Skip to main content
Erschienen in: BMC Medicine 1/2013

Open Access 01.12.2013 | Commentary

Therapeutic benefits of an oral vitamin B1 derivative for human T lymphotropic virus type I-associated myelopathy/tropical spastic paraparesis (HAM/TSP)

verfasst von: Jun-ichi Kira

Erschienen in: BMC Medicine | Ausgabe 1/2013

Abstract

Prosultiamine, a vitamin B1 derivative, has long been used for beriberi neuropathy and Wernicke’s encephalopathy. Based on the finding that prosultiamine induces apoptosis in human T lymphotropic virus type I (HTLV-I)-infected T cells, Nakamura et al. conducted a clinical trial of prosultiamine in patients with HTLV-I-associated myelopathy (HAM)/tropical spastic paraparesis (TSP). In this open-label, single arm study enrolling 24 HAM/TSP patients recently published in BMC Medicine, oral prosultiamine (300 mg/day for 12 weeks) was found to be effective by neurological, urological and virological evaluations. Notably, it increased detrusor pressure, bladder capacity and maximum flow rate, and improved detrusor overactivity and detrusor-sphincter dyssynergia. A significant decrease in HTLV-I copy numbers in peripheral blood following the treatment provided a rationale for using the drug. The trial has some limitations, such as the small numbers of participants, the open-label design, the lack of a placebo arm, and the short trial period. Nevertheless, the observation that such a safe, cheap drug may have excellent therapeutic effects on HAM/TSP, a chronic devastating illness occurring mainly in developing countries, provides support for future large-scale randomized controlled trials.
Hinweise

Competing interests

JK is a consultant for Biogen Idec Japan, and has received honoraria from Bayer Healthcare and funding for a trip from Bayer Healthcare and Biogen Idec Japan. He is funded by a Research Grant for Nervous and Mental Disorders from the Ministry of Health, Labour and Welfare, Japan, and grants from the Japan Science and Technology Agency and the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Background

Prosultiamine (Alinamin®), a well-known thiamine derivative, was first developed by Takeda Pharmaceutical Company in Japan in the 1950s. The drug is a homolog of allithiamine produced by thiol-type vitamin B1 and allicin. Prosultiamine is synthesized by substitution of allyl disulfide with propyl disulfide in the allithiamine structure, to increase its stability in blood and achieve efficient absorption from the gut. Prosultiamine is converted to vitamin B1 after absorption from the gut. The drug thus enables a long-lasting high blood concentration of vitamin B1, resulting in efficient access of vitamin B1 to nervous tissue. Prosultiamine has cured many patients with vitamin B1 deficiency resulting in beriberi neuropathy and Wernicke’s encephalopathy. Prosultiamine might also save patients suffering from another devastating neurologic illness associated with a human retrovirus, namely T lymphotropic virus type I (HTLV-I).
HTLV-I causes not only adult T cell leukemia but also chronic progressive myelopathy, known as HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP) [1]. HAM/TSP is a devastating neurologic disease causing serious disability, mainly affecting the middle to lower thoracic spinal cord. Patients with HAM/TSP thus present with spastic paraparesis owing to the involvement of the corticospinal tracts. The disease also induces sphincter disturbance, such as dysuria, pollakisuria, urinary retention and constipation, and mild sensory impairment of the lower limbs, such as decreased vibratory sensation and paresthesia. The precise mechanisms underlying HAM/TSP remain to be elucidated, but persistent lymphocytic inflammation exists in the corticospinal tracts and the adjacent white matter of the spinal cord [2]. HTLV-I mainly infects CD4+ T cells; such HTLV-I-infected CD4+ T cells are autoproliferative and tend to infiltrate central nervous system (CNS) tissue [3]. Some authors have hypothesized the existence of ‘bystander tissue damage’ during the chronic inflammatory process when cytotoxic CD8+ T cells continuously kill HTLV-I-infected CD4+ T cells infiltrating the CNS [2, 4].
In HAM/TSP patients, HTLV-I proviral DNA loads in peripheral blood are markedly increased despite the presence of abundant cytotoxic T cells against HTLV-I [5, 6]. Therefore, it is assumed to be beneficial to reduce the number of HTLV-I-infected T cells for treatment of HAM/TSP. Indeed, interferon α (IFNα), a potent drug against the disease, can decrease HTLV-I proviral DNA loads in peripheral blood [7]. Although IFNα is effective, long-term efficacy is modest and adverse effects are relatively frequent and occasionally severe, which makes it difficult to administer the drug for many years. Other immunotherapies, such as corticosteroids [1], plasmapheresis [8], and intermittent high-dose vitamin C [9], exhibit only short-term benefits. Long-term administration of immunosuppressants, such as azathioprine and mizoribine, showed only limited efficacy in a minority of HAM/TSP patients [10]. HAM/TSP is relatively frequently encountered in areas encompassing developing countries, such as equatorial Africa, the Caribbean, Central and South America, the Middle East, and Melanesia [11]. Because curative treatment of HAM/TSP is lacking and no vaccine is available, a low-cost drug with tolerable safety profiles for long-term usage is of paramount importance.
Recently, Nakamura et al. [12] discovered that prosultiamine induces apoptosis of HTLV-I-infected T cells; therefore, they conducted a clinical trial of oral prosultiamine in HAM/TSP patients to obtain proof of concept for the drug [13].

Clinical trial results of prosultiamine in HAM/TSP patients

Study design

The study recently published in BMC Medicine by Nakamura et al. [13] was an open-label, single arm study enrolling 24 patients with HAM/TSP, aged 31 to 80 years. The disease duration ranged from 3 to 51 years, with an average of 20.9 years. Prosultiamine 300 mg was administered orally once daily for 12 weeks. Effects were assessed in three ways, neurological, urological and virological, every 4 weeks. Neurological assessments included the time required for a 10 meter walk, and that required for walking down a flight of stairs, and the modified Ashworth scale (MAS) for spasticity grading of the lower extremities besides full neurological examinations. Detailed urological evaluations were carried out employing the Nocturia Quality of Life (N-QoL) questionnaire and urodynamic studies to measure bladder capacity, detrusor pressure, maximum flow rate, detrusor overactivity, and detrusor-sphincter dyssynergia. Peripheral blood HTLV-I proviral DNA loads were measured by real-time quantitative polymerase chain reaction.

Main findings

Prosultiamine improved lower limb spasticity in 80% of the patients (by more than 1 grade for the degree of spasticity on MAS), which almost coincided with improvements in the times required for a 10 meter walk (4.4% to 36.8% decrease in 11 patients) and walking down a flight of stairs (2.3% to 53.2% decrease in 10 patients). Remarkably, both the N-QoL scores and urinary function tests as evaluated by urodynamic studies were significantly improved by the treatment compared with baseline levels; there were increases in detrusor pressure (from 16.8 to 27.5 cm/H2O on average) and bladder capacity (from 341.3 to 391.0 ml on average), and maximum flow rate (from 7.5 to 10.2 ml/s on average) together with improvements in detrusor overactivity (68.8% of the patients) and detrusor-sphincter dyssynergia (45.5% of the patients). Importantly, HTLV-I copy numbers in 104 peripheral blood mononuclear cells (PMBCs) decreased significantly after treatment compared with pretreatment levels (from 2,127 to 1,799 on average), with some patients reaching a 30% to 50% decrease. Only three patients complained of mild epigastric discomfort during treatment; otherwise, no side effects were observed.

Interpretation of the trial findings

The number of participants in the present trial was small and the trial was open-label without a placebo arm; therefore, the current observations should be interpreted with caution and the findings should be confirmed by a large-scale, randomized, double-blind, placebo-controlled study in the future. Nonetheless, the improvement in urodynamic study findings is striking and could provide some proof of concept for the use of prosultiamine in HAM/TSP patients. Although placebo effects in the improved motor performance could not be fully eliminated, the urodynamic study findings support the notion that oral vitamin B1 derivatives have real therapeutic effects on HAM/TSP. The coincidence of the HTLV-I proviral DNA reduction in PBMCs by the drug with therapeutic efficacy may also support such a notion. Such a coincidence was also observed with IFNα [7]. The same authors’ research group previously reported that prosultiamine induces apoptosis of HTLV-I-infected cells, possibly through disruption of the intracellular redox system via reaction of the disulfide moieties in the drug with thiol-containing intracellular molecules [12]. Given that, in two recent studies, a reverse transcriptase inhibitor [14] and a histone deacetylase enzyme inhibitor [15] targeting HTLV-I failed to reduce copy numbers, the significant decrease in HTLV-I copy numbers even after 3 months of administration of prosultiamine in the present study is noteworthy. However, the decrease in HTLV-I proviral DNA loads was modest, albeit significant. Why could such a small decrease in peripheral HTLV-I loads induce measurable clinical benefits? Vitamin B1 easily penetrates into the CNS where it might reduce persistent inflammation via induction of apoptosis of infiltrated HTLV-I-infected cells that express the bcl-2 oncoprotein and are usually resistant to apoptosis [4]. It is critical to investigate whether the elevation of IP-10 and other proinflammatory cytokines in cerebrospinal fluid [16] is downmodulated following treatment with prosultiamine. It is also urgently necessary to clarify if years of prosultiamine administration could further reduce HTLV-I copy numbers. In this case, oral prosultiamine might be classified as a first-line drug for the long-term treatment of HAM/TSP, considering its excellent safety profile.

Conclusions

Oral prosultiamine could safely alleviate HAM/TSP as evidenced by motor function evaluation and urodynamic studies, coinciding with a modest decrease in HTLV-I copy numbers in PBMCs. The drug appears to be promising, but the long-term benefits of the drug remain to be established by a large-scale, randomized, controlled study. The results of the present study encourage such investigations.
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

JK is a consultant for Biogen Idec Japan, and has received honoraria from Bayer Healthcare and funding for a trip from Bayer Healthcare and Biogen Idec Japan. He is funded by a Research Grant for Nervous and Mental Disorders from the Ministry of Health, Labour and Welfare, Japan, and grants from the Japan Science and Technology Agency and the Ministry of Education, Culture, Sports, Science and Technology, Japan.
Literatur
1.
Zurück zum Zitat Osame M, Matsumoto M, Usuku K, Izumo S, Ijichi N, Amitani H, Tara M, Igata A: Chronic progressive myelopathy associated with elevated antibodies to human T-lymphotropic virus type I and T-cell leukemia-like cells. Ann Neurol. 1987, 21: 117-122.CrossRefPubMed Osame M, Matsumoto M, Usuku K, Izumo S, Ijichi N, Amitani H, Tara M, Igata A: Chronic progressive myelopathy associated with elevated antibodies to human T-lymphotropic virus type I and T-cell leukemia-like cells. Ann Neurol. 1987, 21: 117-122.CrossRefPubMed
2.
Zurück zum Zitat Izumo S: Neuropathology of HTLV-1-associated myelopathy (HAM). Neuropathology. 2010, 18: 100-112. Izumo S: Neuropathology of HTLV-1-associated myelopathy (HAM). Neuropathology. 2010, 18: 100-112.
3.
Zurück zum Zitat Itoyama Y, Minato S, Kira J, Goto I, Sato H, Okochi K, Yamamoto N: Spontaneous proliferation of peripheral blood lymphocytes increased in patients with HTLV-I-associated myelopathy. Neurology. 1988, 38: 1302-1307.CrossRefPubMed Itoyama Y, Minato S, Kira J, Goto I, Sato H, Okochi K, Yamamoto N: Spontaneous proliferation of peripheral blood lymphocytes increased in patients with HTLV-I-associated myelopathy. Neurology. 1988, 38: 1302-1307.CrossRefPubMed
4.
Zurück zum Zitat Umehara F, Nakamura A, Izumo S, Kubota R, Ijichi S, Kashio N, Hashimoto K, Usuku K, Sato E, Osame M: Apoptosis of T lymphocytes in the spinal cord lesions in HTLV-I-associated myelopathy: a possible mechanism to control viral infection in the central nervous system. J Neuropathol Exp Neurol. 1994, 53: 617-624.CrossRefPubMed Umehara F, Nakamura A, Izumo S, Kubota R, Ijichi S, Kashio N, Hashimoto K, Usuku K, Sato E, Osame M: Apoptosis of T lymphocytes in the spinal cord lesions in HTLV-I-associated myelopathy: a possible mechanism to control viral infection in the central nervous system. J Neuropathol Exp Neurol. 1994, 53: 617-624.CrossRefPubMed
5.
Zurück zum Zitat Kira J, Koyanagi Y, Yamada T, Itoyama Y, Goto I, Yamamoto N, Sasaki H, Sakaki Y: Increased HTLV-I proviral DNA in HTLV-I-associated myelopathy: a quantitative polymerase chain reaction study. Ann Neurol. 1991, 29: 194-201.CrossRefPubMed Kira J, Koyanagi Y, Yamada T, Itoyama Y, Goto I, Yamamoto N, Sasaki H, Sakaki Y: Increased HTLV-I proviral DNA in HTLV-I-associated myelopathy: a quantitative polymerase chain reaction study. Ann Neurol. 1991, 29: 194-201.CrossRefPubMed
6.
Zurück zum Zitat Kubota R, Hanada K, Furukawa Y, Arimura K, Osame M, Gojobori T, Izumo S: Genetic stability of human T lymphotropic virus type I despite of antiviral pressures by CTLs. J Immunol. 2007, 178: 5966-5972.CrossRefPubMed Kubota R, Hanada K, Furukawa Y, Arimura K, Osame M, Gojobori T, Izumo S: Genetic stability of human T lymphotropic virus type I despite of antiviral pressures by CTLs. J Immunol. 2007, 178: 5966-5972.CrossRefPubMed
7.
Zurück zum Zitat Yamasaki Y, Kira J, Koyanagi Y, Kawano Y, Miyano-Kurosaki N, Nakamura M, Baba E, Suzuki J, Yamamoto A, Yamamoto N, Kobayashi T: Long term, high dose interferon-alpha treatment in HTLV-I-associated myelopathy/tropical spastic paraparesis: a combined clinical, virological and immunological study. J Neurol Sci. 1997, 147: 135-144.CrossRefPubMed Yamasaki Y, Kira J, Koyanagi Y, Kawano Y, Miyano-Kurosaki N, Nakamura M, Baba E, Suzuki J, Yamamoto A, Yamamoto N, Kobayashi T: Long term, high dose interferon-alpha treatment in HTLV-I-associated myelopathy/tropical spastic paraparesis: a combined clinical, virological and immunological study. J Neurol Sci. 1997, 147: 135-144.CrossRefPubMed
8.
Zurück zum Zitat Matsuo H, Nakamura T, Tsujihara M, Kinoshita I, Satoh A, Tomita I, Shirabe S, Shibayama K, Nagataki S: Plasmaphersis in treatment of human T-lymphotropic virus type-I associated myelopathy. Lancet. 1988, 2: 1109-1113.CrossRefPubMed Matsuo H, Nakamura T, Tsujihara M, Kinoshita I, Satoh A, Tomita I, Shirabe S, Shibayama K, Nagataki S: Plasmaphersis in treatment of human T-lymphotropic virus type-I associated myelopathy. Lancet. 1988, 2: 1109-1113.CrossRefPubMed
9.
Zurück zum Zitat Kataoka A, Iami H, Inayoshi S, Tsuda T: Intermittent high-dose vitamin C therapy in patients with HTLV-1 associated myelopathy. J Neurol Neurosurg Psychiatry. 1993, 56: 1213-1216.CrossRefPubMedPubMedCentral Kataoka A, Iami H, Inayoshi S, Tsuda T: Intermittent high-dose vitamin C therapy in patients with HTLV-1 associated myelopathy. J Neurol Neurosurg Psychiatry. 1993, 56: 1213-1216.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Nakagawa M, Nakahara K, Maruyama Y, Kawabata M, Higuchi I, Kubota H, Izumo S, Arimura K, Osame M: Therapeutic trials in 200 patients with HTLV-I-associated myelopathy/tropical spastic paraparesis. J Neurovirol. 1996, 2: 345-355.CrossRefPubMed Nakagawa M, Nakahara K, Maruyama Y, Kawabata M, Higuchi I, Kubota H, Izumo S, Arimura K, Osame M: Therapeutic trials in 200 patients with HTLV-I-associated myelopathy/tropical spastic paraparesis. J Neurovirol. 1996, 2: 345-355.CrossRefPubMed
11.
Zurück zum Zitat Proietti FA, Cameiro-Proietti AB, Catalan-Soares BC, Murphy EL: Global epidemiology of HTLV-I infection and associated disease. Oncogene. 2005, 24: 6058-6068.CrossRefPubMed Proietti FA, Cameiro-Proietti AB, Catalan-Soares BC, Murphy EL: Global epidemiology of HTLV-I infection and associated disease. Oncogene. 2005, 24: 6058-6068.CrossRefPubMed
12.
Zurück zum Zitat Nishiura Y, Nakamura T, Fukushima N, Nakamura H, Ida H, Aramaki T, Eguchi K: Disulfide-mediated apoptosis of human T-lymphotropic virus type-I (HTLV-I)-infected cells in patients with HTLV-I-associated myelopathy/tropical spastic paraparesis. Antivir Ther. 2009, 14: 533-542.PubMed Nishiura Y, Nakamura T, Fukushima N, Nakamura H, Ida H, Aramaki T, Eguchi K: Disulfide-mediated apoptosis of human T-lymphotropic virus type-I (HTLV-I)-infected cells in patients with HTLV-I-associated myelopathy/tropical spastic paraparesis. Antivir Ther. 2009, 14: 533-542.PubMed
13.
Zurück zum Zitat Nakamura T, Matsuo T, Fukuda T, Yamato S, Yamaguchi K, Kinoshita I, Matsuzaki T, Nishiura Y, Nagasato K, Narita-Masuda T, Nakamura H, Satoh K, Sasaki H, Kawakami A: Efficacy of propfultiamine treatment in patients with HTLV-I-associated myelopathy/tropical spastic paraparesis: results from an open-label clinical trial. BMC Med. In press Nakamura T, Matsuo T, Fukuda T, Yamato S, Yamaguchi K, Kinoshita I, Matsuzaki T, Nishiura Y, Nagasato K, Narita-Masuda T, Nakamura H, Satoh K, Sasaki H, Kawakami A: Efficacy of propfultiamine treatment in patients with HTLV-I-associated myelopathy/tropical spastic paraparesis: results from an open-label clinical trial. BMC Med. In press
14.
Zurück zum Zitat Taylor GP, Goon P, Furukawa Y, Green H, Barfield A, Mosley A, Nose H, Babiker A, Rudge P, Usuku K, Osame M, Bangham CRM, Weber JN: Zidovudine plus lamivudine in human T-lymphotropic virus type-1-associated myelopathy: a randomized trial. Retrovirology. 2006, 3: 63.CrossRefPubMedPubMedCentral Taylor GP, Goon P, Furukawa Y, Green H, Barfield A, Mosley A, Nose H, Babiker A, Rudge P, Usuku K, Osame M, Bangham CRM, Weber JN: Zidovudine plus lamivudine in human T-lymphotropic virus type-1-associated myelopathy: a randomized trial. Retrovirology. 2006, 3: 63.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Olindo S, Belrose G, Gillet N, Rodriguez S, Boxus M, Verlaeten O, Asquith B, Bangham C, Signaté A, Smadja D, Lezin A, Césaire R, Willems L: Safety of long-term treatment of HAM/TSP patients with valproic acid. Blood. 2011, 118: 6306-6309.CrossRefPubMed Olindo S, Belrose G, Gillet N, Rodriguez S, Boxus M, Verlaeten O, Asquith B, Bangham C, Signaté A, Smadja D, Lezin A, Césaire R, Willems L: Safety of long-term treatment of HAM/TSP patients with valproic acid. Blood. 2011, 118: 6306-6309.CrossRefPubMed
16.
Zurück zum Zitat Tanaka M, Matsushita T, Tateishi T, Ochi H, Kawano Y, Mei F-J, Minohara M, Murai H, Kira J: Distinct CSF cytokine/chemokine profiles in atopic myelitis and other causes of myelitis. Neurology. 2008, 71: 974-981.CrossRefPubMed Tanaka M, Matsushita T, Tateishi T, Ochi H, Kawano Y, Mei F-J, Minohara M, Murai H, Kira J: Distinct CSF cytokine/chemokine profiles in atopic myelitis and other causes of myelitis. Neurology. 2008, 71: 974-981.CrossRefPubMed
Metadaten
Titel
Therapeutic benefits of an oral vitamin B1 derivative for human T lymphotropic virus type I-associated myelopathy/tropical spastic paraparesis (HAM/TSP)
verfasst von
Jun-ichi Kira
Publikationsdatum
01.12.2013
Verlag
BioMed Central
Erschienen in
BMC Medicine / Ausgabe 1/2013
Elektronische ISSN: 1741-7015
DOI
https://doi.org/10.1186/1741-7015-11-183

Weitere Artikel der Ausgabe 1/2013

BMC Medicine 1/2013 Zur Ausgabe

Leitlinien kompakt für die Allgemeinmedizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Facharzt-Training Allgemeinmedizin

Die ideale Vorbereitung zur anstehenden Prüfung mit den ersten 24 von 100 klinischen Fallbeispielen verschiedener Themenfelder

Mehr erfahren

Reizdarmsyndrom: Diäten wirksamer als Medikamente

29.04.2024 Reizdarmsyndrom Nachrichten

Bei Reizdarmsyndrom scheinen Diäten, wie etwa die FODMAP-arme oder die kohlenhydratreduzierte Ernährung, effektiver als eine medikamentöse Therapie zu sein. Das hat eine Studie aus Schweden ergeben, die die drei Therapieoptionen im direkten Vergleich analysierte.

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Update Allgemeinmedizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.