Skip to main content
Erschienen in: Der Orthopäde 3/2007

01.03.2007 | Leitthema

Tissue-Engineering zur Knorpelreparatur verbessert durch Gentransfer

Aktuelle Forschungsergebnisse und Literaturübersicht

verfasst von: PD Dr. Henning Madry, A. Weimer, D. Kohn, M. Cucchiarini

Erschienen in: Die Orthopädie | Ausgabe 3/2007

Einloggen, um Zugang zu erhalten

Zusammenfassung

Tissue-Engineering ist die Züchtung von präformierten Geweben aus dreidimensionalen Zellverbänden. Werden Chondrozyten mit Trägersubstanzen assoziiert und im Bioreaktor kultiviert, so entwickelt sich Knorpelgewebe. Wir wollten verstehen, wie der humane insulinartige Wachstumsfaktor I (IGF-I) die Chondrogenese in diesen Neoknorpelkonstrukten reguliert. Hierzu wurden IGF-I-transfizierte Chondrozyten in Geweben aus Polyglykolsäurefasern ausgesät und in rotierenden Bioreaktoren kultiviert. Die Transgenexpression nach lipidbasiertem Gentransfer hielt mehr als 5 Wochen im Neoknorpel an. Nach 4-wöchiger Kultivierung in rotierenden Bioreaktoren besitzen die IGF-I-Konstrukte deutlich mehr Chondrozyten und Proteoglykane als Kontrollkonstrukte aus nichtmodifizierten oder mit dem Markergen lacZ modifizierten Konstrukten. Diese strukturellen Verbesserungen resultierten in signifikant verbesserten biomechanischen Eigenschaften der IGF-I-Konstrukte. Transplantation dieser Neoknorpelkonstrukte in osteochondrale Defekte im Kaninchenmodell verbesserte die strukturellen Eigenschaften des Reparaturgewebes im Vergleich zu lacZ-Konstrukten. Diese Studien belegen erstmals die Möglichkeit einer auf der Kombination von Gentransfer und Tissue-Engineering basierenden molekularen Therapie von Knorpeldefekten.
Literatur
1.
Zurück zum Zitat Adachi N, Sato K, Usas A et al. (2002) Muscle derived, cell based ex vivo gene therapy for treatment of full thickness articular cartilage defects. J Rheumatol 29: 1920–1930PubMed Adachi N, Sato K, Usas A et al. (2002) Muscle derived, cell based ex vivo gene therapy for treatment of full thickness articular cartilage defects. J Rheumatol 29: 1920–1930PubMed
2.
Zurück zum Zitat Baragi VM, Renkiewicz RR, Qiu L et al. (1997) Transplantation of adenovirally transduced allogeneic chondrocytes into articular cartilage defects in vivo. Osteoarthritis Cartilage 5: 275–282CrossRefPubMed Baragi VM, Renkiewicz RR, Qiu L et al. (1997) Transplantation of adenovirally transduced allogeneic chondrocytes into articular cartilage defects in vivo. Osteoarthritis Cartilage 5: 275–282CrossRefPubMed
3.
Zurück zum Zitat Bartlett W, Skinner JA, Gooding CR et al. (2005) Autologous chondrocyte implantation versus matrix-induced autologous chondrocyte implantation for osteochondral defects of the knee: a prospective, randomised study. J Bone Joint Surg Br 87: 640–645CrossRefPubMed Bartlett W, Skinner JA, Gooding CR et al. (2005) Autologous chondrocyte implantation versus matrix-induced autologous chondrocyte implantation for osteochondral defects of the knee: a prospective, randomised study. J Bone Joint Surg Br 87: 640–645CrossRefPubMed
4.
Zurück zum Zitat Bentley G, Greer RB 3rd (1971) Homotransplantation of isolated epiphyseal and articular cartilage chondrocytes into joint surfaces of rabbits. Nature 230: 385–388CrossRefPubMed Bentley G, Greer RB 3rd (1971) Homotransplantation of isolated epiphyseal and articular cartilage chondrocytes into joint surfaces of rabbits. Nature 230: 385–388CrossRefPubMed
5.
Zurück zum Zitat Bonadio J, Smiley E, Patil P, Goldstein S (1999) Localized, direct plasmid gene delivery in vivo: prolonged therapy results in reproducible tissue regeneration. Nat Med 5: 753–759CrossRefPubMed Bonadio J, Smiley E, Patil P, Goldstein S (1999) Localized, direct plasmid gene delivery in vivo: prolonged therapy results in reproducible tissue regeneration. Nat Med 5: 753–759CrossRefPubMed
6.
Zurück zum Zitat Brittberg M, Lindahl A, Nilsson A et al. (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331: 889–895CrossRefPubMed Brittberg M, Lindahl A, Nilsson A et al. (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331: 889–895CrossRefPubMed
7.
Zurück zum Zitat Brower-Toland BD, Saxer RA, Goodrich LR et al. (2001) Direct adenovirus-mediated insulin-like growth factor I gene transfer enhances transplant chondrocyte function. Hum Gene Ther 12: 117–129CrossRefPubMed Brower-Toland BD, Saxer RA, Goodrich LR et al. (2001) Direct adenovirus-mediated insulin-like growth factor I gene transfer enhances transplant chondrocyte function. Hum Gene Ther 12: 117–129CrossRefPubMed
8.
Zurück zum Zitat Buckwalter JA, Mankin HJ (1998) Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. Instr Course Lect 47: 487–504PubMed Buckwalter JA, Mankin HJ (1998) Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. Instr Course Lect 47: 487–504PubMed
9.
Zurück zum Zitat Bulstra SK, Homminga GN, Buurman WA et al. (1990) The potential of adult human perichondrium to form hyalin cartilage in vitro. J Orthop Res 8: 328–335CrossRefPubMed Bulstra SK, Homminga GN, Buurman WA et al. (1990) The potential of adult human perichondrium to form hyalin cartilage in vitro. J Orthop Res 8: 328–335CrossRefPubMed
10.
Zurück zum Zitat Chen HC, Lee HP, Ho YC et al. (2006) Combination of baculovirus-mediated gene transfer and rotating-shaft bioreactor for cartilage tissue engineering. Biomaterials 27: 3154–3162CrossRefPubMed Chen HC, Lee HP, Ho YC et al. (2006) Combination of baculovirus-mediated gene transfer and rotating-shaft bioreactor for cartilage tissue engineering. Biomaterials 27: 3154–3162CrossRefPubMed
11.
Zurück zum Zitat Cucchiarini M, Kaul G, Zurakowski D et al. (2004) Gene transfer of human IGF-I in cartilaginous tissue engineered constructs amplifies the repair of full-thickness articular cartilage defects in vivo. (Abstract). Trans Orthop Res Soc 50: 0699 Cucchiarini M, Kaul G, Zurakowski D et al. (2004) Gene transfer of human IGF-I in cartilaginous tissue engineered constructs amplifies the repair of full-thickness articular cartilage defects in vivo. (Abstract). Trans Orthop Res Soc 50: 0699
12.
13.
Zurück zum Zitat Cucchiarini M, Madry H, Ma C et al. (2005) Improved tissue repair in articular cartilage defects in vivo by rAAV-mediated overexpression of human fibroblast growth factor 2. Mol Ther 12: 229–238CrossRefPubMed Cucchiarini M, Madry H, Ma C et al. (2005) Improved tissue repair in articular cartilage defects in vivo by rAAV-mediated overexpression of human fibroblast growth factor 2. Mol Ther 12: 229–238CrossRefPubMed
14.
Zurück zum Zitat Cucchiarini M, Thurn T, Weimer A et al. (2007) Restoration of extracellular matrix in human osteoarthritic articular cartilage by overexpression of the transcription factor sox9. Arthritis Rheum 56(1): 158-167CrossRefPubMed Cucchiarini M, Thurn T, Weimer A et al. (2007) Restoration of extracellular matrix in human osteoarthritic articular cartilage by overexpression of the transcription factor sox9. Arthritis Rheum 56(1): 158-167CrossRefPubMed
15.
Zurück zum Zitat Dinser R, Kreppel F, Zaucke F et al. (2001) Comparison of long-term transgene expression after non-viral and adenoviral gene transfer into primary articular chondrocytes. Histochem Cell Biol 116: 69–77PubMed Dinser R, Kreppel F, Zaucke F et al. (2001) Comparison of long-term transgene expression after non-viral and adenoviral gene transfer into primary articular chondrocytes. Histochem Cell Biol 116: 69–77PubMed
16.
Zurück zum Zitat Evans CH, Ghivizzani SC, Smith P et al. (2000) Using gene therapy to protect and restore cartilage. Clin Orthop Relat Res 379 (Suppl): S214–S219CrossRefPubMed Evans CH, Ghivizzani SC, Smith P et al. (2000) Using gene therapy to protect and restore cartilage. Clin Orthop Relat Res 379 (Suppl): S214–S219CrossRefPubMed
17.
Zurück zum Zitat Fortier LA, Mohammed HO, Lust G, Nixon AJ (2002) Insulin-like growth factor-I enhances cell-based repair of articular cartilage. J Bone Joint Surg Br 84: 276–288CrossRefPubMed Fortier LA, Mohammed HO, Lust G, Nixon AJ (2002) Insulin-like growth factor-I enhances cell-based repair of articular cartilage. J Bone Joint Surg Br 84: 276–288CrossRefPubMed
18.
Zurück zum Zitat Freed LE, Grande DA, Lingbin Z et al. (1994) Joint resurfacing using allograft chondrocytes and synthetic biodegradable polymer scaffolds. J Biomed Mater Res 28: 891–899CrossRefPubMed Freed LE, Grande DA, Lingbin Z et al. (1994) Joint resurfacing using allograft chondrocytes and synthetic biodegradable polymer scaffolds. J Biomed Mater Res 28: 891–899CrossRefPubMed
19.
Zurück zum Zitat Freed LE, Hollander AP, Martin I et al. (1998) Chondrogenesis in a cell-polymer-bioreactor system. Exp Cell Res 240: 58–65CrossRefPubMed Freed LE, Hollander AP, Martin I et al. (1998) Chondrogenesis in a cell-polymer-bioreactor system. Exp Cell Res 240: 58–65CrossRefPubMed
20.
Zurück zum Zitat Freed LE, Langer R, Martin I et al. (1997) Tissue engineering of cartilage in space. Proc Natl Acad Sci U S A 94: 13885–13890CrossRefPubMed Freed LE, Langer R, Martin I et al. (1997) Tissue engineering of cartilage in space. Proc Natl Acad Sci U S A 94: 13885–13890CrossRefPubMed
21.
Zurück zum Zitat Furukawa T, Eyre DR, Koide S, Glimcher MJ (1980) Biochemical studies on repair cartilage resurfacing experimental defects in the rabbit knee. J Bone Joint Surg Am 62: 79–89PubMed Furukawa T, Eyre DR, Koide S, Glimcher MJ (1980) Biochemical studies on repair cartilage resurfacing experimental defects in the rabbit knee. J Bone Joint Surg Am 62: 79–89PubMed
22.
Zurück zum Zitat Garcia AM, Szasz N, Trippel SB et al. (2003) Transport and binding of insulin-like growth factor I through articular cartilage. Arch Biochem Biophys 415: 69–79CrossRefPubMed Garcia AM, Szasz N, Trippel SB et al. (2003) Transport and binding of insulin-like growth factor I through articular cartilage. Arch Biochem Biophys 415: 69–79CrossRefPubMed
23.
Zurück zum Zitat Geiger F, Bertram H, Berger I et al. (2005) Vascular endothelial growth factor gene-activated matrix (VEGF165-GAM) enhances osteogenesis and angiogenesis in large segmental bone defects. J Bone Miner Res 20: 2028–2035CrossRefPubMed Geiger F, Bertram H, Berger I et al. (2005) Vascular endothelial growth factor gene-activated matrix (VEGF165-GAM) enhances osteogenesis and angiogenesis in large segmental bone defects. J Bone Miner Res 20: 2028–2035CrossRefPubMed
24.
Zurück zum Zitat Gelse K, Mark K von der, Aigner T et al. (2003) Articular cartilage repair by gene therapy using growth factor-producing mesenchymal cells. Arthritis Rheum 48: 430–441CrossRefPubMed Gelse K, Mark K von der, Aigner T et al. (2003) Articular cartilage repair by gene therapy using growth factor-producing mesenchymal cells. Arthritis Rheum 48: 430–441CrossRefPubMed
25.
Zurück zum Zitat Gies T (1883) Ueber Heilung von Knorpelwunden. Dtsch Z Chir 18: 8–34 Gies T (1883) Ueber Heilung von Knorpelwunden. Dtsch Z Chir 18: 8–34
26.
Zurück zum Zitat Goldring MB, Birkhead JR, Suen LF et al. (1994) Interleukin-1 beta-modulated gene expression in immortalized human chondrocytes. J Clin Invest 94: 2307–2316PubMed Goldring MB, Birkhead JR, Suen LF et al. (1994) Interleukin-1 beta-modulated gene expression in immortalized human chondrocytes. J Clin Invest 94: 2307–2316PubMed
27.
Zurück zum Zitat Grande DA, Mason J, Light E, Dines D (2003) Stem cells as platforms for delivery of genes to enhance cartilage repair. J Bone Joint Surg Am (Suppl 2) 85-A: 111–116 Grande DA, Mason J, Light E, Dines D (2003) Stem cells as platforms for delivery of genes to enhance cartilage repair. J Bone Joint Surg Am (Suppl 2) 85-A: 111–116
28.
Zurück zum Zitat Grunder T, Gaissmaier C, Fritz J et al. (2004) Bone morphogenetic protein (BMP)-2 enhances the expression of type II collagen and aggrecan in chondrocytes embedded in alginate beads. Osteoarthritis Cartilage. 12: 559–567 Grunder T, Gaissmaier C, Fritz J et al. (2004) Bone morphogenetic protein (BMP)-2 enhances the expression of type II collagen and aggrecan in chondrocytes embedded in alginate beads. Osteoarthritis Cartilage. 12: 559–567
29.
Zurück zum Zitat Hidaka C, Goodrich LR, Chen CT et al. (2003) Acceleration of cartilage repair by genetically modified chondrocytes over expressing bone morphogenetic protein-7. J Orthop Res 21: 573–83CrossRefPubMed Hidaka C, Goodrich LR, Chen CT et al. (2003) Acceleration of cartilage repair by genetically modified chondrocytes over expressing bone morphogenetic protein-7. J Orthop Res 21: 573–83CrossRefPubMed
30.
Zurück zum Zitat Hirschmann F, Verhoeyen E, Wirth D et al. (2002) Vital marking of articular chondrocytes by retroviral infection using green fluorescence protein. Osteoarthritis Cartilage 10: 109–118CrossRefPubMed Hirschmann F, Verhoeyen E, Wirth D et al. (2002) Vital marking of articular chondrocytes by retroviral infection using green fluorescence protein. Osteoarthritis Cartilage 10: 109–118CrossRefPubMed
31.
Zurück zum Zitat Hunziker EB (1999) Biologic repair of articular cartilage. Defect models in experimental animals and matrix requirements. Clin Orthop Relat Res 367 (Suppl): S135–S146CrossRefPubMed Hunziker EB (1999) Biologic repair of articular cartilage. Defect models in experimental animals and matrix requirements. Clin Orthop Relat Res 367 (Suppl): S135–S146CrossRefPubMed
32.
Zurück zum Zitat Hunziker EB, Rosenberg LC (1996) Repair of partial-thickness defects in articular cartilage: cell recruitment from the synovial membrane. J Bone Joint Surg Am 78: 721–733PubMed Hunziker EB, Rosenberg LC (1996) Repair of partial-thickness defects in articular cartilage: cell recruitment from the synovial membrane. J Bone Joint Surg Am 78: 721–733PubMed
33.
Zurück zum Zitat Kang R, Marui T, Ghivizzani SC et al. (1997) Ex vivo gene transfer to chondrocytes in full-thickness articular cartilage defects: a feasibility study. Osteoarthritis Cartilage 5: 139–143CrossRefPubMed Kang R, Marui T, Ghivizzani SC et al. (1997) Ex vivo gene transfer to chondrocytes in full-thickness articular cartilage defects: a feasibility study. Osteoarthritis Cartilage 5: 139–143CrossRefPubMed
34.
Zurück zum Zitat Katayama R, Wakitani S, Tsumaki N et al. (2004) Repair of articular cartilage defects in rabbits using CDMP1 gene-transfected autologous mesenchymal cells derived from bone marrow. Rheumatology (Oxford) 43: 980–985 Katayama R, Wakitani S, Tsumaki N et al. (2004) Repair of articular cartilage defects in rabbits using CDMP1 gene-transfected autologous mesenchymal cells derived from bone marrow. Rheumatology (Oxford) 43: 980–985
35.
Zurück zum Zitat Kaul G, Cucchiarini M, Arntzen D et al. (2006) Local stimulation of articular cartilage repair by transplantation of encapsulated chondrocytes overexpressing human fibroblast growth factor 2 (FGF-2) in vivo. J Gene Med 8: 100–111CrossRefPubMed Kaul G, Cucchiarini M, Arntzen D et al. (2006) Local stimulation of articular cartilage repair by transplantation of encapsulated chondrocytes overexpressing human fibroblast growth factor 2 (FGF-2) in vivo. J Gene Med 8: 100–111CrossRefPubMed
36.
Zurück zum Zitat Kaweblum M, Aguilar MC, Blancas E et al. (1994) Histological and radiographic determination of the age of physeal closure of the distal femur, proximal tibia, and proximal fibula of the New Zealand white rabbit. J Orthop Res 12: 747–749CrossRefPubMed Kaweblum M, Aguilar MC, Blancas E et al. (1994) Histological and radiographic determination of the age of physeal closure of the distal femur, proximal tibia, and proximal fibula of the New Zealand white rabbit. J Orthop Res 12: 747–749CrossRefPubMed
37.
Zurück zum Zitat Kennedy J, Baris C, Hoyland JA et al. (1999) Immunofluorescent localization of estrogen receptor-alpha in growth plates of rabbits, but not in rats, at sexual maturity. Bone 24: 9–16CrossRefPubMed Kennedy J, Baris C, Hoyland JA et al. (1999) Immunofluorescent localization of estrogen receptor-alpha in growth plates of rabbits, but not in rats, at sexual maturity. Bone 24: 9–16CrossRefPubMed
38.
Zurück zum Zitat Knutsen G, Engebretsen L, Ludvigsen TC et al. (2004) Autologous chondrocyte implantation compared with microfracture in the knee. A randomized trial. J Bone Joint Surg Am 86-A: 455–464 Knutsen G, Engebretsen L, Ludvigsen TC et al. (2004) Autologous chondrocyte implantation compared with microfracture in the knee. A randomized trial. J Bone Joint Surg Am 86-A: 455–464
39.
Zurück zum Zitat Krishnan SP, Skinner JA, Carrington RW et al. (2006) Collagen-covered autologous chondrocyte implantation for osteochondritis dissecans of the knee: two- to seven-year results. J Bone Joint Surg Br 88: 203–205CrossRefPubMed Krishnan SP, Skinner JA, Carrington RW et al. (2006) Collagen-covered autologous chondrocyte implantation for osteochondritis dissecans of the knee: two- to seven-year results. J Bone Joint Surg Br 88: 203–205CrossRefPubMed
40.
Zurück zum Zitat Kuroda R, Usas A, Kubo S et al. (2006) Cartilage repair using bone morphogenetic protein 4 and muscle-derived stem cells. Arthritis Rheum 54: 433–442CrossRefPubMed Kuroda R, Usas A, Kubo S et al. (2006) Cartilage repair using bone morphogenetic protein 4 and muscle-derived stem cells. Arthritis Rheum 54: 433–442CrossRefPubMed
41.
Zurück zum Zitat Langer R, Vacanti JP (1993) Tissue engineering. Science 260: 920–926PubMed Langer R, Vacanti JP (1993) Tissue engineering. Science 260: 920–926PubMed
42.
Zurück zum Zitat Lu Valle P, Iwamoto M, Fanning P et al. (1993) Multiple negative elements in a gene that codes for an extracellular matrix protein, collagen X, restrict expression to hypertrophic chondrocytes. J Cell Biol 121: 1173–1179CrossRefPubMed Lu Valle P, Iwamoto M, Fanning P et al. (1993) Multiple negative elements in a gene that codes for an extracellular matrix protein, collagen X, restrict expression to hypertrophic chondrocytes. J Cell Biol 121: 1173–1179CrossRefPubMed
43.
Zurück zum Zitat Madry H (2004) Arthrose: Operative und rekonstruktive Behandlung. In: Kohn D, (Hrsg) Das Knie. Thieme-Verlag, Stuttgart, S. 367–379 Madry H (2004) Arthrose: Operative und rekonstruktive Behandlung. In: Kohn D, (Hrsg) Das Knie. Thieme-Verlag, Stuttgart, S. 367–379
44.
Zurück zum Zitat Madry H, Cucchiarini M, Stein U et al. (2003) Sustained transgene expression in cartilage defects in vivo after transplantation of articular chondrocytes modified by lipid-mediated gene transfer in a gel suspension delivery system. J Gene Med 5: 502–509CrossRefPubMed Madry H, Cucchiarini M, Stein U et al. (2003) Sustained transgene expression in cartilage defects in vivo after transplantation of articular chondrocytes modified by lipid-mediated gene transfer in a gel suspension delivery system. J Gene Med 5: 502–509CrossRefPubMed
45.
Zurück zum Zitat Madry H, Cucchiarini M, Terwilliger EF, Trippel SB (2003) Efficient and persistent gene transfer into articular cartilage using recombinant adeno-associated virus vectors in vitro and in vivo. Human Gene Ther 14: 393–402CrossRef Madry H, Cucchiarini M, Terwilliger EF, Trippel SB (2003) Efficient and persistent gene transfer into articular cartilage using recombinant adeno-associated virus vectors in vitro and in vivo. Human Gene Ther 14: 393–402CrossRef
46.
Zurück zum Zitat Madry H, Kaul G, Cucchiarini M et al. (2005) Enhanced repair of articular cartilage defects in vivo by transplanted chondrocytes overexpressing insulin-like growth factor I (IGF-I). Gene Ther 12: 1171–1179CrossRefPubMed Madry H, Kaul G, Cucchiarini M et al. (2005) Enhanced repair of articular cartilage defects in vivo by transplanted chondrocytes overexpressing insulin-like growth factor I (IGF-I). Gene Ther 12: 1171–1179CrossRefPubMed
47.
Zurück zum Zitat Madry H, Padera B, Seidel J et al. (2002) Gene transfer of a human insulin-like growth factor I cDNA enhances tissue engineering of cartilage. Hum Gene Ther 13: 1621–1630CrossRefPubMed Madry H, Padera B, Seidel J et al. (2002) Gene transfer of a human insulin-like growth factor I cDNA enhances tissue engineering of cartilage. Hum Gene Ther 13: 1621–1630CrossRefPubMed
48.
Zurück zum Zitat Madry H, Trippel SB (2000) Efficient lipid-mediated gene transfer to articular chondrocytes. Gene Ther 7: 286–291CrossRefPubMed Madry H, Trippel SB (2000) Efficient lipid-mediated gene transfer to articular chondrocytes. Gene Ther 7: 286–291CrossRefPubMed
49.
Zurück zum Zitat Madry H, Zurakowski D, Trippel SB (2001) Overexpression of human insulin-like growth factor-I promotes new tissue formation in an ex vivo model of articular chondrocyte transplantation. Gene Ther 8: 1443–1449CrossRefPubMed Madry H, Zurakowski D, Trippel SB (2001) Overexpression of human insulin-like growth factor-I promotes new tissue formation in an ex vivo model of articular chondrocyte transplantation. Gene Ther 8: 1443–1449CrossRefPubMed
50.
Zurück zum Zitat Mankin HJ (1994) Chondrocyte transplantation--one answer to an old question. N Engl J Med 331: 940–941CrossRefPubMed Mankin HJ (1994) Chondrocyte transplantation--one answer to an old question. N Engl J Med 331: 940–941CrossRefPubMed
51.
Zurück zum Zitat Mankin HJ (1974) The reaction of articular cartilage to injury and osteoarthritis (first of two parts). N Engl J Med 291: 1285–1292PubMed Mankin HJ (1974) The reaction of articular cartilage to injury and osteoarthritis (first of two parts). N Engl J Med 291: 1285–1292PubMed
52.
Zurück zum Zitat Mankin HJ (1974) The reaction of articular cartilage to injury and osteoarthritis (second of two parts). N Engl J Med 291: 1335–1340PubMed Mankin HJ (1974) The reaction of articular cartilage to injury and osteoarthritis (second of two parts). N Engl J Med 291: 1335–1340PubMed
53.
Zurück zum Zitat Mason JM, Breitbart AS, Barcia M et al. (2000) Cartilage and bone regeneration using gene-enhanced tissue engineering. Clin Orthop Relat Res 379 (Suppl): S171–S178CrossRefPubMed Mason JM, Breitbart AS, Barcia M et al. (2000) Cartilage and bone regeneration using gene-enhanced tissue engineering. Clin Orthop Relat Res 379 (Suppl): S171–S178CrossRefPubMed
54.
Zurück zum Zitat Meinel L, Zoidis E, Zapf J et al. (2003) Localized insulin-like growth factor I delivery to enhance new bone formation. Bone 33: 660–672CrossRefPubMed Meinel L, Zoidis E, Zapf J et al. (2003) Localized insulin-like growth factor I delivery to enhance new bone formation. Bone 33: 660–672CrossRefPubMed
55.
Zurück zum Zitat Müller B, Kohn D (1999) Indikation und Durchführung der Knorpel-Knochen-Anbohrung nach Pridie. Orthopäde 28: 4–10PubMed Müller B, Kohn D (1999) Indikation und Durchführung der Knorpel-Knochen-Anbohrung nach Pridie. Orthopäde 28: 4–10PubMed
56.
Zurück zum Zitat Nixon AJ, Fortier LA, Williams J, Mohammed H (1999) Enhanced repair of extensive articular defects by insulin-like growth factor-I-laden fibrin composites. J Orthop Res 17: 475–87CrossRefPubMed Nixon AJ, Fortier LA, Williams J, Mohammed H (1999) Enhanced repair of extensive articular defects by insulin-like growth factor-I-laden fibrin composites. J Orthop Res 17: 475–87CrossRefPubMed
57.
Zurück zum Zitat O’Driscoll SW, Salter RB (1984) The induction of neochondrogenesis in free intra-articular periosteal autografts under the influence of continuous passive motion. An experimental investigation in the rabbit. J Bone Joint Surg [Am] 66: 1248–1257 O’Driscoll SW, Salter RB (1984) The induction of neochondrogenesis in free intra-articular periosteal autografts under the influence of continuous passive motion. An experimental investigation in the rabbit. J Bone Joint Surg [Am] 66: 1248–1257
58.
Zurück zum Zitat Park J, Gelse K, Frank S et al. (2006) Transgene-activated mesenchymal cells for articular cartilage repair: a comparison of primary bone marrow-, perichondrium/periosteum- and fat-derived cells. J Gene Med. 8: 112–125 Park J, Gelse K, Frank S et al. (2006) Transgene-activated mesenchymal cells for articular cartilage repair: a comparison of primary bone marrow-, perichondrium/periosteum- and fat-derived cells. J Gene Med. 8: 112–125
59.
Zurück zum Zitat Pascher A, Palmer GD, Steinert A et al. (2004) Gene delivery to cartilage defects using coagulated bone marrow aspirate. Gene Ther 11: 133–141CrossRefPubMed Pascher A, Palmer GD, Steinert A et al. (2004) Gene delivery to cartilage defects using coagulated bone marrow aspirate. Gene Ther 11: 133–141CrossRefPubMed
60.
Zurück zum Zitat Perka C, Schultz O, Spitzer RS, Lindenhayn K (2000) The influence of transforming growth factor beta1 on mesenchymal cell repair of full-thickness cartilage defects. J Biomed Mater Res 52: 543–552CrossRefPubMed Perka C, Schultz O, Spitzer RS, Lindenhayn K (2000) The influence of transforming growth factor beta1 on mesenchymal cell repair of full-thickness cartilage defects. J Biomed Mater Res 52: 543–552CrossRefPubMed
61.
Zurück zum Zitat Pridie KH (1959) A method of resurfacing osteoarthritic knee joints. Proceedings of the British Orthopaedic Association. J Bone Joint Surg (Br) 41: 618 Pridie KH (1959) A method of resurfacing osteoarthritic knee joints. Proceedings of the British Orthopaedic Association. J Bone Joint Surg (Br) 41: 618
62.
Zurück zum Zitat Rahfoth B, Weisser J, Sternkopf F et al. (1998) Transplantation of allograft chondrocytes embedded in agarose gel into cartilage defects of rabbits. Osteoarthritis Cartilage 6: 50–65CrossRefPubMed Rahfoth B, Weisser J, Sternkopf F et al. (1998) Transplantation of allograft chondrocytes embedded in agarose gel into cartilage defects of rabbits. Osteoarthritis Cartilage 6: 50–65CrossRefPubMed
63.
Zurück zum Zitat Ringe J, Kaps C, Burmester GR, Sittinger M (2002) Stem cells for regenerative medicine: advances in the engineering of tissues and organs. Naturwissenschaften. 89: 338–351 Ringe J, Kaps C, Burmester GR, Sittinger M (2002) Stem cells for regenerative medicine: advances in the engineering of tissues and organs. Naturwissenschaften. 89: 338–351
64.
Zurück zum Zitat Rogachefsky RA, Dean DD, Howell DS, Altman RD (1993) Treatment of canine osteoarthritis with insulin-like growth factor-1 (IGF-1) and sodium pentosan polysulfate. Osteoarthritis Cartilage 1: 105–114CrossRefPubMed Rogachefsky RA, Dean DD, Howell DS, Altman RD (1993) Treatment of canine osteoarthritis with insulin-like growth factor-1 (IGF-1) and sodium pentosan polysulfate. Osteoarthritis Cartilage 1: 105–114CrossRefPubMed
65.
Zurück zum Zitat Rudert M (2002) Histological evaluation of osteochondral defects: consideration of animal models with emphasis on the rabbit, experimental setup, follow-up and applied methods. Cells Tissues Organs 171: 229–240CrossRefPubMed Rudert M (2002) Histological evaluation of osteochondral defects: consideration of animal models with emphasis on the rabbit, experimental setup, follow-up and applied methods. Cells Tissues Organs 171: 229–240CrossRefPubMed
66.
Zurück zum Zitat Rudert M, Wilms U, Hoberg M, Wirth CJ (2005) Cell-based treatment of osteochondral defects in the rabbit knee with natural and synthetic matrices: cellular seeding determines the outcome. Arch Orthop Trauma Surg 125: 598–608CrossRefPubMed Rudert M, Wilms U, Hoberg M, Wirth CJ (2005) Cell-based treatment of osteochondral defects in the rabbit knee with natural and synthetic matrices: cellular seeding determines the outcome. Arch Orthop Trauma Surg 125: 598–608CrossRefPubMed
68.
Zurück zum Zitat Schaefer D, Martin I, Jundt G et al. (2002) Tissue-engineered composites for the repair of large osteochondral defects. Arthritis Rheum 46: 2524–2534CrossRefPubMed Schaefer D, Martin I, Jundt G et al. (2002) Tissue-engineered composites for the repair of large osteochondral defects. Arthritis Rheum 46: 2524–2534CrossRefPubMed
69.
Zurück zum Zitat Schreiber RE, Ilten-Kirby BM, Dunkelman NS et al. (1999) Repair of osteochondral defects with allogeneic tissue engineered cartilage implants. Clin Orthop Relat Res 367 (Suppl): S382–S395CrossRefPubMed Schreiber RE, Ilten-Kirby BM, Dunkelman NS et al. (1999) Repair of osteochondral defects with allogeneic tissue engineered cartilage implants. Clin Orthop Relat Res 367 (Suppl): S382–S395CrossRefPubMed
70.
Zurück zum Zitat Seggel R (1904) Experimentelle Beiträge zur Anatomie und Pathologie des Gelenkknorpels. Studien über Knorpelwunden und Defekte. Dsch Z Chir 21: 453–466 Seggel R (1904) Experimentelle Beiträge zur Anatomie und Pathologie des Gelenkknorpels. Studien über Knorpelwunden und Defekte. Dsch Z Chir 21: 453–466
71.
Zurück zum Zitat Sellers RS, Peluso D, Morris EA (1997) The effect of recombinant human bone morphogenetic protein-2 (rhBMP-2) on the healing of full-thickness defects of articular cartilage. J Bone Joint Surg Am 79: 1452–1463PubMed Sellers RS, Peluso D, Morris EA (1997) The effect of recombinant human bone morphogenetic protein-2 (rhBMP-2) on the healing of full-thickness defects of articular cartilage. J Bone Joint Surg Am 79: 1452–1463PubMed
72.
Zurück zum Zitat Sellers RS, Zhang R, Glasson SS et al. (2000) Repair of articular cartilage defects one year after treatment with recombinant human bone morphogenetic protein-2 (rhBMP-2). J Bone Joint Surg Am 82: 151–160CrossRefPubMed Sellers RS, Zhang R, Glasson SS et al. (2000) Repair of articular cartilage defects one year after treatment with recombinant human bone morphogenetic protein-2 (rhBMP-2). J Bone Joint Surg Am 82: 151–160CrossRefPubMed
73.
Zurück zum Zitat Shapiro F, Koide S, Glimcher MJ (1993) Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. J Bone Joint Surg Am 75: 532–553PubMed Shapiro F, Koide S, Glimcher MJ (1993) Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. J Bone Joint Surg Am 75: 532–553PubMed
74.
Zurück zum Zitat Sittinger M, Hutmacher DW, Risbud MV (2004) Current strategies for cell delivery in cartilage and bone regeneration. Curr Opin Biotechnol 15: 411–418CrossRefPubMed Sittinger M, Hutmacher DW, Risbud MV (2004) Current strategies for cell delivery in cartilage and bone regeneration. Curr Opin Biotechnol 15: 411–418CrossRefPubMed
75.
Zurück zum Zitat Smith P, Shuler FD, Georgescu HI, Ghivizzani SC, Johnstone B, Niyibizi C, Robbins PD, Evans CH (2000) Genetic enhancement of matrix synthesis by articular chondrocytes: comparison of different growth factor genes in the presence and absence of interleukin-1. Arthritis Rheum 43: 1156–1164CrossRefPubMed Smith P, Shuler FD, Georgescu HI, Ghivizzani SC, Johnstone B, Niyibizi C, Robbins PD, Evans CH (2000) Genetic enhancement of matrix synthesis by articular chondrocytes: comparison of different growth factor genes in the presence and absence of interleukin-1. Arthritis Rheum 43: 1156–1164CrossRefPubMed
76.
Zurück zum Zitat Steadman JR, Rodkey WG, Briggs KK, Rodrigo JJ (1999) Die Technik der Mikrofrakturierung zur Behandlung von kompletten Knorpeldefekten im Kniegelenk. Orthopäde 28: 26–32PubMed Steadman JR, Rodkey WG, Briggs KK, Rodrigo JJ (1999) Die Technik der Mikrofrakturierung zur Behandlung von kompletten Knorpeldefekten im Kniegelenk. Orthopäde 28: 26–32PubMed
77.
Zurück zum Zitat Steinert A, Weber M, Dimmler A, Julius C, Schutze N, Noth U, Cramer H, Eulert J, Zimmermann U, Hendrich C (2003) Chondrogenic differentiation of mesenchymal progenitor cells encapsulated in ultrahigh-viscosity alginate. J Orthop Res 21: 1090–1097CrossRefPubMed Steinert A, Weber M, Dimmler A, Julius C, Schutze N, Noth U, Cramer H, Eulert J, Zimmermann U, Hendrich C (2003) Chondrogenic differentiation of mesenchymal progenitor cells encapsulated in ultrahigh-viscosity alginate. J Orthop Res 21: 1090–1097CrossRefPubMed
78.
Zurück zum Zitat Trippel SB (1995) Growth factor actions on articular cartilage. J Rheumatol Suppl 43: 129–132PubMed Trippel SB (1995) Growth factor actions on articular cartilage. J Rheumatol Suppl 43: 129–132PubMed
79.
Zurück zum Zitat Trippel SB, Corvol MT, Dumontier MF et al. (1989) Effect of somatomedin-C/insulin-like growth factor I and growth hormone on cultured growth plate and articular chondrocytes. Pediatr Res 25: 76–82PubMed Trippel SB, Corvol MT, Dumontier MF et al. (1989) Effect of somatomedin-C/insulin-like growth factor I and growth hormone on cultured growth plate and articular chondrocytes. Pediatr Res 25: 76–82PubMed
80.
Zurück zum Zitat Trippel SB, Van Wyk JJ, Foster MB, Svoboda ME (1983) Characterization of a specific somatomedin-c receptor on isolated bovine growth plate chondrocytes. Endocrinology 112: 2128–2136PubMed Trippel SB, Van Wyk JJ, Foster MB, Svoboda ME (1983) Characterization of a specific somatomedin-c receptor on isolated bovine growth plate chondrocytes. Endocrinology 112: 2128–2136PubMed
81.
Zurück zum Zitat Ueblacker P, Wagner B, Kruger A et al. (2004) Inducible nonviral gene expression in the treatment of osteochondral defects. Osteoarthritis Cartilage 12: 711–719CrossRefPubMed Ueblacker P, Wagner B, Kruger A et al. (2004) Inducible nonviral gene expression in the treatment of osteochondral defects. Osteoarthritis Cartilage 12: 711–719CrossRefPubMed
82.
Zurück zum Zitat Ullrich A, Berman CH, Dull TJ et al. (1984) Isolation of the human insulin-like growth factor I gene using a single synthetic DNA probe. Embo J 3: 361–364PubMed Ullrich A, Berman CH, Dull TJ et al. (1984) Isolation of the human insulin-like growth factor I gene using a single synthetic DNA probe. Embo J 3: 361–364PubMed
83.
Zurück zum Zitat Ulrich-Vinther M, Duch MR, Soballe K et al. (2004) In vivo gene delivery to articular chondrocytes mediated by an adeno-associated virus vector. J Orthop Res 22: 726–734CrossRefPubMed Ulrich-Vinther M, Duch MR, Soballe K et al. (2004) In vivo gene delivery to articular chondrocytes mediated by an adeno-associated virus vector. J Orthop Res 22: 726–734CrossRefPubMed
84.
Zurück zum Zitat Ulrich-Vinther M, Maloney MD, Goater JJ et al. (2002) Light-activated gene transduction enhances adeno-associated virus vector-mediated gene expression in human articular chondrocytes. Arthritis Rheum 46: 2095–2104CrossRefPubMed Ulrich-Vinther M, Maloney MD, Goater JJ et al. (2002) Light-activated gene transduction enhances adeno-associated virus vector-mediated gene expression in human articular chondrocytes. Arthritis Rheum 46: 2095–2104CrossRefPubMed
85.
Zurück zum Zitat Vunjak-Novakovic G, Martin I, Obradovic B et al. (1999) Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage. J Orthop Res 17: 130–138CrossRefPubMed Vunjak-Novakovic G, Martin I, Obradovic B et al. (1999) Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage. J Orthop Res 17: 130–138CrossRefPubMed
86.
Zurück zum Zitat Vunjak-Novakovic G, Obradovic B, Martin I et al. (1998) Dynamic cell seeding of polymer scaffolds for cartilage tissue engineering. Biotechnol Prog 14: 193–202CrossRefPubMed Vunjak-Novakovic G, Obradovic B, Martin I et al. (1998) Dynamic cell seeding of polymer scaffolds for cartilage tissue engineering. Biotechnol Prog 14: 193–202CrossRefPubMed
87.
Zurück zum Zitat Wei X, Messner K (1999) Maturation-dependent durability of spontaneous cartilage repair in rabbit knee joint. J Biomed Mater Res 46: 539–548CrossRefPubMed Wei X, Messner K (1999) Maturation-dependent durability of spontaneous cartilage repair in rabbit knee joint. J Biomed Mater Res 46: 539–548CrossRefPubMed
88.
Zurück zum Zitat Winter A, Breit S, Parsch D et al. (2003) Cartilage-like gene expression in differentiated human stem cell spheroids: a comparison of bone marrow-derived and adipose tissue-derived stromal cells. Arthritis Rheum 48: 418–429CrossRefPubMed Winter A, Breit S, Parsch D et al. (2003) Cartilage-like gene expression in differentiated human stem cell spheroids: a comparison of bone marrow-derived and adipose tissue-derived stromal cells. Arthritis Rheum 48: 418–429CrossRefPubMed
89.
Zurück zum Zitat Worster AA, Brower-Toland BD, Fortier LA et al. (2001) Chondrocytic differentiation of mesenchymal stem cells sequentially exposed to transforming growth factor-beta1 in monolayer and insulin-like growth factor-I in a three-dimensional matrix. J Orthop Res 19: 738–749CrossRefPubMed Worster AA, Brower-Toland BD, Fortier LA et al. (2001) Chondrocytic differentiation of mesenchymal stem cells sequentially exposed to transforming growth factor-beta1 in monolayer and insulin-like growth factor-I in a three-dimensional matrix. J Orthop Res 19: 738–749CrossRefPubMed
90.
Zurück zum Zitat Yokoo N, Saito T, Uesugi M et al. (2005) Repair of articular cartilage defect by autologous transplantation of basic fibroblast growth factor gene-transduced chondrocytes with adeno-associated virus vector. Arthritis Rheum 52: 164–170CrossRefPubMed Yokoo N, Saito T, Uesugi M et al. (2005) Repair of articular cartilage defect by autologous transplantation of basic fibroblast growth factor gene-transduced chondrocytes with adeno-associated virus vector. Arthritis Rheum 52: 164–170CrossRefPubMed
Metadaten
Titel
Tissue-Engineering zur Knorpelreparatur verbessert durch Gentransfer
Aktuelle Forschungsergebnisse und Literaturübersicht
verfasst von
PD Dr. Henning Madry
A. Weimer
D. Kohn
M. Cucchiarini
Publikationsdatum
01.03.2007
Verlag
Springer-Verlag
Erschienen in
Die Orthopädie / Ausgabe 3/2007
Print ISSN: 2731-7145
Elektronische ISSN: 2731-7153
DOI
https://doi.org/10.1007/s00132-007-1059-6

Weitere Artikel der Ausgabe 3/2007

Der Orthopäde 3/2007 Zur Ausgabe

CME Weiterbildung • Zertifizierte Fortbildung

Arthrogryposis multiplex congenita

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Arthroskopie kann Knieprothese nicht hinauszögern

25.04.2024 Gonarthrose Nachrichten

Ein arthroskopischer Eingriff bei Kniearthrose macht im Hinblick darauf, ob und wann ein Gelenkersatz fällig wird, offenbar keinen Unterschied.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Ärztliche Empathie hilft gegen Rückenschmerzen

23.04.2024 Leitsymptom Rückenschmerzen Nachrichten

Personen mit chronischen Rückenschmerzen, die von einfühlsamen Ärzten und Ärztinnen betreut werden, berichten über weniger Beschwerden und eine bessere Lebensqualität.

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.