Skip to main content
Erschienen in: BMC Gastroenterology 1/2019

Open Access 01.12.2019 | Case report

Tracheobronchitis in ulcerative colitis: a case report of therapeutic response with infliximab and review of the literature

verfasst von: Lisa Horgan, Siobhain Mulrennan, Lloyd D’Orsogna, Andrew McLean-Tooke

Erschienen in: BMC Gastroenterology | Ausgabe 1/2019

Abstract

Background

The extra-intestinal manifestation of tracheobronchitis is a rare complication of ulcerative colitis (UC). Here, we present a case of UC-related tracheobronchitis wherein the positive clinical effects of infliximab are demonstrated.

Case presentation

We report the case of a 39-year old woman who presented with a chronic productive cough on a distant background of surgically managed ulcerative colitis (UC). Our patient failed to achieve a satisfactory clinical improvement despite treatment with high dose inhaled corticosteroids, oral corticosteroids and azathioprine. Infliximab therapy was commenced and was demonstrated to achieve macroscopic and symptomatic remission of disease.

Conclusions

We present the first case report documenting the benefits of infliximab in UC-related tracheobronchitis.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
ANA
Anti-nuclear antibodies
ANCA
Anti-neutrophil cytoplasmic antibodies
BAL
Bronchoalveolar lavage
BOOP
Bronchiolitis obliterans organising pneumonia
CD
Crohn’s disease
IBD
Inflammatory bowel disease
RSV
Respiratory syncytial virus
TNF
Tumour necrosis factor
UC
Ulcerative colitis

Background

Extra-intestinal manifestations of inflammatory bowel disease (IBD) are well recognised and an association between pulmonary disease and inflammatory bowel disease was first proposed about 40 years ago [1]. Clinically apparent IBD-related pulmonary disease is rare, although the described prevalence increases considerably with inclusion of subclinical lung involvement estimated to be present in 40–60% of the IBD patient cohort [25].Pulmonary manifestations of IBD are more commonly found in combination with ulcerative colitis than Crohn’s disease [2] and have a tendency to involve the large airways inclusive of tracheobronchitis, bronchiolitis and bronchiectasis [6]. Ulcerative colitis-related tracheobronchitis is an often an under-recognised entity [7] requiring a high index of suspicion. This is further exacerbated by the tendency towards a delayed presentation and many present over 20 years after the initial diagnosis of IBD [8]. Respiratory symptoms may coincide with the first presentation of UC, but equally may precede it or occur many years after colectomy [7, 9, 10]. Exacerbations of respiratory symptoms do not typically correlate with flares of IBD and may occur during periods of otherwise quiescent disease [9, 11]. It has been proposed that a recent colectomy may have a causal relationship with the progression of respiratory symptoms [12], possibly due the common embryonic ancestry of the bowel and the tracheobronchial tree [13]. Lung manifestations of ulcerative colitis are variable with reported involvement of the upper and lower airway, small airways and lung parenchyma. Many cases (30%) relate to tracheobronchial involvement inclusive of bronchiectasis, bronchitis, tracheobronchitis and bronchiolitis [2].
Oral and inhaled steroids have been the mainstay of the treatment of pulmonary manifestations in UC used in about 65% of cases [2]. Nonetheless, 12–30% of patients relapse on weaning or cessation of corticosteroids requiring re-commencement or up-titration of dose [14]. Steroid-sparing agents such as azathioprine have proven efficacious in achieving disease remission although the data is limited and based mainly on case reports [7, 9, 15]. Infliximab, a chimeric anti-tumour necrosis factor (TNF) monoclonal antibody, has demonstrated promising results from limited numbers of case reports describing its usage in cases of Crohn’s Disease (CD) -related pulmonary disease [1618]. Despite this experiential evidence for the use of infliximab in lung manifestations of UC has not yet been described in the literature. We report a unique case of delayed-onset tracheobronchitis in a female patient with long-standing surgically managed UC. The approach to reaching the diagnosis of UC-related tracheobronchitis and the approach to management are outlined providing context. Additionally, a review of the literature highlights the potential for pulmonary manifestations of UC to have a delayed presentation inclusive of post-colectomy. The utility of infliximab is emphasised as a therapeutic avenue in the setting of UC-related tracheobronchitis proving refractory to standard treatment with high-dose inhaled or systemic corticosteroids. To our knowledge, this will be the first case report documenting the use of infliximab in UC-related tracheobronchitis hence contributing significantly to existing experiential evidence of this condition.

Case presentation

A 34-year-old woman was referred with a persistent productive cough despite completing empirical treatment for presumed infective aetiologies with multiple-broad spectrum antibiotics. As outlined in Fig. 1, this occurred on a background of ulcerative colitis diagnosed in 1994 (age 15 years) and progressing to surgical management of a panproctocolectomy with subsequent J-Pouch formation in 1995.
Examination did not reveal signs of upper or lower airways disease. Initial laboratory investigations demonstrated the following: white cell count 6.79 × 109/L (neutrophils 5.99 × 109/L, lymphocytes 0.47 × 109/L), C-reactive protein 20 mg/L (normal < 0.5 mg/L), IgG 13.3 g/L (normal 5.8–13.7 g/L), IgM 0.73 g/L (normal 0.30–1.70 g/L). Subsequent serology demonstrated the presence of anti-neutrophil cytoplasmic antibodies (ANCA) but without PR3 and MPO reactivity. Anti-nuclear antibodies (ANA) were not present. Sputum cultures grew Moraxella catarrhalis transiently in 2013 with no fungi or acid fast bacilli noted. Pulmonary function testing revealed maximum expiratory flow rates, normal lung volumes and gas transfer resulted as (%predicted) FVC 108%, FEV1 99%, FEV1/FVC 90%, TLC 111%, DLCO corrected 98%. A computed tomography of chest (Fig. 2) revealed a 6 mm right lower lobe sub pleural nodule, which was transient on serial imaging. Initial bronchoscopy was performed prior to our review and showed macroscopic evidence of tracheobronchitis with granularity and purulent inflammation of the bronchial mucosa in the trachea, central and proximal cartilaginous airways with normal appearance of the sub-segmental airways. Histology of bronchoscopy samples showed a dense infiltration of a mixed inflammatory cell infiltrate with relative absence of eosinophil was reported on histopathology review of bronchoscopy specimens. A further surveillance bronchoscopy performed in 2016 (Fig. 3) showed persistent evidence of tracheobronchitis despite patient adherence to a treatment regimen of azathioprine and high dose inhaled corticosteroids.
The patient demonstrated reproducible clinical improvement with oral prednisolone (dose range 0-50 mg daily) and typical symptom relapse on weaning/cessation. This occurred most dramatically in 2015 following a period of management with inhaled high-dose steroids alone and culminated in an acute admission with a Streptococcus pneumonae and Moraxella catarrhalis generated community acquired bilateral lobar pneumonia with type 1 respiratory failure and an exacerbation of tracheobronchitis. Azathioprine was commenced as a steroid sparing agent in late 2015. Repeat bronchoscopy following 4 months of commencement demonstrated persistent low-grade tracheobronchitis despite treatment with azathioprine (100 mg/day) and inhaled fluticasone propionate (3 g/day). A further tracheobronchitis decompensation driven by respiratory syncytial virus (RSV) resulted in an inpatient admission in early- 2017. Subsequently a further exacerbation caused by Haemophilus influenzae in mid-2017 resulted in type 1 respiratory failure requiring high acuity inpatient care. Given the burden of disease despite azathioprine, oral prednisolone and high-dose inhaled corticosteroids, Infliximab induction therapy (0, 2, 6 weeks) and subsequent maintenance therapy (8 weekly) at dose 5 mg/kg was commenced in early 2018 in consideration of refractory symptoms requiring chronic use of oral prednisolone despite the combined treatment regimen of high-dose inhaled corticosteroids and azathioprine. Access to Infliximab was funded by the treating facility. Appropriate pre-screening for latent tuberculosis, varicella zoster virus and hepatitis B virus was undertaken. Infusions of infliximab were well tolerated by the patient with no acute or delayed infusion-related infliximab reactions experienced. Repeat bronchoscopy (Fig. 4) performed approximately 5- months’ post commencement of Infliximab revealed no macroscopic evidence of mucosal irregularities such as oedema, hyperaemia or ulceration to suggest ongoing active tracheobronchitis with an absence of the purulent secretions present on prior bronchoscopy. Infliximab therapy has allowed cessation of oral prednisolone, the gradual weaning regimen of inhaled fluticasone propionate to 1000mcg daily. Clinical stability of the patient has also been achieved with no further exacerbations of tracheobronchitis since commencement of Infliximab and resolution of her productive cough and dyspnoea. As such, maintenance Infliximab therapy has continued in combination with ongoing 3 monthly specialist reviews.

Discussion and conclusions

IBD-related pulmonary disease remains a relatively rare but well described complication of IBD [2, 14]. UC involvement within the tracheobronchial tree is diverse and may manifest as subglottic stenosis, tracheitis, tracheobronchitis, chronic bronchitis or bronchiolitis [2]. UC involvement of the lung parenchyma presents predominantly as bronchiolitis obliterans organising pneumonia (BOOP) or interstitial lung disease with varying pathological patterns [2]. Large airway involvement typically manifests as productive or non-productive cough, dyspnoea, wheeze or a decline in exercise tolerance. The natural history of symptomatic tracheobronchitis includes progression to irreversible airway stenosis, obliteration of airways and potentially respiratory failure [19, 20].
Tracheobronchitis, inflammation of the trachea and bronchi, may develop at any point during the trajectory of UC. This is supported by a review of 15 reported cases of UC related tracheobronchitis [10] wherein the onset of symptomatic tracheobronchitis varied from the same time as the diagnosis to distantly from intestinal disease activity. The onset of our patient’s respiratory symptoms, occurring more than a decade post-colectomy, correlates with cases outlined in Table 1.
Table 1
A Description of Patients with UC-related Tracheobronchitis Occurring Late after Colectomy
 
Vashista S et al. [21]
Vashista S et al. [21]
Wilcox et al. [19]
Garg K et al. [22]
Ocak I et al. [11]
Sex
Male
Male
Male
Female
Male
Age at diagnosis of UC (years)
28
59
34
13
18
Age at colectomy (years)
42
59
35
28
40
Duration of UC at onset of tracheobronchitis symptoms (years)
16
5
16
27
35
Years since colectomy
2
5
15
12
13
Treatment
High dose inhaled beclomethasone
Prednisolone 5-15 mg daily
High dose inhaled beclo-methasone
Prednisolone (unspecified dose)
Manual dilation of distal trachea and main bronchi at rigid bronchoscope
Prednisolone 20 mg/day
Not specified
Prednisolone 20 mg/day
Outcome
Improved symptoms
Improved symptoms
Transient improvement of symptoms
Iatrogenic ruputure of bronchus during bronchus redilation procedure.
Not specified
Improved symptoms
UC-related pulmonary disease can pose a diagnostic challenge particularly when the remission of intestinal disease is considered falsely reassuring, and not given due consideration. Infectious aetiology is typically a strong differential arising from exposure to various forms of immunosuppression. Although our patient was appropriately screened for infection, the absence of significant immunosuppression preceding or at the onset of respiratory symptoms made this differential less likely. Our patient was infected at various times with M.catarrhalis and H. influenza both exacerbating pre-existing tracheobronchitis rather than instigating. Autoimmune aetiologies including granulomatosis with polyangiitis, sarcoidosis and rheumatoid arthritis where considered and subsequently refuted by the absence of supportive serology. The presence of a normal total IgG excluded common variable immunodeficiency (CVID), which may be associated with IBD and unlike the majority of other primary immunodeficiency syndromes, can have an onset in adulthood [23]. Our patient did not have a smoking history or occupational history to support the differential of irritant-related tracheobronchitis.
Both normal and obstructive pattern pulmonary function testing have been reported in cases of symptomatic IBD-related tracheobronchitis [10, 14, 24]. Our patient had normal spirometry results despite significant respiratory symptoms. Our patient did not progress to methacholine testing; negative reversibility testing can be instrumental in excluding the differential of asthma. Radiological findings of IBD-related tracheobronchitis have included the variable presence of thickening of the bronchial and trachea wall [2426] reinforcing the diagnostic benefit of bronchoscopy. In keeping with previously recorded cases of tracheobronchitis in IBD [14, 20, 27] our patient had evidence of mucosal oedema and hyperaemia on bronchoscopy. In addition, the dominant neutrophilia noted in bronchoalveolar lavage (BAL) fluid prior to infliximab treatment is a described feature of IBD-related tracheobronchitis.16 Bronchial biopsy typically reveals a mixed cellular infiltration including lymphocytes, plasma cells and an absence of granulomas [9, 20].
Treatment regimens for UC-related tracheobronchitis have relied heavily on inhaled, oral and intravenous corticosteroids. The predictable and timely clinical improvement with steroids serves as a strong diagnostic indicator of UC-related pulmonary disease. As outlined in Table 1, the majority of cases received oral corticosteroids and some additionally received high-dose inhaled beclomethasone. Azathioprine has historically been the steroid-sparing agent of choice for pulmonary IBD and is supported by clinical improvement described in case reports [7, 28]. Our patient failed to achieve complete remission following the commencement of Azathioprine either clinically or histologically as demonstrated by a persistent neutrophil and macrophage infiltration evident on bronchoalveolar lavage (BAL) fluid. Additionally, the intended steroid-sparing effect of Azathioprine was not achieved; our patient relapsed following the gradual cessation of oral corticosteroids despite the continuation of high-dose inhaled corticosteroids.
Infliximab, a chimeric anti-tumour necrosis factor (TNF) monoclonal antibody, is established as a rescue therapy in cases of acute severe steroid refractory intestinal ulcerative colitis [29]. Activated lymphocytes, macrophages and other cells express the transmembrane form of TNF-alpha which is processed by the TNF-alpha conversion enzyme (TACE) to generate soluble TNF. Through binding to the receptors for TNF (TNFR1 and TNFRII) soluble TNF promotes mucosal inflammation through various described mechanisms including the destruction of the intestinal barrier, secretion of cytokines and chemokines from intestinal epithelial and apoptosis of epithelial cells [30]. Significantly greater serum and mucosal TNF levels are reported in acute relapse of IBD and supports current opinion that TNF production contributes to the pathophysiology of both ulcerative colitis and Crohn’s disease [3134]. Infliximab binds both the soluble and transmembrane forms of TNF-alpha with high affinity, blocking their action and promoting mucosal healing [35], leukocyte apoptosis [36] and clinical remission. Although not clearly defined in the literature, it is probable that the mechanism of action for infliximab in pulmonary IBD is similar. Infliximab is described in the literature as a management strategy for pulmonary CD [16, 17, 37, 38] including the promising outcome of disease remission.
There is a lack of published evidence documenting the use of infliximab in pulmonary UC. As such, the use of Infliximab in pulmonary IBD is guided only by sporadic case reports of pulmonary Crohn’s disease [1618, 3740] only one of which [40] relates to the diagnosis of tracheobronchitis. Clinical and radiological remission was achieved in each of the 7 described cases commenced on infliximab. The decision to commence infliximab was in the setting of previously refractory disease either failing to respond adequately to or intolerant of systemic corticosteroids and/or azathioprine. Response to infliximab therapy was assessed in all described cases with a combination of radiological imaging and clinical assessment. Of the existing cases described in the literature the duration of therapy varied however with the majority established on maintenance infliximab therapy at the time of case reporting.
This novel case report describes the first trial of infliximab or an anti-TNF monoclonal antibody for the rare and potentially life-threatening extra-intestinal manifestation of UC-related tracheobronchitis. This study further contributes to the literature regarding pulmonary IBD and emphasises the need for a high level of suspicion when assessing a patient with respiratory complaints on a background of IBD regardless of the activity of intestinal disease. Moreover, this unique case provides valuable experiential support for a trial of infliximab in cases of refractory UC-related tracheobronchitis and supports consideration of a more aggressive management approach in such challenging cases.

Acknowledgements

N/A
Written consent was obtained from the patient as detailed below. Ethics approval was not required for this research.
Written informed consent was obtained from the patient for publication of this case report and any of the accompanying images. A copy of the written consent is available for review by the Editor of this journal.

Competing interests

AMT has received speaking fees from Janssen Pharmaceuticals unrelated to the product in this case report.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Kraft SC, Earle RH, Roesler M, Esterly JR. Unexplained bronchopulmonary disease with inflammatory bowel disease. Arch Intern Med. 1976;136(4):454–9.CrossRef Kraft SC, Earle RH, Roesler M, Esterly JR. Unexplained bronchopulmonary disease with inflammatory bowel disease. Arch Intern Med. 1976;136(4):454–9.CrossRef
2.
Zurück zum Zitat Black H, Mendoza M, Murin S. Thoracic manifestations of inflammatory bowel disease. Chest. 2007;131(2):524–32.CrossRef Black H, Mendoza M, Murin S. Thoracic manifestations of inflammatory bowel disease. Chest. 2007;131(2):524–32.CrossRef
3.
Zurück zum Zitat Herrlinger KR, Noftz MK, Dalhoff K, Ludwig D, Stange EF, Fellermann K. Alterations in pulmonary function in inflammatory bowel disease are frequent and persist during remission. Am J Gastroenterol. 2002;97(2):377–81.CrossRef Herrlinger KR, Noftz MK, Dalhoff K, Ludwig D, Stange EF, Fellermann K. Alterations in pulmonary function in inflammatory bowel disease are frequent and persist during remission. Am J Gastroenterol. 2002;97(2):377–81.CrossRef
4.
Zurück zum Zitat Kuzela L, Vavrecka A, Prikazska M, Drugda B, Hronec J, Senkova A, et al. Pulmonary complications in patients with inflammatory bowel disease. Hepatogastroenterology. 1999;46(27):1714–9.PubMed Kuzela L, Vavrecka A, Prikazska M, Drugda B, Hronec J, Senkova A, et al. Pulmonary complications in patients with inflammatory bowel disease. Hepatogastroenterology. 1999;46(27):1714–9.PubMed
5.
Zurück zum Zitat Godet PG, Cowie R, Woodman RC, Sutherland LR. Pulmonary function abnormalities in patients with ulcerative colitis. Am J Gastroenterol. 1997;92(7):1154–6.PubMed Godet PG, Cowie R, Woodman RC, Sutherland LR. Pulmonary function abnormalities in patients with ulcerative colitis. Am J Gastroenterol. 1997;92(7):1154–6.PubMed
6.
Zurück zum Zitat Vutcovici M, Brassard P, Bitton A. Inflammatory bowel disease and airway diseases. World J Gastroenterol. 2016;22(34):7735–41.CrossRef Vutcovici M, Brassard P, Bitton A. Inflammatory bowel disease and airway diseases. World J Gastroenterol. 2016;22(34):7735–41.CrossRef
7.
Zurück zum Zitat Kar S, Thomas SG. A case of tracheobronchitis in ulcerative colitis: a review of literature. Clin Respir J. 2009;3(1):51–4.CrossRef Kar S, Thomas SG. A case of tracheobronchitis in ulcerative colitis: a review of literature. Clin Respir J. 2009;3(1):51–4.CrossRef
8.
Zurück zum Zitat Mahadeva R, Walsh G, Flower CD, Shneerson JM. Clinical and radiological characteristics of lung disease in inflammatory bowel disease. Eur Respir J. 2000;15(1):41–8.CrossRef Mahadeva R, Walsh G, Flower CD, Shneerson JM. Clinical and radiological characteristics of lung disease in inflammatory bowel disease. Eur Respir J. 2000;15(1):41–8.CrossRef
9.
Zurück zum Zitat Yamamoto AK, Babar JL. Case 184: ulcerative tracheobronchitis. Radiology. 2012;264(2):609–13.CrossRef Yamamoto AK, Babar JL. Case 184: ulcerative tracheobronchitis. Radiology. 2012;264(2):609–13.CrossRef
11.
Zurück zum Zitat Ocak I, Bollino G, Fuhrman C. Delayed recurrence of ulcerative colitis manifested by tracheobronchitis, bronchiolitis, and bronchiolectasis. Radiol Case Rep. 2017;12(4):686–9.CrossRef Ocak I, Bollino G, Fuhrman C. Delayed recurrence of ulcerative colitis manifested by tracheobronchitis, bronchiolitis, and bronchiolectasis. Radiol Case Rep. 2017;12(4):686–9.CrossRef
12.
Zurück zum Zitat Higenbottam T, Cochrane GM, Clark TJ, Turner D, Millis R, Seymour W. Bronchial disease in ulcerative colitis. Thorax. 1980;35(8):581–5.CrossRef Higenbottam T, Cochrane GM, Clark TJ, Turner D, Millis R, Seymour W. Bronchial disease in ulcerative colitis. Thorax. 1980;35(8):581–5.CrossRef
13.
Zurück zum Zitat Faure S, de Santa Barbara P. Molecular embryology of the foregut. J Pediatr Gastroenterol Nutr. 2011;52 Suppl 1(Suppl 1):S2–3.CrossRef Faure S, de Santa Barbara P. Molecular embryology of the foregut. J Pediatr Gastroenterol Nutr. 2011;52 Suppl 1(Suppl 1):S2–3.CrossRef
14.
Zurück zum Zitat Omori H, Asahi H, Inoue Y, Irinoda T, Saito K. Pulmonary involvement in Crohn’s disease: report of a case and review of the literature. Inflamm Bowel Dis. 2004;10(2):129–34.CrossRef Omori H, Asahi H, Inoue Y, Irinoda T, Saito K. Pulmonary involvement in Crohn’s disease: report of a case and review of the literature. Inflamm Bowel Dis. 2004;10(2):129–34.CrossRef
15.
Zurück zum Zitat Ward H, Fisher KL, Waghray R, Wright JL, Card SE, Cockcroft DW. Constrictive bronchiolitis and ulcerative colitis. Can Respir J. 1999;6(2):197–200.CrossRef Ward H, Fisher KL, Waghray R, Wright JL, Card SE, Cockcroft DW. Constrictive bronchiolitis and ulcerative colitis. Can Respir J. 1999;6(2):197–200.CrossRef
16.
Zurück zum Zitat Pedersen N, Duricova D, Munkholm P. Pulmonary Crohn’s disease: a rare extra-intestinal manifestation treated with infliximab. J Crohn's Colitis. 2009;3(3):207–11.CrossRef Pedersen N, Duricova D, Munkholm P. Pulmonary Crohn’s disease: a rare extra-intestinal manifestation treated with infliximab. J Crohn's Colitis. 2009;3(3):207–11.CrossRef
17.
Zurück zum Zitat Gill KR, Mahadevan U. Infliximab for the treatment of metastatic hepatic and pulmonary Crohn's disease. Inflamm Bowel Dis. 2005;11(2):210–2.CrossRef Gill KR, Mahadevan U. Infliximab for the treatment of metastatic hepatic and pulmonary Crohn's disease. Inflamm Bowel Dis. 2005;11(2):210–2.CrossRef
18.
Zurück zum Zitat Krishnan S, Banquet A, Newman L, Katta U, Patil A, Dozor AJ. Lung lesions in children with Crohn's disease presenting as nonresolving pneumonias and response to infliximab therapy. Pediatrics. 2006;117(4):1440–3.CrossRef Krishnan S, Banquet A, Newman L, Katta U, Patil A, Dozor AJ. Lung lesions in children with Crohn's disease presenting as nonresolving pneumonias and response to infliximab therapy. Pediatrics. 2006;117(4):1440–3.CrossRef
19.
Zurück zum Zitat Wilcox P, Miller R, Miller G, Heath J, Nelems B, Muller N, et al. Airway involvement in ulcerative colitis. Chest. 1987;92(1):18–22.CrossRef Wilcox P, Miller R, Miller G, Heath J, Nelems B, Muller N, et al. Airway involvement in ulcerative colitis. Chest. 1987;92(1):18–22.CrossRef
20.
Zurück zum Zitat Kuzniar T, Sleiman C, Brugiere O, Groussard O, Mal H, Mellot F, et al. Severe tracheobronchial stenosis in a patient with Crohn's disease. Eur Respir J. 2000;15(1):209–12.PubMed Kuzniar T, Sleiman C, Brugiere O, Groussard O, Mal H, Mellot F, et al. Severe tracheobronchial stenosis in a patient with Crohn's disease. Eur Respir J. 2000;15(1):209–12.PubMed
21.
Zurück zum Zitat Vasishta S, Wood JB, McGinty F. Ulcerative tracheobronchitis years after colectomy for ulcerative colitis. Chest. 1994;106(4):1279–81.CrossRef Vasishta S, Wood JB, McGinty F. Ulcerative tracheobronchitis years after colectomy for ulcerative colitis. Chest. 1994;106(4):1279–81.CrossRef
22.
Zurück zum Zitat Garg K, Lynch DA, Newell JD. Inflammatory airways disease in ulcerative colitis: CT and high-resolution CT features. J Thorac Imaging. 1993;8(2):159–63.CrossRef Garg K, Lynch DA, Newell JD. Inflammatory airways disease in ulcerative colitis: CT and high-resolution CT features. J Thorac Imaging. 1993;8(2):159–63.CrossRef
23.
Zurück zum Zitat Daniels JA, Lederman HM, Maitra A, Montgomery EA. Gastrointestinal tract pathology in patients with common variable immunodeficiency (CVID): a clinicopathologic study and review. Am J Surg Pathol. 2007;31(12):1800–12.CrossRef Daniels JA, Lederman HM, Maitra A, Montgomery EA. Gastrointestinal tract pathology in patients with common variable immunodeficiency (CVID): a clinicopathologic study and review. Am J Surg Pathol. 2007;31(12):1800–12.CrossRef
24.
Zurück zum Zitat Bayraktaroglu S, Basoglu O, Ceylan N, Aydin A, Tuncel S, Savas R. A rare extraintestinal manifestation of ulcerative colitis: tracheobronchitis associated with ulcerative colitis. J Crohns Colitis. 2010;4(6):679–82.CrossRef Bayraktaroglu S, Basoglu O, Ceylan N, Aydin A, Tuncel S, Savas R. A rare extraintestinal manifestation of ulcerative colitis: tracheobronchitis associated with ulcerative colitis. J Crohns Colitis. 2010;4(6):679–82.CrossRef
25.
Zurück zum Zitat Hiyoshi M, Kawai K, Shibuya M, Ozawa T, Kishikawa J, Nirei T, et al. Tracheobronchitis with dyspnea in a patient with ulcerative colitis. Intern Med. 2015;54(7):749–53.CrossRef Hiyoshi M, Kawai K, Shibuya M, Ozawa T, Kishikawa J, Nirei T, et al. Tracheobronchitis with dyspnea in a patient with ulcerative colitis. Intern Med. 2015;54(7):749–53.CrossRef
26.
Zurück zum Zitat Yeung V, Govind AG, Arastu S, Henry CH. Tracheobronchitis in a patient with Crohn's disease. ACG Case Rep J. 2016;3(3):181–3.CrossRef Yeung V, Govind AG, Arastu S, Henry CH. Tracheobronchitis in a patient with Crohn's disease. ACG Case Rep J. 2016;3(3):181–3.CrossRef
27.
Zurück zum Zitat Iwama T, Higuchi T, Imajo M, Akagawa S, Matsubara O, Mishima Y. Tracheo-bronchitis as a complication of Crohn’s disease--a case report. Jpn J Surg. 1991;21(4):454–7.CrossRef Iwama T, Higuchi T, Imajo M, Akagawa S, Matsubara O, Mishima Y. Tracheo-bronchitis as a complication of Crohn’s disease--a case report. Jpn J Surg. 1991;21(4):454–7.CrossRef
28.
Zurück zum Zitat Janssen WJ, Bierig LN, Beuther DA, Miller YE. Stridor in a 47-year-old man with inflammatory bowel disease. Chest. 2006;129(4):1100–6.CrossRef Janssen WJ, Bierig LN, Beuther DA, Miller YE. Stridor in a 47-year-old man with inflammatory bowel disease. Chest. 2006;129(4):1100–6.CrossRef
29.
Zurück zum Zitat Chen JH, Andrews JM, Kariyawasam V, Moran N, Gounder P, Collins G, et al. Review article: acute severe ulcerative colitis - evidence-based consensus statements. Aliment Pharmacol Ther. 2016;44(2):127–44.CrossRef Chen JH, Andrews JM, Kariyawasam V, Moran N, Gounder P, Collins G, et al. Review article: acute severe ulcerative colitis - evidence-based consensus statements. Aliment Pharmacol Ther. 2016;44(2):127–44.CrossRef
30.
Zurück zum Zitat Kalliolias GD, Ivashkiv LB. TNF biology, pathogenic mechanisms and emerging therapeutic strategies. Nat Rev Rheumatol. 2016;12(1):49–62.CrossRef Kalliolias GD, Ivashkiv LB. TNF biology, pathogenic mechanisms and emerging therapeutic strategies. Nat Rev Rheumatol. 2016;12(1):49–62.CrossRef
31.
Zurück zum Zitat Murch SH, Lamkin VA, Savage MO, Walker-Smith JA, MacDonald TT. Serum concentrations of tumour necrosis factor alpha in childhood chronic inflammatory bowel disease. Gut. 1991;32(8):913–7.CrossRef Murch SH, Lamkin VA, Savage MO, Walker-Smith JA, MacDonald TT. Serum concentrations of tumour necrosis factor alpha in childhood chronic inflammatory bowel disease. Gut. 1991;32(8):913–7.CrossRef
32.
Zurück zum Zitat MacDonald TT, Hutchings P, Choy MY, Murch S, Cooke A. Tumour necrosis factor-alpha and interferon-gamma production measured at the single cell level in normal and inflamed human intestine. Clin Exp Immunol. 1990;81(2):301–5.CrossRef MacDonald TT, Hutchings P, Choy MY, Murch S, Cooke A. Tumour necrosis factor-alpha and interferon-gamma production measured at the single cell level in normal and inflamed human intestine. Clin Exp Immunol. 1990;81(2):301–5.CrossRef
33.
Zurück zum Zitat Murch SH, Braegger CP, Walker-Smith JA, MacDonald TT. Location of tumour necrosis factor alpha by immunohistochemistry in chronic inflammatory bowel disease. Gut. 1993;34(12):1705–9.CrossRef Murch SH, Braegger CP, Walker-Smith JA, MacDonald TT. Location of tumour necrosis factor alpha by immunohistochemistry in chronic inflammatory bowel disease. Gut. 1993;34(12):1705–9.CrossRef
34.
Zurück zum Zitat Reinecker HC, Steffen M, Witthoeft T, Pflueger I, Schreiber S, MacDermott RP, et al. Enhanced secretion of tumour necrosis factor-alpha, IL-6, and IL-1 beta by isolated lamina propria mononuclear cells from patients with ulcerative colitis and Crohn’s disease. Clin Exp Immunol. 1993;94(1):174–81.CrossRef Reinecker HC, Steffen M, Witthoeft T, Pflueger I, Schreiber S, MacDermott RP, et al. Enhanced secretion of tumour necrosis factor-alpha, IL-6, and IL-1 beta by isolated lamina propria mononuclear cells from patients with ulcerative colitis and Crohn’s disease. Clin Exp Immunol. 1993;94(1):174–81.CrossRef
35.
Zurück zum Zitat Hanauer SB, Feagan BG, Lichtenstein GR, Mayer LF, Schreiber S, Colombel JF, et al. Maintenance infliximab for Crohn’s disease: the ACCENT I randomised trial. Lancet. 2002;359(9317):1541–9.CrossRef Hanauer SB, Feagan BG, Lichtenstein GR, Mayer LF, Schreiber S, Colombel JF, et al. Maintenance infliximab for Crohn’s disease: the ACCENT I randomised trial. Lancet. 2002;359(9317):1541–9.CrossRef
36.
Zurück zum Zitat ten Hove T, van Montfrans C, Peppelenbosch MP, van Deventer SJ. Infliximab treatment induces apoptosis of lamina propria T lymphocytes in Crohn’s disease. Gut. 2002;50(2):206–11.CrossRef ten Hove T, van Montfrans C, Peppelenbosch MP, van Deventer SJ. Infliximab treatment induces apoptosis of lamina propria T lymphocytes in Crohn’s disease. Gut. 2002;50(2):206–11.CrossRef
37.
Zurück zum Zitat Alrashid AI, Brown RD, Mihalov ML, Sekosan M, Pastika BJ, Venu RP. Crohn's disease involving the lung: resolution with infliximab. Dig Dis Sci. 2001;46(8):1736–9.CrossRef Alrashid AI, Brown RD, Mihalov ML, Sekosan M, Pastika BJ, Venu RP. Crohn's disease involving the lung: resolution with infliximab. Dig Dis Sci. 2001;46(8):1736–9.CrossRef
38.
Zurück zum Zitat Hayek AJ, Pfanner TP, White HD. Inflammatory bowel disease of the lung: the role of infliximab? Respir Med Case Rep. 2015;15:85–8.PubMedPubMedCentral Hayek AJ, Pfanner TP, White HD. Inflammatory bowel disease of the lung: the role of infliximab? Respir Med Case Rep. 2015;15:85–8.PubMedPubMedCentral
39.
Zurück zum Zitat Silbermintz A, Krishnan S, Banquet A, Markowitz J. Granulomatous pneumonitis, Sclerosing cholangitis, and pancreatitis in a child with Crohn disease: response to infliximab. J Pediatr Gastroenterol Nutr. 2006;42(3):324–6.CrossRef Silbermintz A, Krishnan S, Banquet A, Markowitz J. Granulomatous pneumonitis, Sclerosing cholangitis, and pancreatitis in a child with Crohn disease: response to infliximab. J Pediatr Gastroenterol Nutr. 2006;42(3):324–6.CrossRef
40.
Zurück zum Zitat Kirkcaldy J, Lim WS, Jones A, Pointon K. Stridor in Crohn disease and the use of infliximab. Chest. 2006;130(2):579–81.CrossRef Kirkcaldy J, Lim WS, Jones A, Pointon K. Stridor in Crohn disease and the use of infliximab. Chest. 2006;130(2):579–81.CrossRef
Metadaten
Titel
Tracheobronchitis in ulcerative colitis: a case report of therapeutic response with infliximab and review of the literature
verfasst von
Lisa Horgan
Siobhain Mulrennan
Lloyd D’Orsogna
Andrew McLean-Tooke
Publikationsdatum
01.12.2019
Verlag
BioMed Central
Erschienen in
BMC Gastroenterology / Ausgabe 1/2019
Elektronische ISSN: 1471-230X
DOI
https://doi.org/10.1186/s12876-019-1091-0

Weitere Artikel der Ausgabe 1/2019

BMC Gastroenterology 1/2019 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.