Skip to main content
Erschienen in: Journal of Neurology 4/2019

25.01.2019 | Original Communication

Transient seizure onset network for localization of epileptogenic zone: effective connectivity and graph theory-based analyses of ECoG data in temporal lobe epilepsy

verfasst von: Ye Ren, Fengyu Cong, Tapani Ristaniemi, Yuping Wang, Xiaoli Li, Ruihua Zhang

Erschienen in: Journal of Neurology | Ausgabe 4/2019

Einloggen, um Zugang zu erhalten

Abstract

Objective

Abnormal and dynamic epileptogenic networks cause difficulties for clinical epileptologists in the localization of the seizure onset zone (SOZ) and the epileptogenic zone (EZ) in preoperative assessments of patients with refractory epilepsy. The aim of this study is to investigate the characteristics of time-varying effective connectivity networks in various non-seizure and seizure periods, and to propose a quantitative approach for accurate localization of SOZ and EZ.

Methods

We used electrocorticogram recordings in the temporal lobe and hippocampus from seven patients with temporal lobe epilepsy to characterize the effective connectivity dynamics at a high temporal resolution using the full-frequency adaptive directed transfer function (ffADTF) measure and five graph metrics, i.e., the out-degree (OD), closeness centrality (CC), betweenness centrality (BC), clustering coefficient (C), and local efficiency (LE). The ffADTF effective connectivity network was calculated and described in five frequency bands (δ, θ, α, β, and γ) and five seizure periods (pre-seizure, early seizure, mid-seizure, late seizure, and post-seizure). The cortical areas with high values of graph metrics in the transient seizure onset network were compared with the SOZ and EZ identified by clinical epileptologists and the results of epilepsy resection surgeries.

Results

Origination and propagation of epileptic activity were observed in the high time resolution ffADTF effective connectivity network throughout the entire seizure period. The seizure-specific transient seizure onset ffADTF network that emerged at seizure onset time remained for approximately 20–50 ms with strong connections generated from both SOZ and EZ. The values of graph metrics in the SOZ and EZ were significantly larger than that in the other cortical areas. More cortical areas with the highest mean of graph metrics were the same as the clinically determined SOZ in the low-frequency δ and θ bands and in Engel Class I patients than in higher frequency α, β, and γ bands and in Engel Class II and III patients. The OD and C were more likely to localize the SOZ and EZ than CC, BC, and LE in the transient seizure onset network.

Conclusion

The high temporal resolution ffADTF effective connectivity analysis combined with the graph theoretical analysis helps us to understand how epileptic activity is generated and propagated during the seizure period. The newly discovered seizure-specific transient seizure onset network could be an important biomarker and a promising tool for more precise localization of the SOZ and EZ in preoperative evaluations.
Literatur
2.
Zurück zum Zitat Coito A, Plomp G, Genetti M, Abela E, Wiest R, Seeck M, Michel CM, Vulliemoz S (2015) Dynamic directed interictal connectivity in left and right temporal lobe epilepsy. Epilepsia 56:207–217CrossRefPubMed Coito A, Plomp G, Genetti M, Abela E, Wiest R, Seeck M, Michel CM, Vulliemoz S (2015) Dynamic directed interictal connectivity in left and right temporal lobe epilepsy. Epilepsia 56:207–217CrossRefPubMed
4.
Zurück zum Zitat Engel J Jr (1993) Outcome with respect to epileptic seizures. In: Surgical treatment of the epilepsies, pp 609–621 Engel J Jr (1993) Outcome with respect to epileptic seizures. In: Surgical treatment of the epilepsies, pp 609–621
5.
Zurück zum Zitat Englot DJ, D’Haese PF, Konrad PE, Jacobs ML, Gore JC, Abou-Khalil BW, Morgan VL (2017) Functional connectivity disturbances of the ascending reticular activating system in temporal lobe epilepsy. J Neurol Neurosurg Psychiatry 88:925–932CrossRefPubMedPubMedCentral Englot DJ, D’Haese PF, Konrad PE, Jacobs ML, Gore JC, Abou-Khalil BW, Morgan VL (2017) Functional connectivity disturbances of the ascending reticular activating system in temporal lobe epilepsy. J Neurol Neurosurg Psychiatry 88:925–932CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Fagiolo G (2007) Clustering in complex directed networks. Phys Rev E Stat Nonlinear Soft Matter Phys 76:026107CrossRef Fagiolo G (2007) Clustering in complex directed networks. Phys Rev E Stat Nonlinear Soft Matter Phys 76:026107CrossRef
7.
Zurück zum Zitat Freeman LC (1978) Centrality in social networks conceptual clarification. Soc Netw 1:215–239CrossRef Freeman LC (1978) Centrality in social networks conceptual clarification. Soc Netw 1:215–239CrossRef
8.
Zurück zum Zitat Friston K, Frith C, Frackowiak R (1993) Time-dependent changes in effective connectivity measured with PET. Hum Brain Mapp 1:69–79CrossRef Friston K, Frith C, Frackowiak R (1993) Time-dependent changes in effective connectivity measured with PET. Hum Brain Mapp 1:69–79CrossRef
9.
Zurück zum Zitat Granger CW (1969) Investigating causal relations by econometric models and cross-spectral methods. Econometrica J Econ Soc 37:424–438CrossRef Granger CW (1969) Investigating causal relations by econometric models and cross-spectral methods. Econometrica J Econ Soc 37:424–438CrossRef
11.
Zurück zum Zitat Kaminski MJ, Blinowska KJ (1991) A new method of the description of the information flow in the brain structures. Biol Cybern 65:203–210CrossRefPubMed Kaminski MJ, Blinowska KJ (1991) A new method of the description of the information flow in the brain structures. Biol Cybern 65:203–210CrossRefPubMed
13.
Zurück zum Zitat Kramer MA, Kolaczyk ED, Kirsch HE (2008) Emergent network topology at seizure onset in humans. Epilepsy Res 79:173–186CrossRefPubMed Kramer MA, Kolaczyk ED, Kirsch HE (2008) Emergent network topology at seizure onset in humans. Epilepsy Res 79:173–186CrossRefPubMed
14.
Zurück zum Zitat Neumaier A, Schneider T (2001) Estimation of parameters and eigenmodes of multivariate autoregressive models. ACM Trans Math Softw (TOMS) 27:27–57CrossRef Neumaier A, Schneider T (2001) Estimation of parameters and eigenmodes of multivariate autoregressive models. ACM Trans Math Softw (TOMS) 27:27–57CrossRef
15.
Zurück zum Zitat Palus M, Hoyer D (1998) Detecting nonlinearity and phase synchronization with surrogate data. IEEE Eng Med Biol Mag 17:40–45CrossRefPubMed Palus M, Hoyer D (1998) Detecting nonlinearity and phase synchronization with surrogate data. IEEE Eng Med Biol Mag 17:40–45CrossRefPubMed
16.
Zurück zum Zitat Ponten SC, Bartolomei F, Stam CJ (2007) Small-world networks and epilepsy: graph theoretical analysis of intracerebrally recorded mesial temporal lobe seizures. Clin Neurophysiol 118:918–927CrossRefPubMed Ponten SC, Bartolomei F, Stam CJ (2007) Small-world networks and epilepsy: graph theoretical analysis of intracerebrally recorded mesial temporal lobe seizures. Clin Neurophysiol 118:918–927CrossRefPubMed
17.
Zurück zum Zitat Rosenow F, Luders H (2001) Presurgical evaluation of epilepsy. Brain 124:1683–1700CrossRef Rosenow F, Luders H (2001) Presurgical evaluation of epilepsy. Brain 124:1683–1700CrossRef
18.
Zurück zum Zitat Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52:1059–1069CrossRef Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52:1059–1069CrossRef
19.
Zurück zum Zitat Sakkalis V (2011) Review of advanced techniques for the estimation of brain connectivity measured with EEG/MEG. Comput Biol Med 41:1110–1117CrossRefPubMed Sakkalis V (2011) Review of advanced techniques for the estimation of brain connectivity measured with EEG/MEG. Comput Biol Med 41:1110–1117CrossRefPubMed
20.
Zurück zum Zitat Schlogl A, Roberts SJ, Pfurtscheller G (2000) A criterion for adaptive autoregressive models. In: Proceedings of the 22nd annual international conference of the IEEE engineering in medicine and biology society (Cat. No. 00CH37143). IEEE, pp 1581–1582 Schlogl A, Roberts SJ, Pfurtscheller G (2000) A criterion for adaptive autoregressive models. In: Proceedings of the 22nd annual international conference of the IEEE engineering in medicine and biology society (Cat. No. 00CH37143). IEEE, pp 1581–1582
21.
Zurück zum Zitat Schneider T, Neumaier A (2001) Algorithm 808: ARfit—a Matlab package for the estimation of parameters and eigenmodes of multivariate autoregressive models. ACM Trans Math Softw (TOMS) 27:58–65CrossRef Schneider T, Neumaier A (2001) Algorithm 808: ARfit—a Matlab package for the estimation of parameters and eigenmodes of multivariate autoregressive models. ACM Trans Math Softw (TOMS) 27:58–65CrossRef
22.
Zurück zum Zitat Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:461–464CrossRef Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:461–464CrossRef
23.
Zurück zum Zitat Storti SF, Galazzo IB, Khan S, Manganotti P, Menegaz G (2017) Exploring the epileptic brain network using time-variant effective connectivity and graph theory. IEEE J Biomed Health Inform 21:1411–1421CrossRefPubMed Storti SF, Galazzo IB, Khan S, Manganotti P, Menegaz G (2017) Exploring the epileptic brain network using time-variant effective connectivity and graph theory. IEEE J Biomed Health Inform 21:1411–1421CrossRefPubMed
24.
Zurück zum Zitat Theiler J, Eubank S, Longtin A, Galdrikian B, Farmer JD (1992) Testing for nonlinearity in time series: the method of surrogate data. Phys D 58:77–94CrossRef Theiler J, Eubank S, Longtin A, Galdrikian B, Farmer JD (1992) Testing for nonlinearity in time series: the method of surrogate data. Phys D 58:77–94CrossRef
25.
Zurück zum Zitat van Mierlo P, Carrette E, Hallez H, Raedt R, Meurs A, Vandenberghe S, Van Roost D, Boon P, Staelens S, Vonck K (2013) Ictal-onset localization through connectivity analysis of intracranial EEG signals in patients with refractory epilepsy. Epilepsia 54:1409–1418CrossRefPubMed van Mierlo P, Carrette E, Hallez H, Raedt R, Meurs A, Vandenberghe S, Van Roost D, Boon P, Staelens S, Vonck K (2013) Ictal-onset localization through connectivity analysis of intracranial EEG signals in patients with refractory epilepsy. Epilepsia 54:1409–1418CrossRefPubMed
26.
Zurück zum Zitat van Mierlo P, Carrette E, Hallez H, Vonck K, Van Roost D, Boon P, Staelens S (2011) Accurate epileptogenic focus localization through time-variant functional connectivity analysis of intracranial electroencephalographic signals. Neuroimage 56:1122–1133CrossRefPubMed van Mierlo P, Carrette E, Hallez H, Vonck K, Van Roost D, Boon P, Staelens S (2011) Accurate epileptogenic focus localization through time-variant functional connectivity analysis of intracranial electroencephalographic signals. Neuroimage 56:1122–1133CrossRefPubMed
27.
Zurück zum Zitat van Mierlo P, Coito A, Vulliémoz S, Lie O (2016) Seizure onset zone localization from many invasive EEG channels using directed functional connectivity. In: Signal Processing conference (EUSIPCO), 2016 24th european. IEEE, pp 255–259 van Mierlo P, Coito A, Vulliémoz S, Lie O (2016) Seizure onset zone localization from many invasive EEG channels using directed functional connectivity. In: Signal Processing conference (EUSIPCO), 2016 24th european. IEEE, pp 255–259
28.
Zurück zum Zitat Wang G, Sun Z, Tao R, Li K, Bao G, Yan X (2016) Epileptic seizure detection based on partial directed coherence analysis. IEEE J Biomed Health Inform 20:873–879CrossRefPubMed Wang G, Sun Z, Tao R, Li K, Bao G, Yan X (2016) Epileptic seizure detection based on partial directed coherence analysis. IEEE J Biomed Health Inform 20:873–879CrossRefPubMed
29.
Zurück zum Zitat Wang J, Qiu S, Xu Y, Liu Z, Wen X, Hu X, Zhang R, Li M, Wang W, Huang R (2014) Graph theoretical analysis reveals disrupted topological properties of whole brain functional networks in temporal lobe epilepsy. Clin Neurophysiol 125:1744–1756CrossRefPubMed Wang J, Qiu S, Xu Y, Liu Z, Wen X, Hu X, Zhang R, Li M, Wang W, Huang R (2014) Graph theoretical analysis reveals disrupted topological properties of whole brain functional networks in temporal lobe epilepsy. Clin Neurophysiol 125:1744–1756CrossRefPubMed
30.
Zurück zum Zitat Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–442CrossRefPubMed Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–442CrossRefPubMed
31.
Zurück zum Zitat Wilke C, Ding L, He B (2007) An adaptive directed transfer function approach for detecting dynamic causal interactions. In: Engineering in medicine and biology society, 2007. EMBS 2007. 29th annual international conference of the IEEE. IEEE, pp 4949–4952 Wilke C, Ding L, He B (2007) An adaptive directed transfer function approach for detecting dynamic causal interactions. In: Engineering in medicine and biology society, 2007. EMBS 2007. 29th annual international conference of the IEEE. IEEE, pp 4949–4952
32.
Zurück zum Zitat Wilke C, Ding L, He B (2008) Estimation of time-varying connectivity patterns through the use of an adaptive directed transfer function. IEEE Trans Biomed Eng 55:2557–2564CrossRefPubMedPubMedCentral Wilke C, Ding L, He B (2008) Estimation of time-varying connectivity patterns through the use of an adaptive directed transfer function. IEEE Trans Biomed Eng 55:2557–2564CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Wilke C, van Drongelen W, Kohrman M, He B (2010) Neocortical seizure foci localization by means of a directed transfer function method. Epilepsia 51:564–572CrossRefPubMed Wilke C, van Drongelen W, Kohrman M, He B (2010) Neocortical seizure foci localization by means of a directed transfer function method. Epilepsia 51:564–572CrossRefPubMed
34.
Zurück zum Zitat Wilke C, Worrell G, He B (2011) Graph analysis of epileptogenic networks in human partial epilepsy. Epilepsia 52:84–93CrossRefPubMed Wilke C, Worrell G, He B (2011) Graph analysis of epileptogenic networks in human partial epilepsy. Epilepsia 52:84–93CrossRefPubMed
35.
Zurück zum Zitat Wilke C, Worrell GA, He B (2009) Analysis of epileptogenic network properties during ictal activity. Conf Proc IEEE Eng Med Biol Soc 2009:2220–2223PubMedPubMedCentral Wilke C, Worrell GA, He B (2009) Analysis of epileptogenic network properties during ictal activity. Conf Proc IEEE Eng Med Biol Soc 2009:2220–2223PubMedPubMedCentral
36.
Zurück zum Zitat Yaffe RB, Borger P, Megevand P, Groppe DM, Kramer MA, Chu CJ, Santaniello S, Meisel C, Mehta AD, Sarma SV (2015) Physiology of functional and effective networks in epilepsy. Clin Neurophysiol 126:227–236CrossRefPubMed Yaffe RB, Borger P, Megevand P, Groppe DM, Kramer MA, Chu CJ, Santaniello S, Meisel C, Mehta AD, Sarma SV (2015) Physiology of functional and effective networks in epilepsy. Clin Neurophysiol 126:227–236CrossRefPubMed
37.
Zurück zum Zitat Zhang H, Lai D, Xie C, Zhang H, Chen W (2016) Directed-transfer-function based analysis for epileptic prediction. In: Image and signal processing, biomedical engineering and informatics (CISP-BMEI), international congress. IEEE, pp 1487–1491 Zhang H, Lai D, Xie C, Zhang H, Chen W (2016) Directed-transfer-function based analysis for epileptic prediction. In: Image and signal processing, biomedical engineering and informatics (CISP-BMEI), international congress. IEEE, pp 1487–1491
38.
Zurück zum Zitat Zhang L, Liang Y, Li F, Sun H, Peng W, Du P, Si Y, Song L, Yu L, Xu P (2017) Time-varying networks of inter-ictal discharging reveal epileptogenic zone. Front Comput Neurosci 11:77CrossRefPubMedPubMedCentral Zhang L, Liang Y, Li F, Sun H, Peng W, Du P, Si Y, Song L, Yu L, Xu P (2017) Time-varying networks of inter-ictal discharging reveal epileptogenic zone. Front Comput Neurosci 11:77CrossRefPubMedPubMedCentral
Metadaten
Titel
Transient seizure onset network for localization of epileptogenic zone: effective connectivity and graph theory-based analyses of ECoG data in temporal lobe epilepsy
verfasst von
Ye Ren
Fengyu Cong
Tapani Ristaniemi
Yuping Wang
Xiaoli Li
Ruihua Zhang
Publikationsdatum
25.01.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Journal of Neurology / Ausgabe 4/2019
Print ISSN: 0340-5354
Elektronische ISSN: 1432-1459
DOI
https://doi.org/10.1007/s00415-019-09204-4

Weitere Artikel der Ausgabe 4/2019

Journal of Neurology 4/2019 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.