Skip to main content
Erschienen in: Current Hypertension Reports 6/2017

01.06.2017 | Hypertension and Obesity (E Reisin, Section Editor)

Understanding the Two Faces of Low-Salt Intake

verfasst von: Branko Braam, Xiaohua Huang, William A. Cupples, Shereen M. Hamza

Erschienen in: Current Hypertension Reports | Ausgabe 6/2017

Einloggen, um Zugang zu erhalten

Abstract

Fierce debate has developed whether low-sodium intake, like high-sodium intake, could be associated with adverse outcome. The debate originates in earlier epidemiological studies associating high-sodium intake with high blood pressure and more recent studies demonstrating a higher cardiovascular event rate with both low- and high-sodium intake. This brings into question whether we entirely understand the consequences of high- and (very) low-sodium intake for the systemic hemodynamics, the kidney function, the vascular wall, the immune system, and the brain. Evolutionarily, sodium retention mechanisms in the context of low dietary sodium provided a survival advantage and are highly conserved, exemplified by the renin-angiotensin system. What is the potential for this sodium-retaining mechanism to cause harm? In this paper, we will consider current views on how a sodium load is handled, visiting aspects including the effect of sodium on the vessel wall, the sympathetic nervous system, the brain renin-angiotensin system, the skin as “third compartment” coupling to vascular endothelial growth factor C, and the kidneys. From these perspectives, several mechanisms can be envisioned whereby a low-sodium diet could potentially cause harm, including the renin-angiotensin system and the sympathetic nervous system. Altogether, the uncertainties preclude a unifying model or practical clinical guidance regarding the effects of a low-sodium diet for an individual. There is a very strong need for fundamental and translational studies to enhance the understanding of the potential adverse consequences of low-salt intake as an initial step to facilitate better clinical guidance.
Literatur
1.
Zurück zum Zitat Stolarz-Skrzypek K, Kuznetsova T, Thijs L, Tikhonoff V, Seidlerova J, Richart T, et al. Fatal and nonfatal outcomes, incidence of hypertension, and blood pressure changes in relation to urinary sodium excretion. JAMA. 2011;305(17):1777–85. doi:10.1001/jama.2011.574.PubMedCrossRef Stolarz-Skrzypek K, Kuznetsova T, Thijs L, Tikhonoff V, Seidlerova J, Richart T, et al. Fatal and nonfatal outcomes, incidence of hypertension, and blood pressure changes in relation to urinary sodium excretion. JAMA. 2011;305(17):1777–85. doi:10.​1001/​jama.​2011.​574.PubMedCrossRef
2.
Zurück zum Zitat Intersalt Cooperative Research Group. Intersalt: an international study of electrolyte excretion and blood pressure. Results for 24 hour urinary sodium and potassium excretion. BMJ. 1988;297(6644):319–28. Intersalt Cooperative Research Group. Intersalt: an international study of electrolyte excretion and blood pressure. Results for 24 hour urinary sodium and potassium excretion. BMJ. 1988;297(6644):319–28.
4.
Zurück zum Zitat Guyton AC. Renal function curve—a key to understanding the pathogenesis of hypertension. Hypertension. 1987;10(1):1–6.PubMedCrossRef Guyton AC. Renal function curve—a key to understanding the pathogenesis of hypertension. Hypertension. 1987;10(1):1–6.PubMedCrossRef
5.
Zurück zum Zitat O'Donnell M, Mente A, Rangarajan S, McQueen MJ, Wang X, Liu L, et al. Urinary sodium and potassium excretion, mortality, and cardiovascular events. N Engl J Med. 2014;371(7):612–23. doi:10.1056/NEJMoa1311889.PubMedCrossRef O'Donnell M, Mente A, Rangarajan S, McQueen MJ, Wang X, Liu L, et al. Urinary sodium and potassium excretion, mortality, and cardiovascular events. N Engl J Med. 2014;371(7):612–23. doi:10.​1056/​NEJMoa1311889.PubMedCrossRef
6.
Zurück zum Zitat Campese VM. Salt sensitivity in hypertension. Renal and cardiovascular implications. Hypertension. 1994;23(4):531–50.PubMedCrossRef Campese VM. Salt sensitivity in hypertension. Renal and cardiovascular implications. Hypertension. 1994;23(4):531–50.PubMedCrossRef
7.
Zurück zum Zitat Sacks FM, Svetkey LP, Vollmer WM, Appel LJ, Bray GA, Harsha D, et al. Effects on blood pressure of reduced dietary sodium and the dietary approaches to stop hypertension (DASH) diet. DASH-sodium collaborative research group. N Engl J Med. 2001;344(1):3–10. doi:10.1056/NEJM200101043440101.PubMedCrossRef Sacks FM, Svetkey LP, Vollmer WM, Appel LJ, Bray GA, Harsha D, et al. Effects on blood pressure of reduced dietary sodium and the dietary approaches to stop hypertension (DASH) diet. DASH-sodium collaborative research group. N Engl J Med. 2001;344(1):3–10. doi:10.​1056/​NEJM200101043440​101.PubMedCrossRef
8.
Zurück zum Zitat Whelton PK, Appel L, Charleston J, et al. The effects of nonpharmacologic interventions on blood pressure of persons with high normal levels. Results of the Trials of Hypertension Prevention, Phase I. JAMA. 1992;267(9):1213–20. doi:10.1001/jama.1992.03480090061028. Whelton PK, Appel L, Charleston J, et al. The effects of nonpharmacologic interventions on blood pressure of persons with high normal levels. Results of the Trials of Hypertension Prevention, Phase I. JAMA. 1992;267(9):1213–20. doi:10.​1001/​jama.​1992.​03480090061028.
9.
Zurück zum Zitat The Trials of Hypertension Prevention Collaborative Research Group. Effects of weight loss and sodium reduction intervention on blood pressure and hypertension incidence in overweight people with high-normal blood pressure. The Trials of Hypertension Prevention, phase II. Arch Intern Med. 1997;157(6):657–67. doi:10.1001/archinte.1997.00440270105009. The Trials of Hypertension Prevention Collaborative Research Group. Effects of weight loss and sodium reduction intervention on blood pressure and hypertension incidence in overweight people with high-normal blood pressure. The Trials of Hypertension Prevention, phase II. Arch Intern Med. 1997;157(6):657–67. doi:10.​1001/​archinte.​1997.​00440270105009.
10.
Zurück zum Zitat •• Cook NR, Cutler JA, Obarzanek E, Buring JE, Rexrode KM, Kumanyika SK, et al. Long term effects of dietary sodium reduction on cardiovascular disease outcomes: observational follow-up of the trials of hypertension prevention (TOHP). BMJ. 2007;334(7599):885–8. doi:10.1136/bmj.39147.604896.55. This study shows that intensive lifestyle interventions including a low sodium diet are effective in reducing long term cardiovascular events. PubMedPubMedCentralCrossRef •• Cook NR, Cutler JA, Obarzanek E, Buring JE, Rexrode KM, Kumanyika SK, et al. Long term effects of dietary sodium reduction on cardiovascular disease outcomes: observational follow-up of the trials of hypertension prevention (TOHP). BMJ. 2007;334(7599):885–8. doi:10.​1136/​bmj.​39147.​604896.​55. This study shows that intensive lifestyle interventions including a low sodium diet are effective in reducing long term cardiovascular events. PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Taylor RS, Ashton KE, Moxham T, Hooper L, Ebrahim S. Reduced dietary salt for the prevention of cardiovascular disease: a meta-analysis of randomized controlled trials (Cochrane review). Am J Hypertens. 2011;24(8):843–53. doi:10.1038/ajh.2011.115.PubMedCrossRef Taylor RS, Ashton KE, Moxham T, Hooper L, Ebrahim S. Reduced dietary salt for the prevention of cardiovascular disease: a meta-analysis of randomized controlled trials (Cochrane review). Am J Hypertens. 2011;24(8):843–53. doi:10.​1038/​ajh.​2011.​115.PubMedCrossRef
15.
Zurück zum Zitat •• Law MR, Frost CD, Wald NJ. By how much does dietary salt reduction lower blood pressure? I—analysis of observational data among populations. BMJ. 1991;302(6780):811–5. Describes strking differences among countries regarding daily sodium intake. PubMedPubMedCentralCrossRef •• Law MR, Frost CD, Wald NJ. By how much does dietary salt reduction lower blood pressure? I—analysis of observational data among populations. BMJ. 1991;302(6780):811–5. Describes strking differences among countries regarding daily sodium intake. PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Frost CD, Law MR, Wald NJ. By how much does dietary salt reduction lower blood pressure? II—analysis of observational data within populations. BMJ. 1991;302(6780):815–8.PubMedPubMedCentralCrossRef Frost CD, Law MR, Wald NJ. By how much does dietary salt reduction lower blood pressure? II—analysis of observational data within populations. BMJ. 1991;302(6780):815–8.PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Law MR, Frost CD, Wald NJ. By how much does dietary salt reduction lower blood pressure? III—analysis of data from trials of salt reduction. BMJ. 1991;302(6780):819–24.PubMedPubMedCentralCrossRef Law MR, Frost CD, Wald NJ. By how much does dietary salt reduction lower blood pressure? III—analysis of data from trials of salt reduction. BMJ. 1991;302(6780):819–24.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Castiglioni P, Parati G, Lazzeroni D, Bini M, Faini A, Brambilla L et al. Hemodynamic and Autonomic Response to Different Salt Intakes in Normotensive Individuals. J Am Heart Assoc. 2016;5(8):e003736. doi:10.1161/JAHA.116.003736. Castiglioni P, Parati G, Lazzeroni D, Bini M, Faini A, Brambilla L et al. Hemodynamic and Autonomic Response to Different Salt Intakes in Normotensive Individuals. J Am Heart Assoc. 2016;5(8):e003736. doi:10.​1161/​JAHA.​116.​003736.
20.
Zurück zum Zitat Dahl LK, Heine M. Primary role of renal homografts in setting chronic blood pressure levels in rats. Circ Res. 1975;36(6):692–6.PubMedCrossRef Dahl LK, Heine M. Primary role of renal homografts in setting chronic blood pressure levels in rats. Circ Res. 1975;36(6):692–6.PubMedCrossRef
21.
Zurück zum Zitat Morgan DA, DiBona GF, Mark AL. Effects of interstrain renal transplantation on NaCl-induced hypertension in Dahl rats. Hypertension. 1990;15(4):436–42.PubMedCrossRef Morgan DA, DiBona GF, Mark AL. Effects of interstrain renal transplantation on NaCl-induced hypertension in Dahl rats. Hypertension. 1990;15(4):436–42.PubMedCrossRef
23.
Zurück zum Zitat • Smallegange C, Hale TM, Bushfield TL, Adams MA. Persistent lowering of pressure by transplanting kidneys from adult spontaneously hypertensive rats treated with brief antihypertensive therapy. Hypertension. 2004;44(1):89–94. doi:10.1161/01.HYP.0000129539.88028.e6. An Exreme example of 'hypertension follows the kidney': temporary treatment of hypertensive rats resulted in a long term decrease in BP, and transplantaion of the kidneys into other hypertensive animals decreased their BP. PubMedCrossRef • Smallegange C, Hale TM, Bushfield TL, Adams MA. Persistent lowering of pressure by transplanting kidneys from adult spontaneously hypertensive rats treated with brief antihypertensive therapy. Hypertension. 2004;44(1):89–94. doi:10.​1161/​01.​HYP.​0000129539.​88028.​e6. An Exreme example of 'hypertension follows the kidney': temporary treatment of hypertensive rats resulted in a long term decrease in BP, and transplantaion of the kidneys into other hypertensive animals decreased their BP. PubMedCrossRef
24.
Zurück zum Zitat He FJ, Li J, Macgregor GA. Effect of longer term modest salt reduction on blood pressure: Cochrane systematic review and meta-analysis of randomised trials. BMJ. 2013;346:f1325. doi:10.1136/bmj.f1325.PubMedCrossRef He FJ, Li J, Macgregor GA. Effect of longer term modest salt reduction on blood pressure: Cochrane systematic review and meta-analysis of randomised trials. BMJ. 2013;346:f1325. doi:10.​1136/​bmj.​f1325.PubMedCrossRef
26.
Zurück zum Zitat Heck GL, Mierson S, DeSimone JA. Salt taste transduction occurs through an amiloride-sensitive sodium transport pathway. Science. 1984;223(4634):403–5.PubMedCrossRef Heck GL, Mierson S, DeSimone JA. Salt taste transduction occurs through an amiloride-sensitive sodium transport pathway. Science. 1984;223(4634):403–5.PubMedCrossRef
28.
Zurück zum Zitat Okiyama A, Torii K, Tordoff MG. Increased NaCl preference of rats fed low-protein diet. Am J Phys. 1996;270(6 Pt 2):R1189–96. Okiyama A, Torii K, Tordoff MG. Increased NaCl preference of rats fed low-protein diet. Am J Phys. 1996;270(6 Pt 2):R1189–96.
29.
Zurück zum Zitat Pereira-Derderian DT, Vendramini RC, Menani JV, De Luca LA, Jr. Water deprivation-induced sodium appetite and differential expression of encephalic c-Fos immunoreactivity in the spontaneously hypertensive rat. Am J Physiol Regul Integr Comp Physiol. 2010;298(5):R1298–309. doi:10.1152/ajpregu.00359.2009.PubMedCrossRef Pereira-Derderian DT, Vendramini RC, Menani JV, De Luca LA, Jr. Water deprivation-induced sodium appetite and differential expression of encephalic c-Fos immunoreactivity in the spontaneously hypertensive rat. Am J Physiol Regul Integr Comp Physiol. 2010;298(5):R1298–309. doi:10.​1152/​ajpregu.​00359.​2009.PubMedCrossRef
31.
Zurück zum Zitat Johnson AK, Gross PM. Sensory circumventricular organs and brain homeostatic pathways. FASEB J. 1993;7(8):678–86.PubMed Johnson AK, Gross PM. Sensory circumventricular organs and brain homeostatic pathways. FASEB J. 1993;7(8):678–86.PubMed
32.
Zurück zum Zitat Tamura R, Norgren R. Repeated sodium depletion affects gustatory neural responses in the nucleus of the solitary tract of rats. Am J Phys. 1997;273(4 Pt 2):R1381–91. Tamura R, Norgren R. Repeated sodium depletion affects gustatory neural responses in the nucleus of the solitary tract of rats. Am J Phys. 1997;273(4 Pt 2):R1381–91.
33.
Zurück zum Zitat Fitzsimons JT. Angiotensin, thirst, and sodium appetite. Physiol Rev. 1998;78(3):583–686.PubMed Fitzsimons JT. Angiotensin, thirst, and sodium appetite. Physiol Rev. 1998;78(3):583–686.PubMed
35.
Zurück zum Zitat Nicholls MG, Kiowski W, Zweifler AJ, Julius S, Schork MA, Greenhouse J. Plasma norepinephrine variations with dietary sodium intake. Hypertension. 1980;2(1):29–32.PubMedCrossRef Nicholls MG, Kiowski W, Zweifler AJ, Julius S, Schork MA, Greenhouse J. Plasma norepinephrine variations with dietary sodium intake. Hypertension. 1980;2(1):29–32.PubMedCrossRef
37.
Zurück zum Zitat Spencer AG, Labonte ED, Rosenbaum DP, Plato CF, Carreras CW, Leadbetter MR, et al. Intestinal inhibition of the Na+/H+ exchanger 3 prevents cardiorenal damage in rats and inhibits Na+ uptake in humans. Sci Transl Med. 2014;6(227):227ra36. doi:10.1126/scitranslmed.3007790.PubMedCrossRef Spencer AG, Labonte ED, Rosenbaum DP, Plato CF, Carreras CW, Leadbetter MR, et al. Intestinal inhibition of the Na+/H+ exchanger 3 prevents cardiorenal damage in rats and inhibits Na+ uptake in humans. Sci Transl Med. 2014;6(227):227ra36. doi:10.​1126/​scitranslmed.​3007790.PubMedCrossRef
38.
Zurück zum Zitat Cho JH, Musch MW, Bookstein CM, McSwine RL, Rabenau K, Chang EB. Aldosterone stimulates intestinal Na+ absorption in rats by increasing NHE3 expression of the proximal colon. Am J Phys. 1998;274(3 Pt 1):C586–94. Cho JH, Musch MW, Bookstein CM, McSwine RL, Rabenau K, Chang EB. Aldosterone stimulates intestinal Na+ absorption in rats by increasing NHE3 expression of the proximal colon. Am J Phys. 1998;274(3 Pt 1):C586–94.
40.
Zurück zum Zitat Johansson S, Rosenbaum DP, Knutsson M, Leonsson-Zachrisson M. A phase 1 study of the safety, tolerability, pharmacodynamics, and pharmacokinetics of tenapanor in healthy Japanese volunteers. Clin Exp Nephrol. 2016; doi:10.1007/s10157-016-1302-8.PubMed Johansson S, Rosenbaum DP, Knutsson M, Leonsson-Zachrisson M. A phase 1 study of the safety, tolerability, pharmacodynamics, and pharmacokinetics of tenapanor in healthy Japanese volunteers. Clin Exp Nephrol. 2016; doi:10.​1007/​s10157-016-1302-8.PubMed
41.
Zurück zum Zitat • Guyton AC. Dominant role of the kidneys and accessory role of whole-body autoregulation in the pathogenesis of hypertension. Am J Hypertens. 1989;2(7):575–85. All time classic on the BP regulation. PubMedCrossRef • Guyton AC. Dominant role of the kidneys and accessory role of whole-body autoregulation in the pathogenesis of hypertension. Am J Hypertens. 1989;2(7):575–85. All time classic on the BP regulation. PubMedCrossRef
42.
Zurück zum Zitat Kurtz TW, DiCarlo SE, Pravenec M, Schmidlin O, Tanaka M, Morris RC Jr. An alternative hypothesis to the widely held view that renal excretion of sodium accounts for resistance to salt-induced hypertension. Kidney Int. 2016;90(5):965–73. doi:10.1016/j.kint.2016.05.032.PubMedCrossRef Kurtz TW, DiCarlo SE, Pravenec M, Schmidlin O, Tanaka M, Morris RC Jr. An alternative hypothesis to the widely held view that renal excretion of sodium accounts for resistance to salt-induced hypertension. Kidney Int. 2016;90(5):965–73. doi:10.​1016/​j.​kint.​2016.​05.​032.PubMedCrossRef
43.
Zurück zum Zitat Titze J, Shakibaei M, Schafflhuber M, Schulze-Tanzil G, Porst M, Schwind KH, et al. Glycosaminoglycan polymerization may enable osmotically inactive Na+ storage in the skin. Am J Physiol Heart Circ Physiol. 2004;287(1):H203–8. doi:10.1152/ajpheart.01237.2003.PubMedCrossRef Titze J, Shakibaei M, Schafflhuber M, Schulze-Tanzil G, Porst M, Schwind KH, et al. Glycosaminoglycan polymerization may enable osmotically inactive Na+ storage in the skin. Am J Physiol Heart Circ Physiol. 2004;287(1):H203–8. doi:10.​1152/​ajpheart.​01237.​2003.PubMedCrossRef
45.
Zurück zum Zitat •• Machnik A, Neuhofer W, Jantsch J, Dahlmann A, Tammela T, Machura K, et al. Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nat Med. 2009;15(5):545–52. doi:10.1038/nm.1960. This paper demonstrates a link between sodium loading, sodium storage in the skin and blood pressure regulation via VEGF-C. PubMedCrossRef •• Machnik A, Neuhofer W, Jantsch J, Dahlmann A, Tammela T, Machura K, et al. Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nat Med. 2009;15(5):545–52. doi:10.​1038/​nm.​1960. This paper demonstrates a link between sodium loading, sodium storage in the skin and blood pressure regulation via VEGF-C. PubMedCrossRef
46.
Zurück zum Zitat Braam B. Renal endothelial and macula densa NOS: integrated response to changes in extracellular fluid volume. Am J Phys. 1999;276(6 Pt 2):R1551–61. Braam B. Renal endothelial and macula densa NOS: integrated response to changes in extracellular fluid volume. Am J Phys. 1999;276(6 Pt 2):R1551–61.
48.
Zurück zum Zitat Wong F, Logan A, Blendis L. The effect of varying sodium intake on blood volume, forearm blood flow and vascular responsiveness to sympathetic stimulation in pre-ascitic cirrhosis. Clin Invest Med. 1996;19(3):184–94.PubMed Wong F, Logan A, Blendis L. The effect of varying sodium intake on blood volume, forearm blood flow and vascular responsiveness to sympathetic stimulation in pre-ascitic cirrhosis. Clin Invest Med. 1996;19(3):184–94.PubMed
49.
Zurück zum Zitat Doi Y, Nose H, Morimoto T. Changes in Na concentration in cerebrospinal fluid during acute hypernatremia and their effect on drinking in juvenile rats. Physiol Behav. 1992;52(3):499–504.PubMedCrossRef Doi Y, Nose H, Morimoto T. Changes in Na concentration in cerebrospinal fluid during acute hypernatremia and their effect on drinking in juvenile rats. Physiol Behav. 1992;52(3):499–504.PubMedCrossRef
50.
Zurück zum Zitat Andersson B. Regulation of water intake. Physiol Rev. 1978;58(3):582.PubMed Andersson B. Regulation of water intake. Physiol Rev. 1978;58(3):582.PubMed
51.
Zurück zum Zitat Weisinger RS, Considine P, Denton DA, Leksell L, McKinley MJ, Mouw DR, et al. Role of sodium concentration of the cerebrospinal fluid in the salt appetite of sheep. Am J Phys. 1982;242(1):R51–63. Weisinger RS, Considine P, Denton DA, Leksell L, McKinley MJ, Mouw DR, et al. Role of sodium concentration of the cerebrospinal fluid in the salt appetite of sheep. Am J Phys. 1982;242(1):R51–63.
52.
Zurück zum Zitat Weisinger RS, Considine P, Denton DA, McKinley MJ. Rapid effect of change in cerebrospinal fluid sodium concentration on salt appetite. Nature. 1979;280(5722):490–1.PubMedCrossRef Weisinger RS, Considine P, Denton DA, McKinley MJ. Rapid effect of change in cerebrospinal fluid sodium concentration on salt appetite. Nature. 1979;280(5722):490–1.PubMedCrossRef
53.
Zurück zum Zitat Chiaraviglio E, Perez Guaita MF. The effect of intracerebroventricular hypertonic infusion on sodium appetite in rats after peritoneal dialysis. Physiol Behav. 1986;37(5):695–9.PubMedCrossRef Chiaraviglio E, Perez Guaita MF. The effect of intracerebroventricular hypertonic infusion on sodium appetite in rats after peritoneal dialysis. Physiol Behav. 1986;37(5):695–9.PubMedCrossRef
55.
56.
Zurück zum Zitat McKinley MJ, Denton DA, Weisinger RS. Sensors for antidiuresis and thirst—osmoreceptors or CSF sodium detectors? Brain Res. 1978;141(1):89–103.PubMedCrossRef McKinley MJ, Denton DA, Weisinger RS. Sensors for antidiuresis and thirst—osmoreceptors or CSF sodium detectors? Brain Res. 1978;141(1):89–103.PubMedCrossRef
58.
Zurück zum Zitat Andersson B. Thirst--and brain control of water balance. Am Sci. 1971;59(4):408–15.PubMed Andersson B. Thirst--and brain control of water balance. Am Sci. 1971;59(4):408–15.PubMed
59.
Zurück zum Zitat Fitzsimons JT. Bengt Andersson's pioneering demonstration of the hypothalamic "drinking area" and the subsequent osmoreceptor/sodium receptor controversy. Acta Physiol Scand Suppl. 1989;583:15–25.PubMed Fitzsimons JT. Bengt Andersson's pioneering demonstration of the hypothalamic "drinking area" and the subsequent osmoreceptor/sodium receptor controversy. Acta Physiol Scand Suppl. 1989;583:15–25.PubMed
60.
Zurück zum Zitat Watanabe E, Fujikawa A, Matsunaga H, Yasoshima Y, Sako N, Yamamoto T, et al. Nav2/NaG channel is involved in control of salt-intake behavior in the CNS. J Neurosci. 2000;20(20):7743–51.PubMed Watanabe E, Fujikawa A, Matsunaga H, Yasoshima Y, Sako N, Yamamoto T, et al. Nav2/NaG channel is involved in control of salt-intake behavior in the CNS. J Neurosci. 2000;20(20):7743–51.PubMed
61.
Zurück zum Zitat Watanabe E, Hiyama TY, Shimizu H, Kodama R, Hayashi N, Miyata S, et al. Sodium-level-sensitive sodium channel Na(x) is expressed in glial laminate processes in the sensory circumventricular organs. Am J Physiol Regul Integr Comp Physiol. 2006;290(3):R568–76. doi:10.1152/ajpregu.00618.2005.PubMedCrossRef Watanabe E, Hiyama TY, Shimizu H, Kodama R, Hayashi N, Miyata S, et al. Sodium-level-sensitive sodium channel Na(x) is expressed in glial laminate processes in the sensory circumventricular organs. Am J Physiol Regul Integr Comp Physiol. 2006;290(3):R568–76. doi:10.​1152/​ajpregu.​00618.​2005.PubMedCrossRef
63.
Zurück zum Zitat Hiyama TY, Watanabe E, Ono K, Inenaga K, Tamkun MM, Yoshida S, et al. Na(x) channel involved in CNS sodium-level sensing. Nat Neurosci. 2002;5(6):511–2. doi:10.1038/nn856.PubMedCrossRef Hiyama TY, Watanabe E, Ono K, Inenaga K, Tamkun MM, Yoshida S, et al. Na(x) channel involved in CNS sodium-level sensing. Nat Neurosci. 2002;5(6):511–2. doi:10.​1038/​nn856.PubMedCrossRef
66.
Zurück zum Zitat Richter CP. Increased salt appetite in adrenalectomized rats. Am J Phys. 1936;115:155–61. Richter CP. Increased salt appetite in adrenalectomized rats. Am J Phys. 1936;115:155–61.
67.
Zurück zum Zitat Richter CP, Eckert JF. Mineral metabolism of adrenalectomized rats studied by the appetite method. Endocrinology. 1938;22:214–24.CrossRef Richter CP, Eckert JF. Mineral metabolism of adrenalectomized rats studied by the appetite method. Endocrinology. 1938;22:214–24.CrossRef
68.
Zurück zum Zitat Wilkins L, Richter CP. A great craving for salt by a child with cortico-adrenal insufficiency. J Am Med Assoc. 1940;114:866–8. Wilkins L, Richter CP. A great craving for salt by a child with cortico-adrenal insufficiency. J Am Med Assoc. 1940;114:866–8.
69.
71.
Zurück zum Zitat Amin MS, Wang HW, Reza E, Whitman SC, Tuana BS, Leenen FH. Distribution of epithelial sodium channels and mineralocorticoid receptors in cardiovascular regulatory centers in rat brain. Am J Physiol Regul Integr Comp Physiol. 2005;289(6):R1787–97. doi:10.1152/ajpregu.00063.2005.PubMedCrossRef Amin MS, Wang HW, Reza E, Whitman SC, Tuana BS, Leenen FH. Distribution of epithelial sodium channels and mineralocorticoid receptors in cardiovascular regulatory centers in rat brain. Am J Physiol Regul Integr Comp Physiol. 2005;289(6):R1787–97. doi:10.​1152/​ajpregu.​00063.​2005.PubMedCrossRef
73.
Zurück zum Zitat Sakai RR, Nicolaidis S, Epstein AN. Salt appetite is suppressed by interference with angiotensin II and aldosterone. Am J Phys. 1986;251(4 Pt 2):R762–8. Sakai RR, Nicolaidis S, Epstein AN. Salt appetite is suppressed by interference with angiotensin II and aldosterone. Am J Phys. 1986;251(4 Pt 2):R762–8.
74.
Zurück zum Zitat Shade RE, Blair-West JR, Carey KD, Madden LJ, Weisinger RS, Denton DA. Synergy between angiotensin and aldosterone in evoking sodium appetite in baboons. Am J Physiol Regul Integr Comp Physiol. 2002;283(5):R1070–8. doi:10.1152/ajpregu.00248.2002.PubMedCrossRef Shade RE, Blair-West JR, Carey KD, Madden LJ, Weisinger RS, Denton DA. Synergy between angiotensin and aldosterone in evoking sodium appetite in baboons. Am J Physiol Regul Integr Comp Physiol. 2002;283(5):R1070–8. doi:10.​1152/​ajpregu.​00248.​2002.PubMedCrossRef
75.
Zurück zum Zitat Fluharty SJ, Epstein AN. Sodium appetite elicited by intracerebroventricular infusion of angiotensin II in the rat: II. Synergistic interaction with systemic mineralocorticoids. Behav Neurosci. 1983;97(5):746–58.PubMedCrossRef Fluharty SJ, Epstein AN. Sodium appetite elicited by intracerebroventricular infusion of angiotensin II in the rat: II. Synergistic interaction with systemic mineralocorticoids. Behav Neurosci. 1983;97(5):746–58.PubMedCrossRef
76.
Zurück zum Zitat Epstein AN. Mineralocorticoids and cerebral angiotensin may act together to produce sodium appetite. Peptides. 1982;3(3):493–4.PubMedCrossRef Epstein AN. Mineralocorticoids and cerebral angiotensin may act together to produce sodium appetite. Peptides. 1982;3(3):493–4.PubMedCrossRef
78.
Zurück zum Zitat Mitchell KD, Braam B, Navar LG. Hypertensinogenic mechanisms mediated by renal actions of renin-angiotensin system. Hypertension. 1992;19(1 Suppl):I18–27.PubMedCrossRef Mitchell KD, Braam B, Navar LG. Hypertensinogenic mechanisms mediated by renal actions of renin-angiotensin system. Hypertension. 1992;19(1 Suppl):I18–27.PubMedCrossRef
79.
Zurück zum Zitat Pontes RB, Girardi AC, Nishi EE, Campos RR, Bergamaschi CT. Crosstalk between the renal sympathetic nerve and intrarenal angiotensin II modulates proximal tubular sodium reabsorption. Exp Physiol. 2015;100(5):502–6. doi:10.1113/EP085075.PubMedCrossRef Pontes RB, Girardi AC, Nishi EE, Campos RR, Bergamaschi CT. Crosstalk between the renal sympathetic nerve and intrarenal angiotensin II modulates proximal tubular sodium reabsorption. Exp Physiol. 2015;100(5):502–6. doi:10.​1113/​EP085075.PubMedCrossRef
80.
Zurück zum Zitat Saccomani G, Mitchell KD, Navar LG. Angiotensin II stimulation of Na(+)-H+ exchange in proximal tubule cells. Am J Phys. 1990;258(5 Pt 2):F1188–95. Saccomani G, Mitchell KD, Navar LG. Angiotensin II stimulation of Na(+)-H+ exchange in proximal tubule cells. Am J Phys. 1990;258(5 Pt 2):F1188–95.
81.
Zurück zum Zitat Eiam-Ong S, Hilden SA, Johns CA, Madias NE. Stimulation of basolateral Na(+)-HCO3- cotransporter by angiotensin II in rabbit renal cortex. Am J Phys. 1993;265(2 Pt 2):F195–203. Eiam-Ong S, Hilden SA, Johns CA, Madias NE. Stimulation of basolateral Na(+)-HCO3- cotransporter by angiotensin II in rabbit renal cortex. Am J Phys. 1993;265(2 Pt 2):F195–203.
82.
84.
Zurück zum Zitat Verrey F. Transcriptional control of sodium transport in tight epithelial by adrenal steroids. J Membr Biol. 1995;144(2):93–110.PubMedCrossRef Verrey F. Transcriptional control of sodium transport in tight epithelial by adrenal steroids. J Membr Biol. 1995;144(2):93–110.PubMedCrossRef
85.
Zurück zum Zitat Garty H. Regulation of Na+ permeability by aldosterone. Semin Nephrol. 1992;12(1):24–9.PubMed Garty H. Regulation of Na+ permeability by aldosterone. Semin Nephrol. 1992;12(1):24–9.PubMed
86.
Zurück zum Zitat Lau C, Sudbury I, Thomson M, Howard PL, Magil AB, Cupples WA. Salt-resistant blood pressure and salt-sensitive renal autoregulation in chronic streptozotocin diabetes. Am J Physiol Regul Integr Comp Physiol. 2009;296(6):R1761–70. doi:10.1152/ajpregu.90731.2008.PubMedCrossRef Lau C, Sudbury I, Thomson M, Howard PL, Magil AB, Cupples WA. Salt-resistant blood pressure and salt-sensitive renal autoregulation in chronic streptozotocin diabetes. Am J Physiol Regul Integr Comp Physiol. 2009;296(6):R1761–70. doi:10.​1152/​ajpregu.​90731.​2008.PubMedCrossRef
87.
Zurück zum Zitat Sima CA, Koeners MP, Joles JA, Braam B, Magil AB, Cupples WA. Increased susceptibility to hypertensive renal disease in streptozotocin-treated diabetic rats is not modulated by salt intake. Diabetologia. 2012;55(8):2246–55. doi:10.1007/s00125-012-2569-2.PubMedCrossRef Sima CA, Koeners MP, Joles JA, Braam B, Magil AB, Cupples WA. Increased susceptibility to hypertensive renal disease in streptozotocin-treated diabetic rats is not modulated by salt intake. Diabetologia. 2012;55(8):2246–55. doi:10.​1007/​s00125-012-2569-2.PubMedCrossRef
88.
Zurück zum Zitat Drueke TB, Muntzel M. Heterogeneity of blood pressure responses to salt restriction and salt appetite in rats. Klin Wochenschr. 1991;69(Suppl 25):73–8.PubMed Drueke TB, Muntzel M. Heterogeneity of blood pressure responses to salt restriction and salt appetite in rats. Klin Wochenschr. 1991;69(Suppl 25):73–8.PubMed
89.
Zurück zum Zitat • Koomans HA, Roos JC, Dorhout Mees EJ, Delawi IM. Sodium balance in renal failure. A comparison of patients with normal subjects under extremes of sodium intake. Hypertension. 1985;7(5):714–21. A small but convincing study on sodium sensitivity in normal subjects and subjects with CKD. PubMedCrossRef • Koomans HA, Roos JC, Dorhout Mees EJ, Delawi IM. Sodium balance in renal failure. A comparison of patients with normal subjects under extremes of sodium intake. Hypertension. 1985;7(5):714–21. A small but convincing study on sodium sensitivity in normal subjects and subjects with CKD. PubMedCrossRef
90.
Zurück zum Zitat Essig M, Escoubet B, de Zuttere D, Blanchet F, Arnoult F, Dupuis E, et al. Cardiovascular remodelling and extracellular fluid excess in early stages of chronic kidney disease. Nephrol Dial Transplant. 2008;23(1):239–48. doi:10.1093/ndt/gfm542.PubMedCrossRef Essig M, Escoubet B, de Zuttere D, Blanchet F, Arnoult F, Dupuis E, et al. Cardiovascular remodelling and extracellular fluid excess in early stages of chronic kidney disease. Nephrol Dial Transplant. 2008;23(1):239–48. doi:10.​1093/​ndt/​gfm542.PubMedCrossRef
91.
Zurück zum Zitat •• McMahon EJ, Bauer JD, Hawley CM, Isbel NM, Stowasser M, Johnson DW, et al. A randomized trial of dietary sodium restriction in CKD. J Am Soc Nephrol. 2013;24(12):2096–103. doi:10.1681/ASN.2013030285. This is a unique translational study on sodium restriction on renal function and proteinuria. PubMedPubMedCentralCrossRef •• McMahon EJ, Bauer JD, Hawley CM, Isbel NM, Stowasser M, Johnson DW, et al. A randomized trial of dietary sodium restriction in CKD. J Am Soc Nephrol. 2013;24(12):2096–103. doi:10.​1681/​ASN.​2013030285. This is a unique translational study on sodium restriction on renal function and proteinuria. PubMedPubMedCentralCrossRef
92.
Zurück zum Zitat Koomans HA, Braam B, Geers AB, Roos JC, Dorhout Mees EJ. The importance of plasma protein for blood volume and blood pressure homeostasis. Kidney Int. 1986;30(5):730–5.PubMedCrossRef Koomans HA, Braam B, Geers AB, Roos JC, Dorhout Mees EJ. The importance of plasma protein for blood volume and blood pressure homeostasis. Kidney Int. 1986;30(5):730–5.PubMedCrossRef
93.
Zurück zum Zitat Wang DH, Du Y, Yao A, Hu Z. Regulation of type 1 angiotensin II receptor and its subtype gene expression in kidney by sodium loading and angiotensin II infusion. J Hypertens. 1996;14(12):1409–15.PubMedCrossRef Wang DH, Du Y, Yao A, Hu Z. Regulation of type 1 angiotensin II receptor and its subtype gene expression in kidney by sodium loading and angiotensin II infusion. J Hypertens. 1996;14(12):1409–15.PubMedCrossRef
94.
Zurück zum Zitat Becker BN, Cheng HF, Burns KD, Harris RC. Polarized rabbit type 1 angiotensin II receptors manifest differential rates of endocytosis and recycling. Am J Phys. 1995;269(4 Pt 1):C1048–56. Becker BN, Cheng HF, Burns KD, Harris RC. Polarized rabbit type 1 angiotensin II receptors manifest differential rates of endocytosis and recycling. Am J Phys. 1995;269(4 Pt 1):C1048–56.
95.
96.
Zurück zum Zitat Wang JM, Veerasingham SJ, Tan J, Leenen FH. Effects of high salt intake on brain AT1 receptor densities in Dahl rats. Am J Physiol Heart Circ Physiol. 2003;285(5):H1949–55.PubMedCrossRef Wang JM, Veerasingham SJ, Tan J, Leenen FH. Effects of high salt intake on brain AT1 receptor densities in Dahl rats. Am J Physiol Heart Circ Physiol. 2003;285(5):H1949–55.PubMedCrossRef
98.
Zurück zum Zitat Nickenig G, Strehlow K, Roeling J, Zolk O, Knorr A, Bohm M. Salt induces vascular AT1 receptor overexpression in vitro and in vivo. Hypertension. 1998;31(6):1272–7.PubMedCrossRef Nickenig G, Strehlow K, Roeling J, Zolk O, Knorr A, Bohm M. Salt induces vascular AT1 receptor overexpression in vitro and in vivo. Hypertension. 1998;31(6):1272–7.PubMedCrossRef
99.
Zurück zum Zitat Makita N, Iwai N, Inagami T, Badr KF. Two distinct pathways in the down-regulation of type-1 angiotension II receptor gene in rat glomerular mesangial cells. Biochem Biophys Res Commun. 1992;185(1):142–6.PubMedCrossRef Makita N, Iwai N, Inagami T, Badr KF. Two distinct pathways in the down-regulation of type-1 angiotension II receptor gene in rat glomerular mesangial cells. Biochem Biophys Res Commun. 1992;185(1):142–6.PubMedCrossRef
100.
Zurück zum Zitat Nickenig G, Baumer AT, Temur Y, Kebben D, Jockenhovel F, Bohm M. Statin-sensitive dysregulated AT1 receptor function and density in hypercholesterolemic men. Circulation. 1999;100(21):2131–4.PubMedCrossRef Nickenig G, Baumer AT, Temur Y, Kebben D, Jockenhovel F, Bohm M. Statin-sensitive dysregulated AT1 receptor function and density in hypercholesterolemic men. Circulation. 1999;100(21):2131–4.PubMedCrossRef
101.
Zurück zum Zitat Nickenig G, Jung O, Strehlow K, Zolk O, Linz W, Scholkens BA, et al. Hypercholesterolemia is associated with enhanced angiotensin AT1-receptor expression. Am J Phys. 1997;272(6 Pt 2):H2701–7. Nickenig G, Jung O, Strehlow K, Zolk O, Linz W, Scholkens BA, et al. Hypercholesterolemia is associated with enhanced angiotensin AT1-receptor expression. Am J Phys. 1997;272(6 Pt 2):H2701–7.
102.
Zurück zum Zitat Privratsky JR, Wold LE, Sowers JR, Quinn MT, Ren J. AT1 blockade prevents glucose-induced cardiac dysfunction in ventricular myocytes: role of the AT1 receptor and NADPH oxidase. Hypertension. 2003;42(2):206–12.PubMedCrossRef Privratsky JR, Wold LE, Sowers JR, Quinn MT, Ren J. AT1 blockade prevents glucose-induced cardiac dysfunction in ventricular myocytes: role of the AT1 receptor and NADPH oxidase. Hypertension. 2003;42(2):206–12.PubMedCrossRef
103.
Zurück zum Zitat Sodhi CP, Kanwar YS, Sahai A. Hypoxia and high glucose upregulate AT1 receptor expression and potentiate ANG II-induced proliferation in VSM cells. Am J Physiol Heart Circ Physiol. 2003;284(3):H846–52.PubMedCrossRef Sodhi CP, Kanwar YS, Sahai A. Hypoxia and high glucose upregulate AT1 receptor expression and potentiate ANG II-induced proliferation in VSM cells. Am J Physiol Heart Circ Physiol. 2003;284(3):H846–52.PubMedCrossRef
104.
Zurück zum Zitat Dorffel Y, Latsch C, Stuhlmuller B, Schreiber S, Scholze S, Burmester GR, et al. Preactivated peripheral blood monocytes in patients with essential hypertension. Hypertension. 1999;34(1):113–7.PubMedCrossRef Dorffel Y, Latsch C, Stuhlmuller B, Schreiber S, Scholze S, Burmester GR, et al. Preactivated peripheral blood monocytes in patients with essential hypertension. Hypertension. 1999;34(1):113–7.PubMedCrossRef
105.
Zurück zum Zitat Dorffel Y, Franz S, Pruss A, Neumann G, Rohde W, Burmester GR, et al. Preactivated monocytes from hypertensive patients as a factor for atherosclerosis? Atherosclerosis. 2001;157(1):151–60.PubMedCrossRef Dorffel Y, Franz S, Pruss A, Neumann G, Rohde W, Burmester GR, et al. Preactivated monocytes from hypertensive patients as a factor for atherosclerosis? Atherosclerosis. 2001;157(1):151–60.PubMedCrossRef
106.
Zurück zum Zitat Syrbe U, Moebes A, Scholze J, Swidsinski A, Dorffel Y. Effects of the angiotensin II type 1 receptor antagonist telmisartan on monocyte adhesion and activation in patients with essential hypertension. Hypertens Res. 2007;30(6):521–8. doi:10.1291/hypres.30.521.PubMedCrossRef Syrbe U, Moebes A, Scholze J, Swidsinski A, Dorffel Y. Effects of the angiotensin II type 1 receptor antagonist telmisartan on monocyte adhesion and activation in patients with essential hypertension. Hypertens Res. 2007;30(6):521–8. doi:10.​1291/​hypres.​30.​521.PubMedCrossRef
107.
Zurück zum Zitat Wesseling S, Ishola DA Jr, Joles JA, Bluyssen HA, Koomans HA, Braam B. Resistance to oxidative stress by chronic infusion of angiotensin II in mouse kidney is not mediated by the AT2 receptor. Am J Physiol Renal Physiol. 2005;288(6):F1191–200. doi:10.1152/ajprenal.00322.2004.PubMedCrossRef Wesseling S, Ishola DA Jr, Joles JA, Bluyssen HA, Koomans HA, Braam B. Resistance to oxidative stress by chronic infusion of angiotensin II in mouse kidney is not mediated by the AT2 receptor. Am J Physiol Renal Physiol. 2005;288(6):F1191–200. doi:10.​1152/​ajprenal.​00322.​2004.PubMedCrossRef
108.
Zurück zum Zitat Ozono R, Wang ZQ, Moore AF, Inagami T, Siragy HM, Carey RM. Expression of the subtype 2 angiotensin (AT2) receptor protein in rat kidney. Hypertension. 1997;30(5):1238–46.PubMedCrossRef Ozono R, Wang ZQ, Moore AF, Inagami T, Siragy HM, Carey RM. Expression of the subtype 2 angiotensin (AT2) receptor protein in rat kidney. Hypertension. 1997;30(5):1238–46.PubMedCrossRef
109.
Zurück zum Zitat Suzuki H, Yamamoto T, Ikegaya N, Hishida A. Dietary salt intake modulates progression of antithymocyte serum nephritis through alteration of glomerular angiotensin II receptor expression. Am J Physiol Renal Physiol. 2004;286(2):F267–77. doi:10.1152/ajprenal.00059.2003.PubMedCrossRef Suzuki H, Yamamoto T, Ikegaya N, Hishida A. Dietary salt intake modulates progression of antithymocyte serum nephritis through alteration of glomerular angiotensin II receptor expression. Am J Physiol Renal Physiol. 2004;286(2):F267–77. doi:10.​1152/​ajprenal.​00059.​2003.PubMedCrossRef
110.
Zurück zum Zitat Widdop RE, Matrougui K, Levy BI, Henrion D. AT2 receptor-mediated relaxation is preserved after long-term AT1 receptor blockade. Hypertension. 2002;40(4):516–20.PubMedCrossRef Widdop RE, Matrougui K, Levy BI, Henrion D. AT2 receptor-mediated relaxation is preserved after long-term AT1 receptor blockade. Hypertension. 2002;40(4):516–20.PubMedCrossRef
111.
Zurück zum Zitat Bonnet F, Cooper ME, Carey RM, Casley D, Cao Z. Vascular expression of angiotensin type 2 receptor in the adult rat: influence of angiotensin II infusion. J Hypertens. 2001;19(6):1075–81.PubMedCrossRef Bonnet F, Cooper ME, Carey RM, Casley D, Cao Z. Vascular expression of angiotensin type 2 receptor in the adult rat: influence of angiotensin II infusion. J Hypertens. 2001;19(6):1075–81.PubMedCrossRef
112.
Zurück zum Zitat Wang ZQ, Millatt LJ, Heiderstadt NT, Siragy HM, Johns RA, Carey RM. Differential regulation of renal angiotensin subtype AT1A and AT2 receptor protein in rats with angiotensin-dependent hypertension. Hypertension. 1999;33(1):96–101.PubMedCrossRef Wang ZQ, Millatt LJ, Heiderstadt NT, Siragy HM, Johns RA, Carey RM. Differential regulation of renal angiotensin subtype AT1A and AT2 receptor protein in rats with angiotensin-dependent hypertension. Hypertension. 1999;33(1):96–101.PubMedCrossRef
113.
Zurück zum Zitat Ruiz-Ortega M, Lorenzo O, Ruperez M, Suzuki Y, Egido J. Angiotensin II activates nuclear transcription factor-kappaB in aorta of normal rats and in vascular smooth muscle cells of AT1 knockout mice. Nephrol Dial Transplant. 2001;16(Suppl 1):27–33.PubMedCrossRef Ruiz-Ortega M, Lorenzo O, Ruperez M, Suzuki Y, Egido J. Angiotensin II activates nuclear transcription factor-kappaB in aorta of normal rats and in vascular smooth muscle cells of AT1 knockout mice. Nephrol Dial Transplant. 2001;16(Suppl 1):27–33.PubMedCrossRef
115.
Zurück zum Zitat Okada H, Watanabe Y, Kobayashi T, Kikuta T, Kanno Y, Suzuki H. Angiotensin II type 1 and type 2 receptors reciprocally modulate pro-inflammatory/ pro-fibrotic reactions in activated splenic lymphocytes. Am J Nephrol. 2004;24(3):322–9. doi:10.1159/000078496.PubMedCrossRef Okada H, Watanabe Y, Kobayashi T, Kikuta T, Kanno Y, Suzuki H. Angiotensin II type 1 and type 2 receptors reciprocally modulate pro-inflammatory/ pro-fibrotic reactions in activated splenic lymphocytes. Am J Nephrol. 2004;24(3):322–9. doi:10.​1159/​000078496.PubMedCrossRef
116.
Zurück zum Zitat Nakamura S, Averill DB, Chappell MC, Diz DI, Brosnihan KB, Ferrario CM. Angiotensin receptors contribute to blood pressure homeostasis in salt-depleted SHR. Am J Physiol Regul Integr Comp Physiol. 2003;284(1):R164–73. doi:10.1152/ajpregu.00210.2002.PubMedCrossRef Nakamura S, Averill DB, Chappell MC, Diz DI, Brosnihan KB, Ferrario CM. Angiotensin receptors contribute to blood pressure homeostasis in salt-depleted SHR. Am J Physiol Regul Integr Comp Physiol. 2003;284(1):R164–73. doi:10.​1152/​ajpregu.​00210.​2002.PubMedCrossRef
117.
Zurück zum Zitat Iyer SN, Averill DB, Chappell MC, Yamada K, Allred AJ, Ferrario CM. Contribution of angiotensin-(1-7) to blood pressure regulation in salt-depleted hypertensive rats. Hypertension. 2000;36(3):417–22.PubMedCrossRef Iyer SN, Averill DB, Chappell MC, Yamada K, Allred AJ, Ferrario CM. Contribution of angiotensin-(1-7) to blood pressure regulation in salt-depleted hypertensive rats. Hypertension. 2000;36(3):417–22.PubMedCrossRef
119.
120.
Zurück zum Zitat Singh I, Grams M, Wang WH, Yang T, Killen P, Smart A, et al. Coordinate regulation of renal expression of nitric oxide synthase, renin, and angiotensinogen mRNA by dietary salt. Am J Phys. 1996;270(6 Pt 2):F1027–37. Singh I, Grams M, Wang WH, Yang T, Killen P, Smart A, et al. Coordinate regulation of renal expression of nitric oxide synthase, renin, and angiotensinogen mRNA by dietary salt. Am J Phys. 1996;270(6 Pt 2):F1027–37.
121.
Zurück zum Zitat Ying WZ, Sanders PW. Dietary salt enhances glomerular endothelial nitric oxide synthase through TGF-beta1. Am J Phys. 1998;275(1 Pt 2):F18–24. Ying WZ, Sanders PW. Dietary salt enhances glomerular endothelial nitric oxide synthase through TGF-beta1. Am J Phys. 1998;275(1 Pt 2):F18–24.
122.
Zurück zum Zitat Hennington BS, Zhang H, Miller MT, Granger JP, Reckelhoff JF. Angiotensin II stimulates synthesis of endothelial nitric oxide synthase. Hypertension. 1998;31(1 Pt 2):283–8.PubMedCrossRef Hennington BS, Zhang H, Miller MT, Granger JP, Reckelhoff JF. Angiotensin II stimulates synthesis of endothelial nitric oxide synthase. Hypertension. 1998;31(1 Pt 2):283–8.PubMedCrossRef
125.
Zurück zum Zitat Kielstein JT, Boger RH, Bode-Boger SM, Frolich JC, Haller H, Ritz E, et al. Marked increase of asymmetric dimethylarginine in patients with incipient primary chronic renal disease. J Am Soc Nephrol. 2002;13(1):170–6.PubMed Kielstein JT, Boger RH, Bode-Boger SM, Frolich JC, Haller H, Ritz E, et al. Marked increase of asymmetric dimethylarginine in patients with incipient primary chronic renal disease. J Am Soc Nephrol. 2002;13(1):170–6.PubMed
126.
Zurück zum Zitat Ni Z, Vaziri ND. Effect of salt loading on nitric oxide synthase expression in normotensive rats. Am J Hypertens. 2001;14(2):155–63.PubMedCrossRef Ni Z, Vaziri ND. Effect of salt loading on nitric oxide synthase expression in normotensive rats. Am J Hypertens. 2001;14(2):155–63.PubMedCrossRef
127.
Zurück zum Zitat Boegehold MA. Flow-dependent arteriolar dilation in normotensive rats fed low- or high-salt diets. Am J Phys. 1995;269(4 Pt 2):H1407–14. Boegehold MA. Flow-dependent arteriolar dilation in normotensive rats fed low- or high-salt diets. Am J Phys. 1995;269(4 Pt 2):H1407–14.
128.
Zurück zum Zitat Li X, Xing W, Wang Y, Mi C, Zhang Z, Ma H, et al. Upregulation of caveolin-1 contributes to aggravated high-salt diet-induced endothelial dysfunction and hypertension in type 1 diabetic rats. Life Sci. 2014;113(1–2):31–9. doi:10.1016/j.lfs.2014.07.027.PubMedCrossRef Li X, Xing W, Wang Y, Mi C, Zhang Z, Ma H, et al. Upregulation of caveolin-1 contributes to aggravated high-salt diet-induced endothelial dysfunction and hypertension in type 1 diabetic rats. Life Sci. 2014;113(1–2):31–9. doi:10.​1016/​j.​lfs.​2014.​07.​027.PubMedCrossRef
131.
Zurück zum Zitat Ying WZ, Sanders PW. Dietary salt increases endothelial nitric oxide synthase and TGF-beta1 in rat aortic endothelium. Am J Phys. 1999;277(4 Pt 2):H1293–8. Ying WZ, Sanders PW. Dietary salt increases endothelial nitric oxide synthase and TGF-beta1 in rat aortic endothelium. Am J Phys. 1999;277(4 Pt 2):H1293–8.
133.
Zurück zum Zitat Bech JN, Nielsen CB, Ivarsen P, Jensen KT, Pedersen EB. Dietary sodium affects systemic and renal hemodynamic response to NO inhibition in healthy humans. Am J Phys. 1998;274(5 Pt 2):F914–23. Bech JN, Nielsen CB, Ivarsen P, Jensen KT, Pedersen EB. Dietary sodium affects systemic and renal hemodynamic response to NO inhibition in healthy humans. Am J Phys. 1998;274(5 Pt 2):F914–23.
138.
Zurück zum Zitat DiBona GF, Sawin LL. Renal nerve activity in conscious rats during volume expansion and depletion. Am J Phys. 1985;248(1 Pt 2):F15–23. DiBona GF, Sawin LL. Renal nerve activity in conscious rats during volume expansion and depletion. Am J Phys. 1985;248(1 Pt 2):F15–23.
139.
Zurück zum Zitat DiBona GF, Jones SY, Sawin LL. Effect of endogenous angiotensin II on renal nerve activity and its arterial baroreflex regulation. Am J Phys. 1996;271(2 Pt 2):R361–7. DiBona GF, Jones SY, Sawin LL. Effect of endogenous angiotensin II on renal nerve activity and its arterial baroreflex regulation. Am J Phys. 1996;271(2 Pt 2):R361–7.
140.
Zurück zum Zitat DiBona GF, Jones SY. Effect of dietary sodium intake on the responses to bicuculline in the paraventricular nucleus of rats. Hypertension. 2001;38(2):192–7.PubMedCrossRef DiBona GF, Jones SY. Effect of dietary sodium intake on the responses to bicuculline in the paraventricular nucleus of rats. Hypertension. 2001;38(2):192–7.PubMedCrossRef
141.
Zurück zum Zitat Abboud FM. Effects of sodium, angiotensin, and steroids on vascular reactivity in man. Fed Proc. 1974;33(2):143–9.PubMed Abboud FM. Effects of sodium, angiotensin, and steroids on vascular reactivity in man. Fed Proc. 1974;33(2):143–9.PubMed
142.
Zurück zum Zitat Kunze DL, Brown AM. Sodium sensitivity of baroreceptors. Reflex effects on blood pressure and fluid volume in the cat. Circ Res. 1978;42(5):714–20.PubMedCrossRef Kunze DL, Brown AM. Sodium sensitivity of baroreceptors. Reflex effects on blood pressure and fluid volume in the cat. Circ Res. 1978;42(5):714–20.PubMedCrossRef
143.
Zurück zum Zitat Anderson EA, Sinkey CA, Lawton WJ, Mark AL. Elevated sympathetic nerve activity in borderline hypertensive humans. Evidence from direct intraneural recordings. Hypertension. 1989;14(2):177–83.PubMedCrossRef Anderson EA, Sinkey CA, Lawton WJ, Mark AL. Elevated sympathetic nerve activity in borderline hypertensive humans. Evidence from direct intraneural recordings. Hypertension. 1989;14(2):177–83.PubMedCrossRef
144.
Zurück zum Zitat Grassi G, Cattaneo BM, Seravalle G, Lanfranchi A, Bolla G, Mancia G. Baroreflex impairment by low sodium diet in mild or moderate essential hypertension. Hypertension. 1997;29(3):802–7.PubMedCrossRef Grassi G, Cattaneo BM, Seravalle G, Lanfranchi A, Bolla G, Mancia G. Baroreflex impairment by low sodium diet in mild or moderate essential hypertension. Hypertension. 1997;29(3):802–7.PubMedCrossRef
145.
Zurück zum Zitat • Ligtenberg G, Blankestijn PJ, Oey PL, Klein IH, Dijkhorst-Oei LT, Boomsma F, et al. Reduction of sympathetic hyperactivity by enalapril in patients with chronic renal failure. N Engl J Med. 1999;340(17):1321–8. doi:10.1056/NEJM199904293401704. Study in humans with CKD demonstrating the role of the renin-angiotenisn system in baroreceptor control. PubMedCrossRef • Ligtenberg G, Blankestijn PJ, Oey PL, Klein IH, Dijkhorst-Oei LT, Boomsma F, et al. Reduction of sympathetic hyperactivity by enalapril in patients with chronic renal failure. N Engl J Med. 1999;340(17):1321–8. doi:10.​1056/​NEJM199904293401​704. Study in humans with CKD demonstrating the role of the renin-angiotenisn system in baroreceptor control. PubMedCrossRef
146.
Zurück zum Zitat Barajas L, Liu L, Powers K. Anatomy of the renal innervation: intrarenal aspects and ganglia of origin. Can J Physiol Pharmacol. 1992;70(5):735–49.PubMedCrossRef Barajas L, Liu L, Powers K. Anatomy of the renal innervation: intrarenal aspects and ganglia of origin. Can J Physiol Pharmacol. 1992;70(5):735–49.PubMedCrossRef
147.
Zurück zum Zitat Klinger F, Grimm R, Steinbach A, Tanneberger M, Kunert-Keil C, Rettig R, et al. Low NaCl intake elevates renal medullary endothelin-1 and endothelin A (ETA) receptor mRNA but not the sensitivity of renal Na+ excretion to ETA receptor blockade in rats. Acta Physiol (Oxf). 2008;192(3):429–42. doi:10.1111/j.1748-1716.2007.01751.x.CrossRef Klinger F, Grimm R, Steinbach A, Tanneberger M, Kunert-Keil C, Rettig R, et al. Low NaCl intake elevates renal medullary endothelin-1 and endothelin A (ETA) receptor mRNA but not the sensitivity of renal Na+ excretion to ETA receptor blockade in rats. Acta Physiol (Oxf). 2008;192(3):429–42. doi:10.​1111/​j.​1748-1716.​2007.​01751.​x.CrossRef
148.
Zurück zum Zitat Kopp UC, Grisk O, Cicha MZ, Smith LA, Steinbach A, Schluter T, et al. Dietary sodium modulates the interaction between efferent renal sympathetic nerve activity and afferent renal nerve activity: role of endothelin. Am J Physiol Regul Integr Comp Physiol. 2009;297(2):R337–51. doi:10.1152/ajpregu.91029.2008.PubMedPubMedCentralCrossRef Kopp UC, Grisk O, Cicha MZ, Smith LA, Steinbach A, Schluter T, et al. Dietary sodium modulates the interaction between efferent renal sympathetic nerve activity and afferent renal nerve activity: role of endothelin. Am J Physiol Regul Integr Comp Physiol. 2009;297(2):R337–51. doi:10.​1152/​ajpregu.​91029.​2008.PubMedPubMedCentralCrossRef
150.
151.
Zurück zum Zitat Stricker EM, Thiels E, Verbalis JG. Sodium appetite in rats after prolonged dietary sodium deprivation: a sexually dimorphic phenomenon. Am J Phys. 1991;260(6 Pt 2):R1082–8. Stricker EM, Thiels E, Verbalis JG. Sodium appetite in rats after prolonged dietary sodium deprivation: a sexually dimorphic phenomenon. Am J Phys. 1991;260(6 Pt 2):R1082–8.
152.
Zurück zum Zitat DiBona GF, Jones SY. Sodium intake influences hemodynamic and neural responses to angiotensin receptor blockade in rostral ventrolateral medulla. Hypertension. 2001;37(4):1114–23.PubMedCrossRef DiBona GF, Jones SY. Sodium intake influences hemodynamic and neural responses to angiotensin receptor blockade in rostral ventrolateral medulla. Hypertension. 2001;37(4):1114–23.PubMedCrossRef
153.
Zurück zum Zitat Luft FC, Rankin LI, Henry DP, Bloch R, Grim CE, Weyman AE, et al. Plasma and urinary norepinephrine values at extremes of sodium intake in normal man. Hypertension. 1979;1(3):261–6.PubMedCrossRef Luft FC, Rankin LI, Henry DP, Bloch R, Grim CE, Weyman AE, et al. Plasma and urinary norepinephrine values at extremes of sodium intake in normal man. Hypertension. 1979;1(3):261–6.PubMedCrossRef
154.
Zurück zum Zitat Warren SE, Vieweg WV, O'Connor DT. Sympathetic nervous system activity during sodium restriction in essential hypertension. Clin Cardiol. 1980;3(5):348–51.PubMedCrossRef Warren SE, Vieweg WV, O'Connor DT. Sympathetic nervous system activity during sodium restriction in essential hypertension. Clin Cardiol. 1980;3(5):348–51.PubMedCrossRef
155.
Zurück zum Zitat Timio M, Venanzi S, Lolli S, Lippi G, Verdura C, Monarca C, et al. "non-dipper" hypertensive patients and progressive renal insufficiency: a 3-year longitudinal study. Clin Nephrol. 1995;43(6):382–7.PubMed Timio M, Venanzi S, Lolli S, Lippi G, Verdura C, Monarca C, et al. "non-dipper" hypertensive patients and progressive renal insufficiency: a 3-year longitudinal study. Clin Nephrol. 1995;43(6):382–7.PubMed
156.
Zurück zum Zitat Verdecchia P, Porcellati C, Schillaci G, Borgioni C, Ciucci A, Battistelli M, et al. Ambulatory blood pressure. An independent predictor of prognosis in essential hypertension. Hypertension. 1994;24(6):793–801.PubMedCrossRef Verdecchia P, Porcellati C, Schillaci G, Borgioni C, Ciucci A, Battistelli M, et al. Ambulatory blood pressure. An independent predictor of prognosis in essential hypertension. Hypertension. 1994;24(6):793–801.PubMedCrossRef
158.
Zurück zum Zitat Azar S, Ernsberger P, Livingston S, Azar P, Iwai J. Paraventricular-suprachiasmatic lesions prevent salt-induced hypertension in Dahl rats. Clin Sci (Lond). 1981;61 Suppl 7:49s–51s. Azar S, Ernsberger P, Livingston S, Azar P, Iwai J. Paraventricular-suprachiasmatic lesions prevent salt-induced hypertension in Dahl rats. Clin Sci (Lond). 1981;61 Suppl 7:49s–51s.
159.
Zurück zum Zitat Fujii T, Uzu T, Nishimura M, Takeji M, Kuroda S, Nakamura S, et al. Circadian rhythm of natriuresis is disturbed in nondipper type of essential hypertension. Am J Kidney Dis. 1999;33(1):29–35.PubMedCrossRef Fujii T, Uzu T, Nishimura M, Takeji M, Kuroda S, Nakamura S, et al. Circadian rhythm of natriuresis is disturbed in nondipper type of essential hypertension. Am J Kidney Dis. 1999;33(1):29–35.PubMedCrossRef
160.
Zurück zum Zitat Damasceno A, Caupers P, Santos A, Lobo E, Sevene E, Bicho M, et al. Influence of salt intake on the daytime-nighttime blood pressure variation in normotensive and hypertensive black subjects. Rev Port Cardiol. 2000;19(3):315–29.PubMed Damasceno A, Caupers P, Santos A, Lobo E, Sevene E, Bicho M, et al. Influence of salt intake on the daytime-nighttime blood pressure variation in normotensive and hypertensive black subjects. Rev Port Cardiol. 2000;19(3):315–29.PubMed
163.
Zurück zum Zitat Russcher M, Koch B, Nagtegaal E, van der Putten K, ter Wee P, Gaillard C. The role of melatonin treatment in chronic kidney disease. Front Biosci (Landmark Ed). 2012;17:2644–56.CrossRef Russcher M, Koch B, Nagtegaal E, van der Putten K, ter Wee P, Gaillard C. The role of melatonin treatment in chronic kidney disease. Front Biosci (Landmark Ed). 2012;17:2644–56.CrossRef
Metadaten
Titel
Understanding the Two Faces of Low-Salt Intake
verfasst von
Branko Braam
Xiaohua Huang
William A. Cupples
Shereen M. Hamza
Publikationsdatum
01.06.2017
Verlag
Springer US
Erschienen in
Current Hypertension Reports / Ausgabe 6/2017
Print ISSN: 1522-6417
Elektronische ISSN: 1534-3111
DOI
https://doi.org/10.1007/s11906-017-0744-z

Weitere Artikel der Ausgabe 6/2017

Current Hypertension Reports 6/2017 Zur Ausgabe

Device-Based Approaches for Hypertension (M Schlaich, Section Editor)

Role of Paced Breathing for Treatment of Hypertension

Hypertension and Metabolic Syndrome (J Sperati, Section Editor)

The Epigenetic Machinery in Vascular Dysfunction and Hypertension

Secondary Hypertension: Nervous System Mechanisms (M Wyss, Section Editor)

Hypothalamic Signaling in Body Fluid Homeostasis and Hypertension

Secondary Hypertension: Nervous System Mechanisms (M Wyss, Section Editor)

Protective Angiotensin Type 2 Receptors in the Brain and Hypertension

Device-Based Approaches for Hypertension (M Schlaich, Section Editor)

Isometric Handgrip as an Adjunct for Blood Pressure Control: a Primer for Clinicians

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Hodgkin Lymphom: BrECADD-Regime übertrifft die Erwartungen

05.06.2024 ASCO 2024 Kongressbericht

Das Kombinationsregime BrECADD mit Brentuximab vedotin ermöglichte in der Studie HD21 beim fortgeschrittenen klassischen Hodgkin-Lymphom eine unerwartet hohe progressionsfreie Überlebensrate von 94,3% nach vier Jahren. Gleichzeitig war das Regime besser tolerabel als der bisherige Standard eBEACOPP.

Hereditäres Angioödem: Tablette könnte Akuttherapie erleichtern

05.06.2024 Hereditäres Angioödem Nachrichten

Medikamente zur Bedarfstherapie bei hereditärem Angioödem sind bisher nur als Injektionen und Infusionen verfügbar. Der Arzneistoff Sebetralstat kann oral verabreicht werden und liefert vielversprechende Daten.

Intoxikation ohne Alkoholaufnahme: An das Eigenbrauer-Syndrom denken!

05.06.2024 Internistische Diagnostik Nachrichten

Betrunken trotz Alkoholabstinenz? Der Fall einer 50-jährigen Patientin zeigt, dass dies möglich ist. Denn die Frau litt unter dem Eigenbrauer-Syndrom, bei dem durch Darmpilze eine alkoholische Gärung in Gang gesetzt wird.

Ist Fasten vor Koronarinterventionen wirklich nötig?

Wenn Eingriffe wie eine Koronarangiografie oder eine Koronarangioplastie anstehen, wird häufig empfohlen, in den Stunden zuvor nüchtern zu bleiben. Ein französisches Forscherteam hat diese Maßnahme hinterfragt.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.