Proceedings of the National Academy of Sciences of the United States of America 107 (6): 2580–2585.CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Hernandez-Rabaza, V. et al. 2016. Neuroinflammation increases GABAergic tone and impairs cognitive and motor function in hyperammonemia by increasing GAT-3 membrane expression. Reversal by sulforaphane by promoting M2 polarization of microglia. J Neuroinflammation 13(1): p. 83. Hernandez-Rabaza, V. et al. 2016. Neuroinflammation increases GABAergic tone and impairs cognitive and motor function in hyperammonemia by increasing GAT-3 membrane expression. Reversal by sulforaphane by promoting M2 polarization of microglia. J Neuroinflammation 13(1): p. 83.
40.
Zurück zum Zitat Oh, J.H., et al. 2009. Anti-inflammatory effect of 4-O-methylhonokiol, compound isolated from Magnolia officinalis through inhibition of NF-kappaB [corrected]. Chemico-Biological Interactions 180 (3): 506–514.CrossRefPubMed Oh, J.H., et al. 2009. Anti-inflammatory effect of 4-O-methylhonokiol, compound isolated from Magnolia officinalis through inhibition of NF-kappaB [corrected]. Chemico-Biological Interactions 180 (3): 506–514.CrossRefPubMed
41.
Zurück zum Zitat Fuchs, A., et al. 2014. Structural analogues of the natural products magnolol and honokiol as potent allosteric potentiators of GABA(A) receptors. Bioorganic & Medicinal Chemistry 22 (24): 6908–6917.CrossRef Fuchs, A., et al. 2014. Structural analogues of the natural products magnolol and honokiol as potent allosteric potentiators of GABA(A) receptors. Bioorganic & Medicinal Chemistry 22 (24): 6908–6917.CrossRef
42.
Zurück zum Zitat Tse, A.K., et al. 2005. Honokiol inhibits TNF-alpha-stimulated NF-kappaB activation and NF-kappaB-regulated gene expression through suppression of IKK activation. Biochemical Pharmacology 70 (10): 1443–1457.CrossRefPubMed Tse, A.K., et al. 2005. Honokiol inhibits TNF-alpha-stimulated NF-kappaB activation and NF-kappaB-regulated gene expression through suppression of IKK activation. Biochemical Pharmacology 70 (10): 1443–1457.CrossRefPubMed
43.
Zurück zum Zitat Leeman-Neill, R.J., et al. 2010. Honokiol inhibits epidermal growth factor receptor signaling and enhances the antitumor effects of epidermal growth factor receptor inhibitors. Clinical Cancer Research 16 (9): 2571–2579.CrossRefPubMedPubMedCentral Leeman-Neill, R.J., et al. 2010. Honokiol inhibits epidermal growth factor receptor signaling and enhances the antitumor effects of epidermal growth factor receptor inhibitors. Clinical Cancer Research 16 (9): 2571–2579.CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Rajendran, P., et al. 2012. Honokiol inhibits signal transducer and activator of transcription-3 signaling, proliferation, and survival of hepatocellular carcinoma cells via the protein tyrosine phosphatase SHP-1. Journal of Cellular Physiology 227 (5): 2184–2195.CrossRefPubMed Rajendran, P., et al. 2012. Honokiol inhibits signal transducer and activator of transcription-3 signaling, proliferation, and survival of hepatocellular carcinoma cells via the protein tyrosine phosphatase SHP-1. Journal of Cellular Physiology 227 (5): 2184–2195.CrossRefPubMed
45.
Zurück zum Zitat Chen, P.J., et al. 2016. Honokiol suppresses TNF-alpha-induced neutrophil adhesion on cerebral endothelial cells by disrupting polyubiquitination and degradation of IkappaBalpha. Scientific Reports 6: 26554.CrossRefPubMedPubMedCentral Chen, P.J., et al. 2016. Honokiol suppresses TNF-alpha-induced neutrophil adhesion on cerebral endothelial cells by disrupting polyubiquitination and degradation of IkappaBalpha. Scientific Reports 6: 26554.CrossRefPubMedPubMedCentral
46.
Zurück zum Zitat Chen, F.F., et al. 2015. Mitochondrial energy metabolism disorder and apoptosis: a potential mechanism of postoperative ileus. International Journal of Clinical and Experimental Medicine 8 (9): 14885–14895.PubMedPubMedCentral Chen, F.F., et al. 2015. Mitochondrial energy metabolism disorder and apoptosis: a potential mechanism of postoperative ileus. International Journal of Clinical and Experimental Medicine 8 (9): 14885–14895.PubMedPubMedCentral
Metadaten
Titel
Therapeutic Action of Honokiol on Postoperative Ileus via Downregulation of iNOS Gene Expression
verfasst von
Taiki Mihara
Shoma Mikawa
Noriyuki Kaji
Mari Endo
Tetsuro Oikawa
JAN Tong-Rong
Hiroshi Ozaki
Masatoshi Hori
Publikationsdatum
10.05.2017
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 4/2017
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-017-0576-7

Weitere Artikel der Ausgabe 4/2017

Inflammation 4/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.