Skip to main content
Erschienen in: Journal of Natural Medicines 1/2017

01.01.2017 | Review

Treatment of adult and pediatric high-grade gliomas with Withaferin A: antitumor mechanisms and future perspectives

verfasst von: Megan M. Marlow, Sumedh S. Shah, Eduardo A. Véliz, Michael E. Ivan, Regina M. Graham

Erschienen in: Journal of Natural Medicines | Ausgabe 1/2017

Einloggen, um Zugang zu erhalten

Abstract

Resistance mechanisms employed by high-grade gliomas allow them to successfully evade current standard treatment of chemotherapy and radiation treatment. Withaferin A (WA), utilized in Ayurvedic medicine for centuries, is attracting attention for its antitumor capabilities. Here we review pertinent literature on WA as a high-grade glioma treatment, and discuss the cancerous mechanisms it affects. WA is relatively nontoxic and has shown potential in crossing the blood–brain barrier. WA prevents p53 alterations and inactivates overexpressed MDM2 through ARF and ROS production. Furthermore, WA upregulates Bax, inducing mitochondrial death cascades, inhibits mutated Akt, mTOR, and NF-κB pathways, and inhibits angiogenesis in tumors. Therapy with WA for high-grade gliomas is supported through the literature. Further investigation is warranted and encouraged to fully unearth its abilities against malignant gliomas.
Literatur
1.
Zurück zum Zitat Mirjalili MH, Moyano E, Bonfill M et al (2009) Steroidal lactones from Withania somnifera, an ancient plant for novel medicine. Molecules 14(7):2373–2393CrossRefPubMed Mirjalili MH, Moyano E, Bonfill M et al (2009) Steroidal lactones from Withania somnifera, an ancient plant for novel medicine. Molecules 14(7):2373–2393CrossRefPubMed
2.
Zurück zum Zitat Jayaprakasam B, Nair MG (2003) Cyclooxygenase-2 enzyme inhibitory withanolides from Withania somnifera leaves. Tetrahedron 59(6):841–849CrossRef Jayaprakasam B, Nair MG (2003) Cyclooxygenase-2 enzyme inhibitory withanolides from Withania somnifera leaves. Tetrahedron 59(6):841–849CrossRef
3.
Zurück zum Zitat Owais M, Sharad KS, Shehbaz A, Saleemuddin M (2005) Antibacterial efficacy of Withania somnifera (ashwagandha) an indigenous medicinal plant against experimental murine salmonellosis. Phytomedicine 12(3):229–235CrossRefPubMed Owais M, Sharad KS, Shehbaz A, Saleemuddin M (2005) Antibacterial efficacy of Withania somnifera (ashwagandha) an indigenous medicinal plant against experimental murine salmonellosis. Phytomedicine 12(3):229–235CrossRefPubMed
4.
Zurück zum Zitat Sangwan NS, Sabir F, Mishra S et al (2014) Withanolides from Withania somnifera Dunal: development of cellular technology and their production. Recent Pat Biotechnol 8(1):25–35CrossRefPubMed Sangwan NS, Sabir F, Mishra S et al (2014) Withanolides from Withania somnifera Dunal: development of cellular technology and their production. Recent Pat Biotechnol 8(1):25–35CrossRefPubMed
5.
Zurück zum Zitat Joshi P, Misra L, Siddique AA, Srivastava M, Kumar S, Darokar MP (2014) Epoxide group relationship with cytotoxicity in withanolide derivatives from Withania somnifera. Steroids 79:19–27CrossRefPubMed Joshi P, Misra L, Siddique AA, Srivastava M, Kumar S, Darokar MP (2014) Epoxide group relationship with cytotoxicity in withanolide derivatives from Withania somnifera. Steroids 79:19–27CrossRefPubMed
6.
Zurück zum Zitat Vanden Berghe W, Sabbe L, Kaileh M et al (2012) Molecular insight in the multifunctional activities of Withaferin A. Biochem Pharmacol 84(10):1282–1291CrossRefPubMed Vanden Berghe W, Sabbe L, Kaileh M et al (2012) Molecular insight in the multifunctional activities of Withaferin A. Biochem Pharmacol 84(10):1282–1291CrossRefPubMed
7.
Zurück zum Zitat Stupp R, Brada M, van den Bent MJ et al (2014) High-grade glioma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 25(Suppl 3):iii93–iii101CrossRefPubMed Stupp R, Brada M, van den Bent MJ et al (2014) High-grade glioma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 25(Suppl 3):iii93–iii101CrossRefPubMed
10.
11.
Zurück zum Zitat Armstrong GT, Liu Q, Yasui Y et al (2009) Long-term outcomes among adult survivors of childhood central nervous system malignancies in the Childhood Cancer Survivor Study. J Natl Cancer Inst 101(13):946–958CrossRefPubMedPubMedCentral Armstrong GT, Liu Q, Yasui Y et al (2009) Long-term outcomes among adult survivors of childhood central nervous system malignancies in the Childhood Cancer Survivor Study. J Natl Cancer Inst 101(13):946–958CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Shah SS, Dellarole A, Peterson EC, Bregy A, Komotar R, Harvey PD, Elhammady MS (2015) Long-term psychiatric outcomes in pediatric brain tumor survivors. Child Nerv Syst 31(5):653–663CrossRef Shah SS, Dellarole A, Peterson EC, Bregy A, Komotar R, Harvey PD, Elhammady MS (2015) Long-term psychiatric outcomes in pediatric brain tumor survivors. Child Nerv Syst 31(5):653–663CrossRef
13.
Zurück zum Zitat Omuro A, DeAngelis LM (2013) Glioblastoma and other malignant gliomas: a clinical review. JAMA 310(17):1842–1850CrossRefPubMed Omuro A, DeAngelis LM (2013) Glioblastoma and other malignant gliomas: a clinical review. JAMA 310(17):1842–1850CrossRefPubMed
14.
Zurück zum Zitat Nageswara Rao AA, Scafidi J, Wells EM, Packer RJ (2012) Biologically targeted therapeutics in pediatric brain tumors. Pediatr Neurol 46(4):203–211CrossRefPubMedPubMedCentral Nageswara Rao AA, Scafidi J, Wells EM, Packer RJ (2012) Biologically targeted therapeutics in pediatric brain tumors. Pediatr Neurol 46(4):203–211CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Bao S, Wu Q, McLendon RE et al (2006) Glioma stem cell promotes radioresistance by preferential activation of the DNA damage response. Nature 444(7120):756–760CrossRefPubMed Bao S, Wu Q, McLendon RE et al (2006) Glioma stem cell promotes radioresistance by preferential activation of the DNA damage response. Nature 444(7120):756–760CrossRefPubMed
16.
Zurück zum Zitat Stupp R, Mason WP, Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996CrossRefPubMed Stupp R, Mason WP, Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996CrossRefPubMed
18.
Zurück zum Zitat Cho DY, Lin SZ, Yang WK et al (2013) Targeting cancer stem cells for treatment of glioblastoma multiforme. Cell Transplant 22(4):731–739CrossRefPubMed Cho DY, Lin SZ, Yang WK et al (2013) Targeting cancer stem cells for treatment of glioblastoma multiforme. Cell Transplant 22(4):731–739CrossRefPubMed
19.
Zurück zum Zitat Johannessen TC, Bjerkvig R (2012) Molecular mechanisms of temozolomide resistance in glioblastoma multiforme. Expert Rev Anticancer Ther 12(5):635–642CrossRefPubMed Johannessen TC, Bjerkvig R (2012) Molecular mechanisms of temozolomide resistance in glioblastoma multiforme. Expert Rev Anticancer Ther 12(5):635–642CrossRefPubMed
20.
Zurück zum Zitat Dahan P, Martinez Gala J, Delmas C et al (2014) Ionizing radiations sustain glioblastoma cell dedifferentiation to a stem-like phenotype through survivin: possible involvement in radioresistance. Cell Death Dis 5:e1543CrossRefPubMedPubMedCentral Dahan P, Martinez Gala J, Delmas C et al (2014) Ionizing radiations sustain glioblastoma cell dedifferentiation to a stem-like phenotype through survivin: possible involvement in radioresistance. Cell Death Dis 5:e1543CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Johannessen TC, Bjerkvig R, Tysnes BB (2008) DNA repair and cancer stem-like cells-potential partners in glioma drug resistance. Cancer Treat Rev 34(6):558–567CrossRefPubMed Johannessen TC, Bjerkvig R, Tysnes BB (2008) DNA repair and cancer stem-like cells-potential partners in glioma drug resistance. Cancer Treat Rev 34(6):558–567CrossRefPubMed
22.
Zurück zum Zitat Guvenc H, Pavlyukov MS, Joshi K et al (2013) Impairment of glioma stem cell survival and growth by a novel inhibitor for Survivin-Ran protein complex. Clin Cancer Res 19(3):631–642CrossRefPubMed Guvenc H, Pavlyukov MS, Joshi K et al (2013) Impairment of glioma stem cell survival and growth by a novel inhibitor for Survivin-Ran protein complex. Clin Cancer Res 19(3):631–642CrossRefPubMed
23.
Zurück zum Zitat Lin CJ, Lee CC, Shih YL et al (2012) Resveratrol enhances the therapeutic effect of temozolomide against malignant glioma in vitro and in vivo by inhibiting autophagy. Free Radic Biol Med 52(2):377–391CrossRefPubMed Lin CJ, Lee CC, Shih YL et al (2012) Resveratrol enhances the therapeutic effect of temozolomide against malignant glioma in vitro and in vivo by inhibiting autophagy. Free Radic Biol Med 52(2):377–391CrossRefPubMed
24.
Zurück zum Zitat Moncrief JW, Heller KS (1967) Acylation: a proposed mechanism of action for various oncolytic agents based on model chemical systems. Cancer Res 27(8):1500–1502PubMed Moncrief JW, Heller KS (1967) Acylation: a proposed mechanism of action for various oncolytic agents based on model chemical systems. Cancer Res 27(8):1500–1502PubMed
25.
Zurück zum Zitat Thaiparambil JT, Bender L, Ganesh T et al (2011) Withaferin A inhibits breast cancer invasion and metastasis at sub-cytotoxic doses by inducing vimentin disassembly and serine 56 phosphorylation. Int J Cancer 129(11):2744–2755CrossRefPubMed Thaiparambil JT, Bender L, Ganesh T et al (2011) Withaferin A inhibits breast cancer invasion and metastasis at sub-cytotoxic doses by inducing vimentin disassembly and serine 56 phosphorylation. Int J Cancer 129(11):2744–2755CrossRefPubMed
26.
Zurück zum Zitat Misra L, Lal P, Chaurasia ND, Sangwan RS, Sinha S, Tuli R (2007) Selective reactivity of 2-mercaptoethanol with 5β,6β-epoxide in steroids from Withania somnifera. Steroids 73(3):245–251CrossRefPubMed Misra L, Lal P, Chaurasia ND, Sangwan RS, Sinha S, Tuli R (2007) Selective reactivity of 2-mercaptoethanol with 5β,6β-epoxide in steroids from Withania somnifera. Steroids 73(3):245–251CrossRefPubMed
27.
Zurück zum Zitat Gu M, Yu Y, Gunaherath GB, Gunatilaka L, Li D, Sun D (2014) Structure-activity relationship (SAR) of withanolides to inhibit Hsp90 for Its activity in pancreatic cancer cells. Invest N Drugs 32(1):68–74. doi:10.1007/s10637-013-9987-y CrossRef Gu M, Yu Y, Gunaherath GB, Gunatilaka L, Li D, Sun D (2014) Structure-activity relationship (SAR) of withanolides to inhibit Hsp90 for Its activity in pancreatic cancer cells. Invest N Drugs 32(1):68–74. doi:10.​1007/​s10637-013-9987-y CrossRef
28.
Zurück zum Zitat Grogen PT (2014) Withaferin A: a novel therapeutic approach for malignant brain tumors. PhD Thesis. University of Kansas Medical Center Grogen PT (2014) Withaferin A: a novel therapeutic approach for malignant brain tumors. PhD Thesis. University of Kansas Medical Center
29.
Zurück zum Zitat Santagata S, Xu YM, Wijeratne EM et al (2012) Using the heat-shock response to discover anticancer compounds that target protein homeostasis. ACS Chem Biol 7(2):340–349CrossRefPubMed Santagata S, Xu YM, Wijeratne EM et al (2012) Using the heat-shock response to discover anticancer compounds that target protein homeostasis. ACS Chem Biol 7(2):340–349CrossRefPubMed
30.
32.
Zurück zum Zitat Vaishnavi K, Saxena N, Shah N et al (2012) Differential activities of the two closely related withanolides, Withaferin A and Withanone: bioinformatics and experimental evidences. PLoS One 7:e44419CrossRefPubMedPubMedCentral Vaishnavi K, Saxena N, Shah N et al (2012) Differential activities of the two closely related withanolides, Withaferin A and Withanone: bioinformatics and experimental evidences. PLoS One 7:e44419CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Nishikawa Y, Okuzaki D, Fukushima K et al (2015) Withaferin A induces cell death selectively in androgen-independent prostate cancer cells but not in normal fibroblast cells. PLoS One 10(7):e0134137CrossRefPubMedPubMedCentral Nishikawa Y, Okuzaki D, Fukushima K et al (2015) Withaferin A induces cell death selectively in androgen-independent prostate cancer cells but not in normal fibroblast cells. PLoS One 10(7):e0134137CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Mandal C, Dutta A, Mallick A et al (2008) Withaferin A induces apoptosis by activating p38 mitogen-activated protein kinase signaling cascade in leukemic cells of lymphoid and myeloid origin through mitochondrial death cascade. Apoptosis 13(12):1450–1464CrossRefPubMed Mandal C, Dutta A, Mallick A et al (2008) Withaferin A induces apoptosis by activating p38 mitogen-activated protein kinase signaling cascade in leukemic cells of lymphoid and myeloid origin through mitochondrial death cascade. Apoptosis 13(12):1450–1464CrossRefPubMed
36.
Zurück zum Zitat Kakar SS, Ratajczak MZ, Powell KS, Moghadamfalahi M, Miller DM (2014) Withaferin A alone and in combination with cisplatin suppresses growth and metastasis of ovarian cancer by targeting putative cancer stem cells. PLoS One 9(9):e107596CrossRefPubMedPubMedCentral Kakar SS, Ratajczak MZ, Powell KS, Moghadamfalahi M, Miller DM (2014) Withaferin A alone and in combination with cisplatin suppresses growth and metastasis of ovarian cancer by targeting putative cancer stem cells. PLoS One 9(9):e107596CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Kim SH, Singh SV (2014) Mammary cancer chemoprevention by Withaferin A is accompanied by in vivo suppression of self-renewal of cancer stem cells. Cancer Prev Res 7(7):738–747CrossRef Kim SH, Singh SV (2014) Mammary cancer chemoprevention by Withaferin A is accompanied by in vivo suppression of self-renewal of cancer stem cells. Cancer Prev Res 7(7):738–747CrossRef
38.
Zurück zum Zitat Lee J, Hahm ER, Marcus AI, Singh SV (2015) Withaferin A inhibits experimental epithelial-mesenchymal transition in MCF-10A cells and suppresses vimentin protein level in vivo in breast tumors. Mol Carcinogen 54(6):417–429CrossRef Lee J, Hahm ER, Marcus AI, Singh SV (2015) Withaferin A inhibits experimental epithelial-mesenchymal transition in MCF-10A cells and suppresses vimentin protein level in vivo in breast tumors. Mol Carcinogen 54(6):417–429CrossRef
39.
Zurück zum Zitat Grogan PT, Sarkaria JN, Timmermann BN, Cohen MS (2014) Oxidative cytotoxic agent withaferin A resensitizes temozolomide-resistant glioblastomas via MGMT depletion and induces apoptosis through Akt/mTOR pathway inhibitory modulation. Invest N Drug 32(4):604–617CrossRef Grogan PT, Sarkaria JN, Timmermann BN, Cohen MS (2014) Oxidative cytotoxic agent withaferin A resensitizes temozolomide-resistant glioblastomas via MGMT depletion and induces apoptosis through Akt/mTOR pathway inhibitory modulation. Invest N Drug 32(4):604–617CrossRef
40.
Zurück zum Zitat BiotechWeek (2014) Investigators at university of Michigan hospital report findings in apoptosis (oxidative cytotoxic agent withaferin A resensitizes temozolomide-resistant glioblastomas via MGMT depletion and induces apoptosis through Akt/mTOR pathway inhibitory…) (2014) BiotechWeek 442. https://www.highbeam.com/doc/1G1-382765478.html BiotechWeek (2014) Investigators at university of Michigan hospital report findings in apoptosis (oxidative cytotoxic agent withaferin A resensitizes temozolomide-resistant glioblastomas via MGMT depletion and induces apoptosis through Akt/mTOR pathway inhibitory…) (2014) BiotechWeek 442. https://​www.​highbeam.​com/​doc/​1G1-382765478.​html
41.
Zurück zum Zitat Hahm E, Singh SV (2013) Withaferin A-induced apoptosis in human breast cancer cells is associated with suppression of inhibitor of apoptosis family protein expression. Cancer Lett 334(1):101–108CrossRefPubMed Hahm E, Singh SV (2013) Withaferin A-induced apoptosis in human breast cancer cells is associated with suppression of inhibitor of apoptosis family protein expression. Cancer Lett 334(1):101–108CrossRefPubMed
42.
Zurück zum Zitat Gasparini G, Weidner N, Maluta S et al (1993) Intratumoral microvessel density and p53 protein: correlation with metastasis in head and neck squamous cell carcinoma. Int J Cancer 55(5):739–744CrossRefPubMed Gasparini G, Weidner N, Maluta S et al (1993) Intratumoral microvessel density and p53 protein: correlation with metastasis in head and neck squamous cell carcinoma. Int J Cancer 55(5):739–744CrossRefPubMed
43.
Zurück zum Zitat Knizhnik AV, Roos WP, Nikolova T et al (2013) Survival and death strategies in glioma cells: autophagy, senescence and apoptosis triggered by a single type of temozolomide-induced DNA damage. PLoS One 8(1):e55665CrossRefPubMedPubMedCentral Knizhnik AV, Roos WP, Nikolova T et al (2013) Survival and death strategies in glioma cells: autophagy, senescence and apoptosis triggered by a single type of temozolomide-induced DNA damage. PLoS One 8(1):e55665CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Huse JT, Holland EC (2010) Targeting brain cancer: advances in the molecular pathology of malignant glioma and medulloblastoma. Nat Rev Cancer 10(5):319–331CrossRefPubMed Huse JT, Holland EC (2010) Targeting brain cancer: advances in the molecular pathology of malignant glioma and medulloblastoma. Nat Rev Cancer 10(5):319–331CrossRefPubMed
45.
Zurück zum Zitat Wu G, Diaz AK, Paugh BS et al (2014) The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. Nat Genet 46(5):444–450CrossRefPubMedPubMedCentral Wu G, Diaz AK, Paugh BS et al (2014) The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. Nat Genet 46(5):444–450CrossRefPubMedPubMedCentral
46.
Zurück zum Zitat Ohgaki H, Dessen P, Jourde B et al (2004) Genetic pathways to glioblastoma: a population-based study. Cancer Res 64(19):6892–6899CrossRefPubMed Ohgaki H, Dessen P, Jourde B et al (2004) Genetic pathways to glioblastoma: a population-based study. Cancer Res 64(19):6892–6899CrossRefPubMed
47.
Zurück zum Zitat Panjamurthy K, Manoharan S, Nirmal MR, Vellaichamy L (2009) Protective role of Withaferin-A on immunoexpression of p53 and bcl-2 in 7,12-dimethylbenz(a)anthracene-induced experimental oral carcinogenesis. Invest N Drug 27(5):447–452CrossRef Panjamurthy K, Manoharan S, Nirmal MR, Vellaichamy L (2009) Protective role of Withaferin-A on immunoexpression of p53 and bcl-2 in 7,12-dimethylbenz(a)anthracene-induced experimental oral carcinogenesis. Invest N Drug 27(5):447–452CrossRef
48.
Zurück zum Zitat Amin R, Karpowicz PA, Carey TE et al (2015) Evasion of anti-growth signaling: a key step in tumorigenesis and potential target for treatment and prophylaxis by natural compounds. Semin Cancer Biol 35:S55–S77. doi: 10.1016/j.semcancer.2015.02.005 Amin R, Karpowicz PA, Carey TE et al (2015) Evasion of anti-growth signaling: a key step in tumorigenesis and potential target for treatment and prophylaxis by natural compounds. Semin Cancer Biol 35:S55–S77. doi: 10.​1016/​j.​semcancer.​2015.​02.​005
49.
Zurück zum Zitat Kostecka A, Sznarkowska A, Meller K et al (2014) JNK–NQO1 axis drives TAp73-mediated tumor suppression upon oxidative and proteasomal stress. Cell Death Dis 5:e1484CrossRefPubMedPubMedCentral Kostecka A, Sznarkowska A, Meller K et al (2014) JNK–NQO1 axis drives TAp73-mediated tumor suppression upon oxidative and proteasomal stress. Cell Death Dis 5:e1484CrossRefPubMedPubMedCentral
50.
Zurück zum Zitat Stan SD, Zeng Y, Singh SV (2008) Ayurvedic medicine constituent withaferin a causes G2 and M phase cell cycle arrest in human breast cancer cells. Nutr Cancer 60(Suppl 1):151–160 Stan SD, Zeng Y, Singh SV (2008) Ayurvedic medicine constituent withaferin a causes G2 and M phase cell cycle arrest in human breast cancer cells. Nutr Cancer 60(Suppl 1):151–160
51.
Zurück zum Zitat Reifenberger G, Ichimura K, Reifenberger J, Elkahloun AG, Meltzer PS, Collins VP (1996) Refined mapping of 12q13–q15 amplicons in human malignant gliomas suggests CDK4/SAS and MDM2 as independent amplification targets. Cancer Res 56(22):5141–5145PubMed Reifenberger G, Ichimura K, Reifenberger J, Elkahloun AG, Meltzer PS, Collins VP (1996) Refined mapping of 12q13–q15 amplicons in human malignant gliomas suggests CDK4/SAS and MDM2 as independent amplification targets. Cancer Res 56(22):5141–5145PubMed
52.
Zurück zum Zitat Hurley JB, Simon MI, Teplow DB, Robishaw JD, Gilman AG (1984) Homologies between signal transducing G proteins and ras gene products. Science 226(4676):860–862CrossRefPubMed Hurley JB, Simon MI, Teplow DB, Robishaw JD, Gilman AG (1984) Homologies between signal transducing G proteins and ras gene products. Science 226(4676):860–862CrossRefPubMed
53.
Zurück zum Zitat Aizman E, Mor A, Levy A, George J, Kloog Y (2012) Ras inhibition by FTS attenuates brain tumor growth in mice by direct antitumor activity and enhanced reactivity of cytotoxic lymphocytes. Oncotarget 3(2):144–157CrossRefPubMedPubMedCentral Aizman E, Mor A, Levy A, George J, Kloog Y (2012) Ras inhibition by FTS attenuates brain tumor growth in mice by direct antitumor activity and enhanced reactivity of cytotoxic lymphocytes. Oncotarget 3(2):144–157CrossRefPubMedPubMedCentral
54.
Zurück zum Zitat Samadi AK, Tong X, Mukerji R, Zhang H, Timmermann BN, Cohen MS (2010) Withaferin A, a cytotoxic steroid from Vassobia breviflora, induces apoptosis in human head and neck squamous cell carcinoma. J Nat Prod 73(9):1476–1481CrossRefPubMedPubMedCentral Samadi AK, Tong X, Mukerji R, Zhang H, Timmermann BN, Cohen MS (2010) Withaferin A, a cytotoxic steroid from Vassobia breviflora, induces apoptosis in human head and neck squamous cell carcinoma. J Nat Prod 73(9):1476–1481CrossRefPubMedPubMedCentral
55.
Zurück zum Zitat Krakstad C, Chekenya M (2010) Survival signaling and apoptosis resistance in glioblastomas: opportunities for targeted therapeutics. Mol Cancer 9:135CrossRefPubMedPubMedCentral Krakstad C, Chekenya M (2010) Survival signaling and apoptosis resistance in glioblastomas: opportunities for targeted therapeutics. Mol Cancer 9:135CrossRefPubMedPubMedCentral
56.
Zurück zum Zitat Koduru S, Kumar R, Srinivasan S, Evers MB, Damodaran C (2010) Notch-1 inhibition by Withaferin-A: a therapeutic target against colon carcinogenesis. Mol Cancer Ther 9(1):202–210CrossRefPubMedPubMedCentral Koduru S, Kumar R, Srinivasan S, Evers MB, Damodaran C (2010) Notch-1 inhibition by Withaferin-A: a therapeutic target against colon carcinogenesis. Mol Cancer Ther 9(1):202–210CrossRefPubMedPubMedCentral
57.
Zurück zum Zitat Oh JH, Lee TJ, Kim SH et al (2008) Induction of apoptosis by withaferin A in human leukemia U937 cells through down-regulation of Akt phosphorylation. Apoptosis 13(12):1494–1504CrossRefPubMed Oh JH, Lee TJ, Kim SH et al (2008) Induction of apoptosis by withaferin A in human leukemia U937 cells through down-regulation of Akt phosphorylation. Apoptosis 13(12):1494–1504CrossRefPubMed
58.
Zurück zum Zitat Li X, Zhu F, Jiang J et al (2015) Synergistic antitumor activity of withaferin A combined with oxaliplatin triggers reactive oxygen species-mediated inactivation of the PI3K/AKT pathway in human pancreatic cancer cells. Cancer Lett 357(1):219–230CrossRefPubMed Li X, Zhu F, Jiang J et al (2015) Synergistic antitumor activity of withaferin A combined with oxaliplatin triggers reactive oxygen species-mediated inactivation of the PI3K/AKT pathway in human pancreatic cancer cells. Cancer Lett 357(1):219–230CrossRefPubMed
59.
Zurück zum Zitat Gao Q, Lei T, Ye F (2013) Therapeutic targeting of EGFR-activated metabolic pathways in glioblastoma. Expert Opin Investig Drugs 22(8):1023–1040CrossRefPubMed Gao Q, Lei T, Ye F (2013) Therapeutic targeting of EGFR-activated metabolic pathways in glioblastoma. Expert Opin Investig Drugs 22(8):1023–1040CrossRefPubMed
60.
Zurück zum Zitat Lee JJ, Kim BC, Park MJ et al (2011) PTEN status switches cell fate between premature senescence and apoptosis in glioma exposed to ionizing radiation. Cell Death Differ 18(4):666–677CrossRefPubMed Lee JJ, Kim BC, Park MJ et al (2011) PTEN status switches cell fate between premature senescence and apoptosis in glioma exposed to ionizing radiation. Cell Death Differ 18(4):666–677CrossRefPubMed
61.
Zurück zum Zitat Gilmore TD (2006) Introduction to NF-kappaB: players, pathways, perspectives. Oncogene 25(51):6680–6684CrossRefPubMed Gilmore TD (2006) Introduction to NF-kappaB: players, pathways, perspectives. Oncogene 25(51):6680–6684CrossRefPubMed
62.
Zurück zum Zitat Karin M (1999) How NFkB is activated: the role of the IkB kinase (IKK) complex. Oncogene 18(49):6867–6874CrossRefPubMed Karin M (1999) How NFkB is activated: the role of the IkB kinase (IKK) complex. Oncogene 18(49):6867–6874CrossRefPubMed
63.
Zurück zum Zitat Tergaonkar V (2006) NFkB pathway: a good signaling paradigm and therapeutic target. Int J Biochem Cell Biol 38(10):1647–1653CrossRefPubMed Tergaonkar V (2006) NFkB pathway: a good signaling paradigm and therapeutic target. Int J Biochem Cell Biol 38(10):1647–1653CrossRefPubMed
64.
Zurück zum Zitat Rayet B, Gelinas C (1999) Aberrant rel/nfkb genes and activity in human cancer. Oncogene 18(49):6938–6947CrossRefPubMed Rayet B, Gelinas C (1999) Aberrant rel/nfkb genes and activity in human cancer. Oncogene 18(49):6938–6947CrossRefPubMed
65.
Zurück zum Zitat Kaileh M, Berghe WV, Heyerick A et al (2007) Withaferin A strongly elicits IkB kinase b hyperphosphorylation, concomitant with potent inhibition of its kinase activity. J Biol Chem 282(7):4253–4264CrossRefPubMed Kaileh M, Berghe WV, Heyerick A et al (2007) Withaferin A strongly elicits IkB kinase b hyperphosphorylation, concomitant with potent inhibition of its kinase activity. J Biol Chem 282(7):4253–4264CrossRefPubMed
66.
Zurück zum Zitat Yokota Y, Bargagna-Mohan P, Ravindranath PP, Kim KB, Mohan R (2006) Development of withaferin A analogs as probes of angiogenesis. Bioorg Med Chem Lett 16(10):2603–2607CrossRefPubMedPubMedCentral Yokota Y, Bargagna-Mohan P, Ravindranath PP, Kim KB, Mohan R (2006) Development of withaferin A analogs as probes of angiogenesis. Bioorg Med Chem Lett 16(10):2603–2607CrossRefPubMedPubMedCentral
67.
Zurück zum Zitat Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86(3):353–364CrossRefPubMed Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86(3):353–364CrossRefPubMed
68.
Zurück zum Zitat Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285(21):1182–1186CrossRefPubMed Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285(21):1182–1186CrossRefPubMed
69.
Zurück zum Zitat Reardon DA, Wen PY, Desjardins A, Batchelor TT, Vredenburgh JJ (2008) Glioblastoma multiforme: an emerging paradigm of anti-VEGF therapy. Expert Opin Biol Ther 8(4):541–553CrossRefPubMedPubMedCentral Reardon DA, Wen PY, Desjardins A, Batchelor TT, Vredenburgh JJ (2008) Glioblastoma multiforme: an emerging paradigm of anti-VEGF therapy. Expert Opin Biol Ther 8(4):541–553CrossRefPubMedPubMedCentral
70.
Zurück zum Zitat Saha S, Islam MK, Shilpi JA, Hasan S (2013) Inhibition of VEGF: a novel mechanism to control angiogenesis by Withania somnifera’s key metabolite Withaferin A. In Silico Pharmacol 1:11CrossRefPubMedPubMedCentral Saha S, Islam MK, Shilpi JA, Hasan S (2013) Inhibition of VEGF: a novel mechanism to control angiogenesis by Withania somnifera’s key metabolite Withaferin A. In Silico Pharmacol 1:11CrossRefPubMedPubMedCentral
71.
Zurück zum Zitat Frumovitz M, Sood AK (2007) Vascular endothelial growth factor (VEGF) pathway as a therapeutic target in gynaecologic malignancies. Gynecol Oncol 104(3):768–778CrossRefPubMedPubMedCentral Frumovitz M, Sood AK (2007) Vascular endothelial growth factor (VEGF) pathway as a therapeutic target in gynaecologic malignancies. Gynecol Oncol 104(3):768–778CrossRefPubMedPubMedCentral
72.
Zurück zum Zitat Fack F, Espedal H, Keunen O et al (2015) Bevacizumab treatment induces metabolic adaptation toward anaerobic metabolism in glioblastomas. Acta Neuropathol 129(1):115–131CrossRefPubMed Fack F, Espedal H, Keunen O et al (2015) Bevacizumab treatment induces metabolic adaptation toward anaerobic metabolism in glioblastomas. Acta Neuropathol 129(1):115–131CrossRefPubMed
73.
74.
Zurück zum Zitat Gao R, Shah N, Lee JS et al (2014) Withanone-rich combination of Ashwagandha withanolides restricts metastasis and angiogenesis through hnRNP-K. Mol Cancer Ther 12:2930–2940CrossRef Gao R, Shah N, Lee JS et al (2014) Withanone-rich combination of Ashwagandha withanolides restricts metastasis and angiogenesis through hnRNP-K. Mol Cancer Ther 12:2930–2940CrossRef
75.
Zurück zum Zitat Mohan R, Hammers HJ, Bargagna-Mohan P et al (2004) Withaferin A is a potent inhibitor of angiogenesis. Angiogenesis 7(2):115–122CrossRefPubMed Mohan R, Hammers HJ, Bargagna-Mohan P et al (2004) Withaferin A is a potent inhibitor of angiogenesis. Angiogenesis 7(2):115–122CrossRefPubMed
76.
Zurück zum Zitat Bargagna-Mohan P, Hamza A, Kim Y et al (2007) The tumor Inhibitor and antiangiogenic agent Withaferin A targets the intermediate filament protein vimentin. Chem Biol 14(6):623–634CrossRefPubMedPubMedCentral Bargagna-Mohan P, Hamza A, Kim Y et al (2007) The tumor Inhibitor and antiangiogenic agent Withaferin A targets the intermediate filament protein vimentin. Chem Biol 14(6):623–634CrossRefPubMedPubMedCentral
77.
Zurück zum Zitat Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674CrossRefPubMed Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674CrossRefPubMed
78.
Zurück zum Zitat Grogan PT, Sleder KD, Samadi AK, Zhang H, Timmermann BN, Cohen MS (2013) Cytotoxicity of withaferin A in glioblastomas involves induction of an oxidative stress-mediated heat shock response while altering Akt/mTOR and MAPK signaling pathways. Invest N Drug 31(3):545–557 Grogan PT, Sleder KD, Samadi AK, Zhang H, Timmermann BN, Cohen MS (2013) Cytotoxicity of withaferin A in glioblastomas involves induction of an oxidative stress-mediated heat shock response while altering Akt/mTOR and MAPK signaling pathways. Invest N Drug 31(3):545–557
79.
Zurück zum Zitat Shah N, Kataria H, Kaul SC, Ishii T, Kaur G, Wadhwa R (2009) Effect of the alcoholic extract of Ashwagandha leaves and its components on proliferation, migration, and differentiation of glioblastoma cells: combinational approach for enhanced differentiation. Cancer Sci 100(9):1740–1747 Shah N, Kataria H, Kaul SC, Ishii T, Kaur G, Wadhwa R (2009) Effect of the alcoholic extract of Ashwagandha leaves and its components on proliferation, migration, and differentiation of glioblastoma cells: combinational approach for enhanced differentiation. Cancer Sci 100(9):1740–1747
Metadaten
Titel
Treatment of adult and pediatric high-grade gliomas with Withaferin A: antitumor mechanisms and future perspectives
verfasst von
Megan M. Marlow
Sumedh S. Shah
Eduardo A. Véliz
Michael E. Ivan
Regina M. Graham
Publikationsdatum
01.01.2017
Verlag
Springer Japan
Erschienen in
Journal of Natural Medicines / Ausgabe 1/2017
Print ISSN: 1340-3443
Elektronische ISSN: 1861-0293
DOI
https://doi.org/10.1007/s11418-016-1020-2

Weitere Artikel der Ausgabe 1/2017

Journal of Natural Medicines 1/2017 Zur Ausgabe