Skip to main content
Erschienen in: BMC Pediatrics 1/2015

Open Access 01.12.2015 | Research article

Transcanal microscope-assisted endoscopic myringoplasty in children

verfasst von: Lela Migirov, Michael Wolf

Erschienen in: BMC Pediatrics | Ausgabe 1/2015

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

Background

Myringoplasty can be technically difficult in the pediatric patients due to the narrowness of the external auditory canal and the generally small size of the ear. Moreover, temporalis fascia grafts and myringoplasties for anterior perforations are more likely to fail in children. Surgical management of anterior perforations requires total exposure of the anterior angle however a microscope may fail to provide a view of the anterior edge in most of perforations. Recently, different endoscopes are used in the performance of ear surgery in general and myringoplasty in particular. Current study aimed to investigate the outcome of transcanal microscope-assisted endoscopic myringoplasty in homogenous group of children.

Methods

The medical records of 22 children were retrospectively reviewed for age, perforation size and location, surgical and audiological findings, and outcome. All myringoplasties were performed by first author with a chondro-perichondrial graft that has been harvested from the tragus and placed medial to the tympanic membrane remnants, utilizing the underlay technique and 14-mm length, 3-mm diameter, 0° and 30° endoscopes. A microscope was occasionally used for removal of the sclerotic plaques and releasing adhesions surrounding the ossicles when bimanual manipulations were needed. Surgical success was defined as a tympanic membrane with no perforation, retraction, or graft lateralization for at least 18 months following surgery.

Results

Thirteen large-, 8 medium- and 1 small-sized perforations (defined as 75, 50 or 25%, respectively, of the tympanic membrane area), of which 14 were anterior, 2 central and 6 posterior marginal, were repaired. The edges of the defect could not be visualized under a microscope due to bone overhanging or a curved or narrow EAC in 8 anterior perforations. Intact tympanic membranes and dry ears were achieved in all operated children. The audiometric air conduction level (average of 0.5-3 kHz) for the entire cohort ranged between 10–51.3 dB (mean 32.8) preoperatively and between 5–35 dB (mean 18.2) postoperatively.

Conclusion

The transcanal microscope-assisted endoscopic myringoplasty had a 100% rate of surgical success in children. This technique can be especially appropriate for patients with narrow external canals, anterior defects and bone overhang making the perforation margins barely visible under a microscope.
Hinweise

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

LM has been involved in concept and design, collection, analysis and interpretation of data and drafting the manuscript. MW revised the paper critically. Both authors read and approved the final version of the manuscript.

Background

Recently, different endoscopes are used in the performance of ear surgery in general and myringoplasty in particular, and the surgical success of endoscope-assisted myringoplasty ranges between 80 and 100% [1-8]. Most of the earlier studies investigating the surgical outcome of endoscopic or endoscope-assisted myringoplasties were heterogeneous by having included both children and adults, and by using different graft materials and various surgical techniques [1-6]. Myringoplasty can be technically difficult in the pediatric patients due to the narrowness of the external auditory canal and the generally small size of the ear [7,9,10]. Moreover, temporalis fascia grafts and myringoplasties for anterior perforations are more likely to fail in children [1-4,11,12]. Surgical management of anterior perforations requires total exposure of the anterior angle, but a microscope may fail to provide a view of the anterior edge in 73% of perforations that can, however, be entirely exposed with an endoscope [5]. As a result, drilling of the anterior part of an external auditory canal is usually unavoidable for the repair of anterior perforations when only a microscopic approach is employed [11].
The current study was designed to evaluate the surgical and audiological outcome of transcanal microscope-assisted endoscopic myringoplasty utilizing a chondro-perichondrial graft among a homogenous group of children.

Methods

The medical records of children who underwent transcanal myringoplasty by the first author between 2009–2012 were reviewed for age, gender, perforation size (i.e., small, medium or large, defined as 25, 50 or 75%, respectively, of the area of the tympanic membrane), perforation location (anterior, central or posterior), surgical findings (i.e., myringosclerotic plaques and status of ossicular chain), audiological findings before and after surgery, i.e., air conduction, bone conduction and air–bone gap for 500, 1000, 2000 and 3000 Hz, and surgical outcome (i.e., closed tympanic membrane, residual perforation or re-perforation). The condition for myringoplastic surgery was dry ear and normal middle ear mucosa for at least 3 months. The Eustachian tube function in these children was assumed as suitable for myringoplastic surgery. It should be noted that the data on simple primary myringoplasty was analyzed. The outcome of surgeries that had been performed for ossicular chain problems is out of focus of the current paper.
All myringoplasties were performed under general anesthesia with a chondro-perichondrial graft that had been harvested from the tragus and placed medial to the tympanic membrane remnants, utilizing the underlay technique and 14-mm length, 3-mm diameter, 0° and 30° endoscopes (Figures 1 and 2). The external ear canal was injected with lidocaine 1% with 0.5:100.000 epinephrine. Tympanomeatal flap was elevated using the 0° endoscope in all the cases, and the 30° endoscope was utilized for better visualization of 4 anterior perforations. The margins of perforations were freshened using the 0° or 30°endoscopes. Microscope was used for removal of the sclerotic plaques and releasing adhesions surrounding the ossicles in 4 cases when bimanual manipulations were needed. The tympano-meatal flap was repositioned, and the external auditory canal was filled with Gelfoam® soaked in ear drops containing antibiotics.
Surgical success was defined as a tympanic membrane with no perforation, retraction, or graft lateralization for at least 18 months following surgery. Post-operative audiogram was performed at 6–8 weeks and 1 year following surgery. The study was approved by the Institutional Review Board of the Sheba Medical Center.

Results

The study group included 22 children (11 girls, 11 boys; age range 5 to 16 years, mean 10.7 years) with 13 large-, 8 medium- and 1 small-sized perforation of which 14 were anterior, 2 central and 6 posterior marginal defects. The edges of the defect could not be visualized under a microscope due to bone overhanging or a curved or narrow EAC in 8 anterior perforations. The endoscopes in patients with central and posterior marginal perforations were used mainly for training. Myringosclerotic plaques in the remnant tympanic membrane were observed and removed intra-operatively in 16 (72.7%) children. Three children had non-suppurative perforation with normal middle ear mucosa also in their contralateral ears. The other patients had closed tympanic membrane with well aerated middle ear cavity.
Intact tympanic membranes and dry ears were achieved in all operated children. There were no incidents of iatrogenic injuries to the facial nerve, chorda tympani or to the ossicles in this series.
The audiometric air conduction level (average of 0.5-3 kHz) for the entire cohort ranged between 10–51.3 dB (mean 32.8) preoperatively and between 5–35.8 dB (mean 18.2) postoperatively (Table 1). None of the study group patients demonstrated postoperative worsening of the bone conduction threshold.
Table 1
Pre and postoperative hearing results for 22 operated children
 
Preoperative results
12 months after surgery
 
AC
BC
ABG
AC
BC
ABG
Range
10–51.3
5–38.1
5–20.4
5–35.8
5–35
0–15.2
Mean
32.8
21.7
11.3
18.2
18.0
1.5
AC-air conduction, BC-bone conduction, ABG-air-bone gap.

Discussion

Transmeatal microscope-assisted endoscopic myringoplasty with an underlay chondro-perichondrial graft obtained 100% surgical success rate and good functional results in pediatric patients. Endoscopes enabled successful myringoplasty in children in whom the perforated edges of the tympanic membrane were invisible under a microscope. The microscope provided valuable assistance in terms of surgical accuracy when bimanual manipulations were required.
Our results can be compared with two other homogeneous studies on endoscopic myringoplasty [7,8]. Mohindra and Panda reported 100% surgical success rate of endoscopic myringoplasty with temporalis fascia grafting in 14 children aged 5–15 years [7]. Dündar et al. found 87.5% closure of perforation with endoscopic myringoplasty using a boomerang-shaped chondro-perichondrial graft in children aged 7–16 years [8].
We found that endoscope was very effective in ensuring satisfactory approximation of graft material to the perforation margins in large and subtotal perforations as well.
We believe that the rate of graft take in our study was higher than those reported in other studies on myringoplasty in children [7,11-15] due to use of both an endoscope and a microscope as well as the choice of and chondro-perichondrial graft material in our pediatric patients. The personal experience of the first author supports the hypothesis that removal of the sclerotic plaques from the remnant tympanic membrane may contribute to an excellent surgical outcome [16].
The relatively small number of participants might pose a limitation to the current study. The endoscopes are routinely used in oto-surgeries in our department since 2008, and we do not support the randomization of surgical approaches (endoscopic, endoscope-assisted microscopic, microscopic or microscope-assisted endoscopic) in current management of different ear pathologies. We considered the randomization of surgical approach for myringoplasty in children as unethical, thus there is no real control group for the presented series.

Conclusions

The transcanal microscope-assisted endoscopic myringoplasty had a 100% rate of surgical success for closure of tympanic membrane defects in children. This technique is especially helpful in patients with narrow external canals, anterior defects and bone overhang, when perforation’s margins are barely, if at all, visible under a microscope. The choice of chondro-perichondrial graft material and the meticulous removal of myringosclerotic plaques can enhance the surgical outcome of pediatric myringoplasty performed by an experienced otologist.
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​4.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

LM has been involved in concept and design, collection, analysis and interpretation of data and drafting the manuscript. MW revised the paper critically. Both authors read and approved the final version of the manuscript.
Literatur
1.
Zurück zum Zitat Usami S, Iijima N, Fujita S, Takumi Y. Endoscopic-assisted myringoplasty. ORL J Otorhinolaryngol Relat Spec. 2001;63:287–90.CrossRefPubMed Usami S, Iijima N, Fujita S, Takumi Y. Endoscopic-assisted myringoplasty. ORL J Otorhinolaryngol Relat Spec. 2001;63:287–90.CrossRefPubMed
2.
Zurück zum Zitat Karhuketo TS, Ilomäki JH, Puhakka HJ. Tympanoscope-assisted myringoplasty. ORL J Otorhinolaryngol Relat Spec. 2001;63:353–7. discussion 358.CrossRefPubMed Karhuketo TS, Ilomäki JH, Puhakka HJ. Tympanoscope-assisted myringoplasty. ORL J Otorhinolaryngol Relat Spec. 2001;63:353–7. discussion 358.CrossRefPubMed
3.
Zurück zum Zitat Konstantinidis I, Malliari H, Tsakiropoulou E, Constantinidis J. Fat myringoplasty outcome analysis with otoendoscopy: who is the suitable patient? Otol Neurotol. 2013;34:95–9.CrossRefPubMed Konstantinidis I, Malliari H, Tsakiropoulou E, Constantinidis J. Fat myringoplasty outcome analysis with otoendoscopy: who is the suitable patient? Otol Neurotol. 2013;34:95–9.CrossRefPubMed
4.
Zurück zum Zitat Yadav SP, Aggarwal N, Julaha M, Goel A. Endoscope-assisted myringoplasty. Singapore Med J. 2009;50:510–2.PubMed Yadav SP, Aggarwal N, Julaha M, Goel A. Endoscope-assisted myringoplasty. Singapore Med J. 2009;50:510–2.PubMed
5.
Zurück zum Zitat Ayache S. Cartilaginous myringoplasty: the endoscopic transcanal procedure. Eur Arch Otorhinolaryngol. 2013;270:853–60.CrossRefPubMed Ayache S. Cartilaginous myringoplasty: the endoscopic transcanal procedure. Eur Arch Otorhinolaryngol. 2013;270:853–60.CrossRefPubMed
8.
Zurück zum Zitat Dündar R, Kulduk E, Soy FK, Aslan M, Hanci D, Muluk NB, et al. Endoscopic versus microscopic approach to type 1 tympanoplasty in children. Int J Pediatr Otorhinolaryngol. 2014;78:1084–9.CrossRefPubMed Dündar R, Kulduk E, Soy FK, Aslan M, Hanci D, Muluk NB, et al. Endoscopic versus microscopic approach to type 1 tympanoplasty in children. Int J Pediatr Otorhinolaryngol. 2014;78:1084–9.CrossRefPubMed
9.
Zurück zum Zitat Bluestone CD, Cantekin EI, Douglas GS. Eustachian tube function related to the results of tympanoplasty in children. Laryngoscope. 1979;89:450–8.CrossRefPubMed Bluestone CD, Cantekin EI, Douglas GS. Eustachian tube function related to the results of tympanoplasty in children. Laryngoscope. 1979;89:450–8.CrossRefPubMed
10.
Zurück zum Zitat Singh GB, Sidhu TS, Sharma A, Singh N. Tympanoplasty type I in children–an evaluative study. Int J Pediatr Otorhinolaryngol. 2005;69:1071–6.CrossRefPubMed Singh GB, Sidhu TS, Sharma A, Singh N. Tympanoplasty type I in children–an evaluative study. Int J Pediatr Otorhinolaryngol. 2005;69:1071–6.CrossRefPubMed
11.
Zurück zum Zitat Halim A, Borgstein J. Pediatric myringoplasty: postaural versus transmeatal approach. Int J Pediatr Otorhinolaryngol. 2009;73:1580–3.CrossRefPubMed Halim A, Borgstein J. Pediatric myringoplasty: postaural versus transmeatal approach. Int J Pediatr Otorhinolaryngol. 2009;73:1580–3.CrossRefPubMed
12.
Zurück zum Zitat Castro O, Pérez-Carro AM, Ibarra I, Hamdan M, Meléndez JM, Araujo A, et al. Myringoplasties in children: our results. Acta Otorrinolaringol Esp. 2013;64:87–91 [Article in English, Spanish].CrossRefPubMed Castro O, Pérez-Carro AM, Ibarra I, Hamdan M, Meléndez JM, Araujo A, et al. Myringoplasties in children: our results. Acta Otorrinolaringol Esp. 2013;64:87–91 [Article in English, Spanish].CrossRefPubMed
13.
Zurück zum Zitat Boronat-Echeverría NE, Reyes-García E, Sevilla-Delgado Y, Aguirre-Mariscal H, Mejía-Aranguré JM. Prognostic factors of successful tympanoplasty in pediatric patients: a cohort study. BMC Pediatr. 2012;12:67.CrossRefPubMedPubMedCentral Boronat-Echeverría NE, Reyes-García E, Sevilla-Delgado Y, Aguirre-Mariscal H, Mejía-Aranguré JM. Prognostic factors of successful tympanoplasty in pediatric patients: a cohort study. BMC Pediatr. 2012;12:67.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Denoyelle F, Roger G, Chauvin P, Garabedian EN. Myringoplasty in children: predictive factors of outcome. Laryngoscope. 1999;109:47–51.CrossRefPubMed Denoyelle F, Roger G, Chauvin P, Garabedian EN. Myringoplasty in children: predictive factors of outcome. Laryngoscope. 1999;109:47–51.CrossRefPubMed
15.
Zurück zum Zitat Kumar S, Acharya A, Hadjihannas E, Panagamuwa C, McDermott AL. Pediatric myringoplasty: definition of “success” and factors affecting outcome. Otol Neurotol. 2010;31:1417–20.PubMed Kumar S, Acharya A, Hadjihannas E, Panagamuwa C, McDermott AL. Pediatric myringoplasty: definition of “success” and factors affecting outcome. Otol Neurotol. 2010;31:1417–20.PubMed
16.
Zurück zum Zitat Migirov L, Volkov A. The influence of coexisting myringosclerosis on the outcome of myringoplasty in children. J Laryngol Otol. 2009;20:1–4. Migirov L, Volkov A. The influence of coexisting myringosclerosis on the outcome of myringoplasty in children. J Laryngol Otol. 2009;20:1–4.
Metadaten
Titel
Transcanal microscope-assisted endoscopic myringoplasty in children
verfasst von
Lela Migirov
Michael Wolf
Publikationsdatum
01.12.2015
Verlag
BioMed Central
Erschienen in
BMC Pediatrics / Ausgabe 1/2015
Elektronische ISSN: 1471-2431
DOI
https://doi.org/10.1186/s12887-015-0351-6

Weitere Artikel der Ausgabe 1/2015

BMC Pediatrics 1/2015 Zur Ausgabe

Neuer Typ-1-Diabetes bei Kindern am Wochenende eher übersehen

23.04.2024 Typ-1-Diabetes Nachrichten

Wenn Kinder an Werktagen zum Arzt gehen, werden neu auftretender Typ-1-Diabetes und diabetische Ketoazidosen häufiger erkannt als bei Arztbesuchen an Wochenenden oder Feiertagen.

Neue Studienergebnisse zur Myopiekontrolle mit Atropin

22.04.2024 Fehlsichtigkeit Nachrichten

Augentropfen mit niedrig dosiertem Atropin können helfen, das Fortschreiten einer Kurzsichtigkeit bei Kindern zumindest zu verlangsamen, wie die Ergebnisse einer aktuellen Studie mit verschiedenen Dosierungen zeigen.

Spinale Muskelatrophie: Neugeborenen-Screening lohnt sich

18.04.2024 Spinale Muskelatrophien Nachrichten

Seit 2021 ist die Untersuchung auf spinale Muskelatrophie Teil des Neugeborenen-Screenings in Deutschland. Eine Studie liefert weitere Evidenz für den Nutzen der Maßnahme.

Fünf Dinge, die im Kindernotfall besser zu unterlassen sind

18.04.2024 Pädiatrische Notfallmedizin Nachrichten

Im Choosing-Wisely-Programm, das für die deutsche Initiative „Klug entscheiden“ Pate gestanden hat, sind erstmals Empfehlungen zum Umgang mit Notfällen von Kindern erschienen. Fünf Dinge gilt es demnach zu vermeiden.

Update Pädiatrie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.