Skip to main content
Erschienen in: Digestive Diseases and Sciences 1/2022

20.02.2021 | Review

Update: Innate Lymphoid Cells in Inflammatory Bowel Disease

verfasst von: Weiwei Luo, Li Tian, Bei Tan, Zhaohua Shen, Mengwei Xiao, Shuai Wu, Xiangrui Meng, Xing Wu, Xiaoyan Wang

Erschienen in: Digestive Diseases and Sciences | Ausgabe 1/2022

Einloggen, um Zugang zu erhalten

Abstract

Inflammatory bowel disease (IBD) is a chronic and nonspecific intestinal inflammatory condition with high relapse rate. Its pathogenesis has been linked to dysbacteriosis, genetic and environmental factors. In recent years, a new type of lymphocytes, termed innate lymphoid cells, has been described and classified into three subtypes of innate lymphoid cells—group 1, group 2 and group 3. An imbalance among these subsets’ interaction with gut microbiome, and other immune cells affects intestinal mucosal homeostasis. Understanding the role of innate lymphoid cells may provide ideas for developing novel and targeted approaches for treatment of IBD.
Literatur
1.
Zurück zum Zitat Liu TC, Stappenbeck TS. Genetics and pathogenesis of inflammatory bowel disease. Annu Rev Pathol. 2016;11:127–148PubMedPubMedCentral Liu TC, Stappenbeck TS. Genetics and pathogenesis of inflammatory bowel disease. Annu Rev Pathol. 2016;11:127–148PubMedPubMedCentral
2.
Zurück zum Zitat Peloquin JM, Goel G, Villablanca EJ, Xavier RJ. Mechanisms of pediatric inflammatory bowel disease. Annu Rev Immunol. 2016;34:31–64PubMed Peloquin JM, Goel G, Villablanca EJ, Xavier RJ. Mechanisms of pediatric inflammatory bowel disease. Annu Rev Immunol. 2016;34:31–64PubMed
3.
Zurück zum Zitat Ungaro R, Mehandru S, Allen PB, Peyrin-Biroulet L, Colombel J-F. Ulcerative colitis. Lancet. 2017;389:1756–1770PubMed Ungaro R, Mehandru S, Allen PB, Peyrin-Biroulet L, Colombel J-F. Ulcerative colitis. Lancet. 2017;389:1756–1770PubMed
4.
Zurück zum Zitat Torres J, Mehandru S, Colombel JF, Peyrin-Biroulet L. Crohn’s disease. Lancet (London, England). 2017;389:1741–1755 Torres J, Mehandru S, Colombel JF, Peyrin-Biroulet L. Crohn’s disease. Lancet (London, England). 2017;389:1741–1755
5.
Zurück zum Zitat Uhlig HH, Powrie F. Translating immunology into therapeutic concepts for inflammatory bowel disease. Annu Rev Immunol. 2018;36:755–781PubMed Uhlig HH, Powrie F. Translating immunology into therapeutic concepts for inflammatory bowel disease. Annu Rev Immunol. 2018;36:755–781PubMed
6.
Zurück zum Zitat de Souza HSP, Fiocchi C, Iliopoulos D. The IBD interactome: an integrated view of aetiology, pathogenesis and therapy. Nat Rev Gastroenterol Hepatol. 2017;14:739–749PubMed de Souza HSP, Fiocchi C, Iliopoulos D. The IBD interactome: an integrated view of aetiology, pathogenesis and therapy. Nat Rev Gastroenterol Hepatol. 2017;14:739–749PubMed
7.
Zurück zum Zitat Breese EB, Corrigan CP, Walker-Smith CJ, MacDonald JA. Interleukin-2- and interferon-gamma-secreting T cells in normal and diseased human intestinal mucosa. Immunology. 1993;78:127–131PubMedPubMedCentral Breese EB, Corrigan CP, Walker-Smith CJ, MacDonald JA. Interleukin-2- and interferon-gamma-secreting T cells in normal and diseased human intestinal mucosa. Immunology. 1993;78:127–131PubMedPubMedCentral
8.
Zurück zum Zitat Rovedatti L, Kudo T, Biancheri P et al. Differential regulation of interleukin 17 and interferon gamma production in inflammatory bowel disease. Gut. 2009;58:1629–1636PubMed Rovedatti L, Kudo T, Biancheri P et al. Differential regulation of interleukin 17 and interferon gamma production in inflammatory bowel disease. Gut. 2009;58:1629–1636PubMed
9.
Zurück zum Zitat Liu H, Dasgupta S, Fu Y et al. Subsets of mononuclear phagocytes are enriched in the inflamed colons of patients with IBD. BMC Immunol. 2019;20:42PubMedPubMedCentral Liu H, Dasgupta S, Fu Y et al. Subsets of mononuclear phagocytes are enriched in the inflamed colons of patients with IBD. BMC Immunol. 2019;20:42PubMedPubMedCentral
10.
Zurück zum Zitat Park JH, Jeong DY, Peyrin-Biroulet L, Eisenhut M, Shin JI. Insight into the role of TSLP in inflammatory bowel diseases. Autoimmun Rev. 2017;16:55–63PubMed Park JH, Jeong DY, Peyrin-Biroulet L, Eisenhut M, Shin JI. Insight into the role of TSLP in inflammatory bowel diseases. Autoimmun Rev. 2017;16:55–63PubMed
11.
Zurück zum Zitat Giuffrida P, Caprioli F, Facciotti F, Di Sabatino A. The role of interleukin-13 in chronic inflammatory intestinal disorders. Autoimmun Rev. 2019;18:549–555PubMed Giuffrida P, Caprioli F, Facciotti F, Di Sabatino A. The role of interleukin-13 in chronic inflammatory intestinal disorders. Autoimmun Rev. 2019;18:549–555PubMed
12.
Zurück zum Zitat Ealey KN, Koyasu S. How many subsets of innate lymphoid cells do we need? Immunity. 2017;46:10–13PubMed Ealey KN, Koyasu S. How many subsets of innate lymphoid cells do we need? Immunity. 2017;46:10–13PubMed
13.
Zurück zum Zitat Simoni Y, Newell EW. Dissecting human ILC heterogeneity: more than just three subsets. Immunology. 2018;153:297–303PubMed Simoni Y, Newell EW. Dissecting human ILC heterogeneity: more than just three subsets. Immunology. 2018;153:297–303PubMed
15.
Zurück zum Zitat Cupedo T, Crellin NK, Papazian N et al. Human fetal lymphoid tissue-inducer cells are interleukin 17-producing precursors to RORC+ CD127+ natural killer-like cells. Nat Immunol. 2009;10:66–74PubMed Cupedo T, Crellin NK, Papazian N et al. Human fetal lymphoid tissue-inducer cells are interleukin 17-producing precursors to RORC+ CD127+ natural killer-like cells. Nat Immunol. 2009;10:66–74PubMed
16.
Zurück zum Zitat Cella M, Fuchs A, Vermi W et al. A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature. 2009;457:722–725PubMed Cella M, Fuchs A, Vermi W et al. A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature. 2009;457:722–725PubMed
17.
Zurück zum Zitat Mebius RE, Rennert P, Weissman IL. Developing lymph nodes collect CD4+CD3- LTbeta+ cells that can differentiate to APC, NK cells, and follicular cells but not T or B cells. Immunity. 1997;7:493–504PubMed Mebius RE, Rennert P, Weissman IL. Developing lymph nodes collect CD4+CD3- LTbeta+ cells that can differentiate to APC, NK cells, and follicular cells but not T or B cells. Immunity. 1997;7:493–504PubMed
18.
Zurück zum Zitat Huang Y, Mao K, Germain RN. Thinking differently about ILCs-Not just tissue resident and not just the same as CD4(+) T-cell effectors. Immunol Rev. 2018;286:160–171PubMedPubMedCentral Huang Y, Mao K, Germain RN. Thinking differently about ILCs-Not just tissue resident and not just the same as CD4(+) T-cell effectors. Immunol Rev. 2018;286:160–171PubMedPubMedCentral
19.
Zurück zum Zitat Trabanelli S, Gomez-Cadena A, Salomé B et al. Human innate lymphoid cells (ILCs): Toward a uniform immune-phenotyping. Cytometry B Clin. Cytometry. 2018;94:392–399PubMed Trabanelli S, Gomez-Cadena A, Salomé B et al. Human innate lymphoid cells (ILCs): Toward a uniform immune-phenotyping. Cytometry B Clin. Cytometry. 2018;94:392–399PubMed
21.
Zurück zum Zitat Sonnenberg GF, Hepworth MR. Functional interactions between innate lymphoid cells and adaptive immunity. Nat Rev Immunol. 2019;19:599–613PubMedPubMedCentral Sonnenberg GF, Hepworth MR. Functional interactions between innate lymphoid cells and adaptive immunity. Nat Rev Immunol. 2019;19:599–613PubMedPubMedCentral
22.
Zurück zum Zitat Spits H, Artis D, Colonna M et al. Innate lymphoid cells: a proposal for uniform nomenclature. Nat Rev Immunol. 2013;13:145–149PubMed Spits H, Artis D, Colonna M et al. Innate lymphoid cells: a proposal for uniform nomenclature. Nat Rev Immunol. 2013;13:145–149PubMed
23.
Zurück zum Zitat Zook EC, Kee BL. Development of innate lymphoid cells. Nat Immunol. 2016;17:775–782PubMed Zook EC, Kee BL. Development of innate lymphoid cells. Nat Immunol. 2016;17:775–782PubMed
24.
Zurück zum Zitat Lim AI, Verrier T, Vosshenrich CAJ, Di Santo JP. Developmental options and functional plasticity of innate lymphoid cells. Curr. Opin. Immunol. 2017;44:61–68PubMed Lim AI, Verrier T, Vosshenrich CAJ, Di Santo JP. Developmental options and functional plasticity of innate lymphoid cells. Curr. Opin. Immunol. 2017;44:61–68PubMed
25.
Zurück zum Zitat Eberl G, Colonna M, Di Santo JP, McKenzie ANJ. Innate lymphoid cells: a new paradigm in immunology. Science. 2015;348:6566 Eberl G, Colonna M, Di Santo JP, McKenzie ANJ. Innate lymphoid cells: a new paradigm in immunology. Science. 2015;348:6566
26.
Zurück zum Zitat Zhang J, Marotel M, Fauteux-Daniel S et al. T-bet and Eomes govern differentiation and function of mouse and human NK cells and ILC1. Eur J Immunol. 2018;48:738–750PubMed Zhang J, Marotel M, Fauteux-Daniel S et al. T-bet and Eomes govern differentiation and function of mouse and human NK cells and ILC1. Eur J Immunol. 2018;48:738–750PubMed
27.
Zurück zum Zitat Poggi A, Benelli R, Vene R et al. Human gut-associated natural killer cells in health and disease. Front Immunol. 2019;10:961PubMedPubMedCentral Poggi A, Benelli R, Vene R et al. Human gut-associated natural killer cells in health and disease. Front Immunol. 2019;10:961PubMedPubMedCentral
28.
Zurück zum Zitat Bernink JH, Peters CP, Munneke M et al. Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues. Nat Immunol. 2013;14:221–229PubMed Bernink JH, Peters CP, Munneke M et al. Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues. Nat Immunol. 2013;14:221–229PubMed
29.
Zurück zum Zitat Fuchs A, Vermi W, Lee JS et al. Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12- and IL-15-responsive IFN-gamma-producing cells. Immunity. 2013;38:769–781PubMedPubMedCentral Fuchs A, Vermi W, Lee JS et al. Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12- and IL-15-responsive IFN-gamma-producing cells. Immunity. 2013;38:769–781PubMedPubMedCentral
30.
Zurück zum Zitat Hwang YY, McKenzie AN. Innate lymphoid cells in immunity and disease. Adv Exp Med Biol. 2013;785:9–26PubMed Hwang YY, McKenzie AN. Innate lymphoid cells in immunity and disease. Adv Exp Med Biol. 2013;785:9–26PubMed
31.
Zurück zum Zitat Prager I, Watzl C. Mechanisms of natural killer cell-mediated cellular cytotoxicity. J Leukoc Biol. 2019;105:1319–1329PubMed Prager I, Watzl C. Mechanisms of natural killer cell-mediated cellular cytotoxicity. J Leukoc Biol. 2019;105:1319–1329PubMed
32.
Zurück zum Zitat Campos TM, Novais FO, Saldanha M, et al. Granzyme B produced by natural killer cells enhances inflammatory response and contributes to the immunopathology of cutaneous leishmaniasis. J Infect Dis. 2019. Campos TM, Novais FO, Saldanha M, et al. Granzyme B produced by natural killer cells enhances inflammatory response and contributes to the immunopathology of cutaneous leishmaniasis. J Infect Dis. 2019.
33.
Zurück zum Zitat Klein Wolterink RG, Serafini N, van Nimwegen M et al. Essential, dose-dependent role for the transcription factor Gata3 in the development of IL-5+ and IL-13+ type 2 innate lymphoid cells. Proc Natl Acad Sci USA 2013;110:10240–10245PubMedPubMedCentral Klein Wolterink RG, Serafini N, van Nimwegen M et al. Essential, dose-dependent role for the transcription factor Gata3 in the development of IL-5+ and IL-13+ type 2 innate lymphoid cells. Proc Natl Acad Sci USA 2013;110:10240–10245PubMedPubMedCentral
34.
Zurück zum Zitat Hoyler T, Klose Christoph SN, Souabni A et al. The transcription factor GATA-3 controls cell fate and maintenance of type 2 innate lymphoid cells. Immunity. 2012;37:634–648PubMedPubMedCentral Hoyler T, Klose Christoph SN, Souabni A et al. The transcription factor GATA-3 controls cell fate and maintenance of type 2 innate lymphoid cells. Immunity. 2012;37:634–648PubMedPubMedCentral
35.
Zurück zum Zitat Spooner CJ, Lesch J, Yan D et al. Specification of type 2 innate lymphocytes by the transcriptional determinant Gfi1. Nat Immunol. 2013;14:1229–1236PubMed Spooner CJ, Lesch J, Yan D et al. Specification of type 2 innate lymphocytes by the transcriptional determinant Gfi1. Nat Immunol. 2013;14:1229–1236PubMed
36.
Zurück zum Zitat Yu Y, Wang C, Clare S et al. The transcription factor Bcl11b is specifically expressed in group 2 innate lymphoid cells and is essential for their development. J Exp Med. 2015;212:865–874PubMedPubMedCentral Yu Y, Wang C, Clare S et al. The transcription factor Bcl11b is specifically expressed in group 2 innate lymphoid cells and is essential for their development. J Exp Med. 2015;212:865–874PubMedPubMedCentral
37.
38.
Zurück zum Zitat Jiang M, Tao S, Zhang S et al. Type 2 innate lymphoid cells participate in IL-33-stimulated Th2-associated immune response in chronic obstructive pulmonary disease. Exp Ther Med. 2019;18:3109–3116PubMedPubMedCentral Jiang M, Tao S, Zhang S et al. Type 2 innate lymphoid cells participate in IL-33-stimulated Th2-associated immune response in chronic obstructive pulmonary disease. Exp Ther Med. 2019;18:3109–3116PubMedPubMedCentral
39.
Zurück zum Zitat Helfrich S, Mindt BC, Fritz JH, Duerr CU. Group 2 innate lymphoid cells in respiratory allergic inflammation. Front Immunol. 2019;10:930PubMedPubMedCentral Helfrich S, Mindt BC, Fritz JH, Duerr CU. Group 2 innate lymphoid cells in respiratory allergic inflammation. Front Immunol. 2019;10:930PubMedPubMedCentral
40.
Zurück zum Zitat Herbert DR, Douglas B, Zullo K. Group 2 innate lymphoid cells (ILC2): type 2 immunity and helminth immunity. Int J Mol Sci. 2019;20:2276PubMedCentral Herbert DR, Douglas B, Zullo K. Group 2 innate lymphoid cells (ILC2): type 2 immunity and helminth immunity. Int J Mol Sci. 2019;20:2276PubMedCentral
41.
Zurück zum Zitat Rafei-Shamsabadi DA, Klose CSN, Halim TYF, Tanriver Y, Jakob T. Context dependent role of type 2 innate lymphoid cells in allergic skin inflammation. Front Immunol. 2019;10:2591PubMedPubMedCentral Rafei-Shamsabadi DA, Klose CSN, Halim TYF, Tanriver Y, Jakob T. Context dependent role of type 2 innate lymphoid cells in allergic skin inflammation. Front Immunol. 2019;10:2591PubMedPubMedCentral
42.
Zurück zum Zitat Qiu J, Heller JJ, Guo X et al. The aryl hydrocarbon receptor regulates gut immunity through modulation of innate lymphoid cells. Immunity. 2012;36:92–104PubMed Qiu J, Heller JJ, Guo X et al. The aryl hydrocarbon receptor regulates gut immunity through modulation of innate lymphoid cells. Immunity. 2012;36:92–104PubMed
43.
Zurück zum Zitat Britanova L, Diefenbach A. Interplay of innate lymphoid cells and the microbiota. Immunol Rev. 2017;279:36–51PubMed Britanova L, Diefenbach A. Interplay of innate lymphoid cells and the microbiota. Immunol Rev. 2017;279:36–51PubMed
44.
Zurück zum Zitat Reboldi A, Arnon TI, Rodda LB, Atakilit A, Sheppard D, Cyster JG. IgA production requires B cell interaction with subepithelial dendritic cells in Peyers patches. Science. 2016;352:4822 Reboldi A, Arnon TI, Rodda LB, Atakilit A, Sheppard D, Cyster JG. IgA production requires B cell interaction with subepithelial dendritic cells in Peyers patches. Science. 2016;352:4822
45.
Zurück zum Zitat Kruglov AA, Grivennikov SI, Kuprash DV et al. Nonredundant function of soluble LTalpha3 produced by innate lymphoid cells in intestinal homeostasis. Science. 2013;342:1243–1246PubMed Kruglov AA, Grivennikov SI, Kuprash DV et al. Nonredundant function of soluble LTalpha3 produced by innate lymphoid cells in intestinal homeostasis. Science. 2013;342:1243–1246PubMed
46.
Zurück zum Zitat Takatori H, Kanno Y, Watford WT et al. Lymphoid tissue inducer-like cells are an innate source of IL-17 and IL-22. J Exp Med. 2009;206:35–41PubMedPubMedCentral Takatori H, Kanno Y, Watford WT et al. Lymphoid tissue inducer-like cells are an innate source of IL-17 and IL-22. J Exp Med. 2009;206:35–41PubMedPubMedCentral
47.
Zurück zum Zitat Klose CS, Kiss EA, Schwierzeck V et al. A T-bet gradient controls the fate and function of CCR6-RORgammat+ innate lymphoid cells. Nature. 2013;494:261–265PubMed Klose CS, Kiss EA, Schwierzeck V et al. A T-bet gradient controls the fate and function of CCR6-RORgammat+ innate lymphoid cells. Nature. 2013;494:261–265PubMed
48.
Zurück zum Zitat Mackley EC, Houston S, Marriott CL et al. CCR7-dependent trafficking of RORgamma(+) ILCs creates a unique microenvironment within mucosal draining lymph nodes. Nat Commun. 2015;6:5862PubMed Mackley EC, Houston S, Marriott CL et al. CCR7-dependent trafficking of RORgamma(+) ILCs creates a unique microenvironment within mucosal draining lymph nodes. Nat Commun. 2015;6:5862PubMed
49.
Zurück zum Zitat Song C, Lee JS, Gilfillan S et al. Unique and redundant functions of NKp46+ ILC3s in models of intestinal inflammation. J Exp Med. 2015;212:1869–1882PubMedPubMedCentral Song C, Lee JS, Gilfillan S et al. Unique and redundant functions of NKp46+ ILC3s in models of intestinal inflammation. J Exp Med. 2015;212:1869–1882PubMedPubMedCentral
50.
Zurück zum Zitat Zeng B, Shi S, Ashworth G, Dong C, Liu J, Xing F. ILC3 function as a double-edged sword in inflammatory bowel diseases. Cell Death Disease. 2019;10:315PubMedPubMedCentral Zeng B, Shi S, Ashworth G, Dong C, Liu J, Xing F. ILC3 function as a double-edged sword in inflammatory bowel diseases. Cell Death Disease. 2019;10:315PubMedPubMedCentral
51.
Zurück zum Zitat Powell N, Lo JW, Biancheri P et al. Interleukin 6 increases production of cytokines by colonic innate lymphoid cells in mice and patients with chronic intestinal inflammation. Gastroenterology. 2015;149:e15 Powell N, Lo JW, Biancheri P et al. Interleukin 6 increases production of cytokines by colonic innate lymphoid cells in mice and patients with chronic intestinal inflammation. Gastroenterology. 2015;149:e15
52.
Zurück zum Zitat Pearson C, Thornton EE, McKenzie B et al. ILC3 GM-CSF production and mobilisation orchestrate acute intestinal inflammation. Elife. 2016;5:e10066PubMedPubMedCentral Pearson C, Thornton EE, McKenzie B et al. ILC3 GM-CSF production and mobilisation orchestrate acute intestinal inflammation. Elife. 2016;5:e10066PubMedPubMedCentral
53.
Zurück zum Zitat Giacomin PR, Moy RH, Noti M et al. Epithelial-intrinsic IKKalpha expression regulates group 3 innate lymphoid cell responses and antibacterial immunity. J Exp Med. 2015;212:1513–1528PubMedPubMedCentral Giacomin PR, Moy RH, Noti M et al. Epithelial-intrinsic IKKalpha expression regulates group 3 innate lymphoid cell responses and antibacterial immunity. J Exp Med. 2015;212:1513–1528PubMedPubMedCentral
54.
Zurück zum Zitat Aparicio-Domingo P, Romera-Hernandez M, Karrich JJ et al. Type 3 innate lymphoid cells maintain intestinal epithelial stem cells after tissue damage. J Exp Med. 2015;212:1783–1791PubMedPubMedCentral Aparicio-Domingo P, Romera-Hernandez M, Karrich JJ et al. Type 3 innate lymphoid cells maintain intestinal epithelial stem cells after tissue damage. J Exp Med. 2015;212:1783–1791PubMedPubMedCentral
55.
Zurück zum Zitat Pantazi E, Powell N. Group 3 ILCs: peacekeepers or troublemakers? What’s Your Gut Telling You?! Front Immunol. 2019;10:676PubMedPubMedCentral Pantazi E, Powell N. Group 3 ILCs: peacekeepers or troublemakers? What’s Your Gut Telling You?! Front Immunol. 2019;10:676PubMedPubMedCentral
56.
Zurück zum Zitat Gronke K, Hernandez PP, Zimmermann J et al. Interleukin-22 protects intestinal stem cells against genotoxic stress. Nature. 2019;566:249–253PubMedPubMedCentral Gronke K, Hernandez PP, Zimmermann J et al. Interleukin-22 protects intestinal stem cells against genotoxic stress. Nature. 2019;566:249–253PubMedPubMedCentral
57.
Zurück zum Zitat Geremia A, Arancibia-Carcamo CV, Fleming MP et al. IL-23-responsive innate lymphoid cells are increased in inflammatory bowel disease. J Exp Med. 2011;208:1127–1133PubMedPubMedCentral Geremia A, Arancibia-Carcamo CV, Fleming MP et al. IL-23-responsive innate lymphoid cells are increased in inflammatory bowel disease. J Exp Med. 2011;208:1127–1133PubMedPubMedCentral
58.
Zurück zum Zitat Diefenbach A, Colonna M, Koyasu S. Development, differentiation, and diversity of innate lymphoid cells. Immunity. 2014;41:354–365PubMedPubMedCentral Diefenbach A, Colonna M, Koyasu S. Development, differentiation, and diversity of innate lymphoid cells. Immunity. 2014;41:354–365PubMedPubMedCentral
59.
Zurück zum Zitat Bernink Jochem H, Krabbendam L, Germar K et al. Interleukin-12 and -23 control plasticity of CD127+ Group 1 and Group 3 innate lymphoid cells in the intestinal lamina propria. Immunity. 2015;43:146–160PubMed Bernink Jochem H, Krabbendam L, Germar K et al. Interleukin-12 and -23 control plasticity of CD127+ Group 1 and Group 3 innate lymphoid cells in the intestinal lamina propria. Immunity. 2015;43:146–160PubMed
60.
Zurück zum Zitat Teunissen MBM, Munneke JM, Bernink JH et al. Composition of innate lymphoid cell subsets in the human skin: enrichment of NCR + ILC3 in lesional skin and blood of psoriasis patients. J Invest Dermatol. 2014;134:2351–2360PubMed Teunissen MBM, Munneke JM, Bernink JH et al. Composition of innate lymphoid cell subsets in the human skin: enrichment of NCR + ILC3 in lesional skin and blood of psoriasis patients. J Invest Dermatol. 2014;134:2351–2360PubMed
61.
Zurück zum Zitat Viant C, Rankin LC, Girard-Madoux MJ, et al. Transforming growth factor-beta and Notch ligands act as opposing environmental cues in regulating the plasticity of type 3 innate lymphoid cells. Sci Signal. 2016;9:ra46. Viant C, Rankin LC, Girard-Madoux MJ, et al. Transforming growth factor-beta and Notch ligands act as opposing environmental cues in regulating the plasticity of type 3 innate lymphoid cells. Sci Signal. 2016;9:ra46.
62.
Zurück zum Zitat Chea S, Perchet T, Petit M, et al. Notch signaling in group 3 innate lymphoid cells modulates their plasticity. Sci Signal. 2016;9:ra45. Chea S, Perchet T, Petit M, et al. Notch signaling in group 3 innate lymphoid cells modulates their plasticity. Sci Signal. 2016;9:ra45.
63.
Zurück zum Zitat Ebbo M, Crinier A, Vely F, Vivier E. Innate lymphoid cells: major players in inflammatory diseases. Nat Rev Immunol. 2017;17:665–678PubMed Ebbo M, Crinier A, Vely F, Vivier E. Innate lymphoid cells: major players in inflammatory diseases. Nat Rev Immunol. 2017;17:665–678PubMed
64.
Zurück zum Zitat Lim AI, Menegatti S, Bustamante J et al. IL-12 drives functional plasticity of human group 2 innate lymphoid cells. J Exp Med. 2016;213:569–583PubMedPubMedCentral Lim AI, Menegatti S, Bustamante J et al. IL-12 drives functional plasticity of human group 2 innate lymphoid cells. J Exp Med. 2016;213:569–583PubMedPubMedCentral
65.
Zurück zum Zitat Li S, Bostick JW, Ye J et al. Aryl Hydrocarbon receptor signaling cell intrinsically inhibits intestinal group 2 innate lymphoid cell function. Immunity. 2018;49:915PubMedPubMedCentral Li S, Bostick JW, Ye J et al. Aryl Hydrocarbon receptor signaling cell intrinsically inhibits intestinal group 2 innate lymphoid cell function. Immunity. 2018;49:915PubMedPubMedCentral
66.
Zurück zum Zitat Forkel M, van Tol S, Hoog C, Michaelsson J, Almer S, Mjosberg J. Distinct Alterations in the composition of mucosal innate lymphoid cells in newly diagnosed and established crohn’s disease and ulcerative colitis. J Crohns Colitis. 2019;13:67–78PubMed Forkel M, van Tol S, Hoog C, Michaelsson J, Almer S, Mjosberg J. Distinct Alterations in the composition of mucosal innate lymphoid cells in newly diagnosed and established crohn’s disease and ulcerative colitis. J Crohns Colitis. 2019;13:67–78PubMed
67.
Zurück zum Zitat Kinnebrew MA, Buffie CG, Diehl GE et al. Interleukin 23 production by intestinal CD103(+)CD11b(+) dendritic cells in response to bacterial flagellin enhances mucosal innate immune defense. Immunity. 2012;36:276–287PubMedPubMedCentral Kinnebrew MA, Buffie CG, Diehl GE et al. Interleukin 23 production by intestinal CD103(+)CD11b(+) dendritic cells in response to bacterial flagellin enhances mucosal innate immune defense. Immunity. 2012;36:276–287PubMedPubMedCentral
68.
Zurück zum Zitat Goto Y, Obata T, Kunisawa J et al. Innate lymphoid cells regulate intestinal epithelial cell glycosylation. Science. 2014;345:1254009PubMedPubMedCentral Goto Y, Obata T, Kunisawa J et al. Innate lymphoid cells regulate intestinal epithelial cell glycosylation. Science. 2014;345:1254009PubMedPubMedCentral
69.
Zurück zum Zitat Tsai PY, Zhang B, He WQ et al. IL-22 upregulates epithelial claudin-2 to drive diarrhea and enteric pathogen clearance. Cell Host Microbe. 2017;21:e4 Tsai PY, Zhang B, He WQ et al. IL-22 upregulates epithelial claudin-2 to drive diarrhea and enteric pathogen clearance. Cell Host Microbe. 2017;21:e4
70.
Zurück zum Zitat Kobori A, Yagi Y, Imaeda H et al. Interleukin-33 expression is specifically enhanced in inflamed mucosa of ulcerative colitis. J Gastroenterol. 2010;45:999–1007PubMed Kobori A, Yagi Y, Imaeda H et al. Interleukin-33 expression is specifically enhanced in inflamed mucosa of ulcerative colitis. J Gastroenterol. 2010;45:999–1007PubMed
71.
Zurück zum Zitat Schwartz C, O’Grady K, Lavelle EC, Fallon PG. Interleukin 33: an innate alarm for adaptive responses beyond Th2 immunity-emerging roles in obesity, intestinal inflammation, and cancer. Eur J Immunol. 2016;46:1091–1100PubMed Schwartz C, O’Grady K, Lavelle EC, Fallon PG. Interleukin 33: an innate alarm for adaptive responses beyond Th2 immunity-emerging roles in obesity, intestinal inflammation, and cancer. Eur J Immunol. 2016;46:1091–1100PubMed
72.
Zurück zum Zitat Monticelli LA, Osborne LC, Noti M, Tran SV, Zaiss DM, Artis D. IL-33 promotes an innate immune pathway of intestinal tissue protection dependent on amphiregulin-EGFR interactions. Proc Natl Acad Sci USA 2015;112:10762–10767PubMedPubMedCentral Monticelli LA, Osborne LC, Noti M, Tran SV, Zaiss DM, Artis D. IL-33 promotes an innate immune pathway of intestinal tissue protection dependent on amphiregulin-EGFR interactions. Proc Natl Acad Sci USA 2015;112:10762–10767PubMedPubMedCentral
73.
Zurück zum Zitat Schiering C, Krausgruber T, Chomka A et al. The alarmin IL-33 promotes regulatory T-cell function in the intestine. Nature. 2014;513:564–568PubMedPubMedCentral Schiering C, Krausgruber T, Chomka A et al. The alarmin IL-33 promotes regulatory T-cell function in the intestine. Nature. 2014;513:564–568PubMedPubMedCentral
74.
Zurück zum Zitat Forkel M, van Tol S, Höög C, Michaëlsson J, Almer S, Mjösberg J. Distinct alterations in the composition of mucosal innate lymphoid cells in newly diagnosed and established crohn’s disease and ulcerative colitis. J Crohns Colitis. 2019;13:67–78PubMed Forkel M, van Tol S, Höög C, Michaëlsson J, Almer S, Mjösberg J. Distinct alterations in the composition of mucosal innate lymphoid cells in newly diagnosed and established crohn’s disease and ulcerative colitis. J Crohns Colitis. 2019;13:67–78PubMed
75.
Zurück zum Zitat Camelo A, Barlow JL, Drynan LF et al. Blocking IL-25 signalling protects against gut inflammation in a type-2 model of colitis by suppressing nuocyte and NKT derived IL-13. J Gastroenterol. 2012;47:1198–1211PubMedPubMedCentral Camelo A, Barlow JL, Drynan LF et al. Blocking IL-25 signalling protects against gut inflammation in a type-2 model of colitis by suppressing nuocyte and NKT derived IL-13. J Gastroenterol. 2012;47:1198–1211PubMedPubMedCentral
76.
Zurück zum Zitat Zelante T, Iannitti RG, Cunha C et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity. 2013;39:372–385PubMed Zelante T, Iannitti RG, Cunha C et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity. 2013;39:372–385PubMed
77.
Zurück zum Zitat Qiu J, Guo X, Chen ZM et al. Group 3 innate lymphoid cells inhibit T-cell-mediated intestinal inflammation through aryl hydrocarbon receptor signaling and regulation of microflora. Immunity. 2013;39:386–399PubMed Qiu J, Guo X, Chen ZM et al. Group 3 innate lymphoid cells inhibit T-cell-mediated intestinal inflammation through aryl hydrocarbon receptor signaling and regulation of microflora. Immunity. 2013;39:386–399PubMed
78.
Zurück zum Zitat Ganal-Vonarburg SC, Duerr CU. The interaction of intestinal microbiota and innate lymphoid cells in health and disease throughout life. Immunology. 2020;159:39–51PubMed Ganal-Vonarburg SC, Duerr CU. The interaction of intestinal microbiota and innate lymphoid cells in health and disease throughout life. Immunology. 2020;159:39–51PubMed
79.
Zurück zum Zitat Constantinides MG. Interactions between the microbiota and innate and innate-like lymphocytes. J Leukoc Biol. 2018;103:409–419PubMed Constantinides MG. Interactions between the microbiota and innate and innate-like lymphocytes. J Leukoc Biol. 2018;103:409–419PubMed
80.
Zurück zum Zitat Blander JM, Longman RS, Iliev ID, Sonnenberg GF, Artis D. Regulation of inflammation by microbiota interactions with the host. Nat Immunol. 2017;18:851–860PubMedPubMedCentral Blander JM, Longman RS, Iliev ID, Sonnenberg GF, Artis D. Regulation of inflammation by microbiota interactions with the host. Nat Immunol. 2017;18:851–860PubMedPubMedCentral
81.
Zurück zum Zitat Thaiss CA, Zmora N, Levy M, Elinav E. The microbiome and innate immunity. Nature. 2016;535:65–74PubMed Thaiss CA, Zmora N, Levy M, Elinav E. The microbiome and innate immunity. Nature. 2016;535:65–74PubMed
82.
Zurück zum Zitat Sawa S, Lochner M, Satoh-Takayama N et al. RORgammat+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota. Nat Immunol. 2011;12:320–326PubMed Sawa S, Lochner M, Satoh-Takayama N et al. RORgammat+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota. Nat Immunol. 2011;12:320–326PubMed
83.
Zurück zum Zitat Sonnenberg GF, Monticelli LA, Alenghat T et al. Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria. Science. 2012;336:1321–1325PubMedPubMedCentral Sonnenberg GF, Monticelli LA, Alenghat T et al. Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria. Science. 2012;336:1321–1325PubMedPubMedCentral
84.
Zurück zum Zitat Penny HA, Hodge SH, Hepworth MR. Orchestration of intestinal homeostasis and tolerance by group 3 innate lymphoid cells. Semin Immunopathol. 2018;40:357–370PubMedPubMedCentral Penny HA, Hodge SH, Hepworth MR. Orchestration of intestinal homeostasis and tolerance by group 3 innate lymphoid cells. Semin Immunopathol. 2018;40:357–370PubMedPubMedCentral
85.
Zurück zum Zitat Castleman MJ, Dillon SM, Purba CM et al. Commensal and pathogenic bacteria indirectly induce IL-22 but Not IFNgamma production from human colonic ILC3s via multiple mechanisms. Front Immunol. 2019;10:649PubMedPubMedCentral Castleman MJ, Dillon SM, Purba CM et al. Commensal and pathogenic bacteria indirectly induce IL-22 but Not IFNgamma production from human colonic ILC3s via multiple mechanisms. Front Immunol. 2019;10:649PubMedPubMedCentral
86.
Zurück zum Zitat Babu ST, Niu X, Raetz M, Savani RC, Hooper LV, Mirpuri J. Maternal high-fat diet results in microbiota-dependent expansion of ILC3s in mice offspring. JCI Insight. 2018;3. Babu ST, Niu X, Raetz M, Savani RC, Hooper LV, Mirpuri J. Maternal high-fat diet results in microbiota-dependent expansion of ILC3s in mice offspring. JCI Insight. 2018;3.
87.
Zurück zum Zitat Zhou L, Chu C, Teng F et al. Innate lymphoid cells support regulatory T cells in the intestine through interleukin-2. Nature. 2019;568:405–409PubMedPubMedCentral Zhou L, Chu C, Teng F et al. Innate lymphoid cells support regulatory T cells in the intestine through interleukin-2. Nature. 2019;568:405–409PubMedPubMedCentral
88.
Zurück zum Zitat Wang Y, Kuang Z, Yu X, Ruhn KA, Kubo M, Hooper LV. The intestinal microbiota regulates body composition through NFIL3 and the circadian clock. Science. 2017;357:912–916PubMedPubMedCentral Wang Y, Kuang Z, Yu X, Ruhn KA, Kubo M, Hooper LV. The intestinal microbiota regulates body composition through NFIL3 and the circadian clock. Science. 2017;357:912–916PubMedPubMedCentral
89.
Zurück zum Zitat Godinho-Silva C, Domingues RG, Rendas M, et al. Light-entrained and brain-tuned circadian circuits regulate ILC3s and gut homeostasis. Nature. 2019. Godinho-Silva C, Domingues RG, Rendas M, et al. Light-entrained and brain-tuned circadian circuits regulate ILC3s and gut homeostasis. Nature. 2019.
90.
Zurück zum Zitat Teng F, Goc J, Zhou L, et al. A circadian clock is essential for homeostasis of group 3 innate lymphoid cells in the gut. Sci Immunol. 2019;4. Teng F, Goc J, Zhou L, et al. A circadian clock is essential for homeostasis of group 3 innate lymphoid cells in the gut. Sci Immunol. 2019;4.
91.
Zurück zum Zitat von Moltke J, Ji M, Liang HE, Locksley RM. Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit. Nature. 2016;529:221–225 von Moltke J, Ji M, Liang HE, Locksley RM. Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit. Nature. 2016;529:221–225
92.
Zurück zum Zitat Frisbee AL, Saleh MM, Young MK et al. IL-33 drives group 2 innate lymphoid cell-mediated protection during Clostridium difficile infection. Nat Commun. 2019;10:2712PubMedPubMedCentral Frisbee AL, Saleh MM, Young MK et al. IL-33 drives group 2 innate lymphoid cell-mediated protection during Clostridium difficile infection. Nat Commun. 2019;10:2712PubMedPubMedCentral
93.
Zurück zum Zitat Garrido-Mesa N, Schroeder JH, Stolarczyk E et al. T-bet controls intestinal mucosa immune responses via repression of type 2 innate lymphoid cell function. Mucosal Immunol. 2019;12:51–63PubMed Garrido-Mesa N, Schroeder JH, Stolarczyk E et al. T-bet controls intestinal mucosa immune responses via repression of type 2 innate lymphoid cell function. Mucosal Immunol. 2019;12:51–63PubMed
94.
Zurück zum Zitat Sepahi A, Liu Q, Friesen L, Kim CH. Dietary fiber metabolites regulate innate lymphoid cell responses. Mucosal Immunol. 2020. Sepahi A, Liu Q, Friesen L, Kim CH. Dietary fiber metabolites regulate innate lymphoid cell responses. Mucosal Immunol. 2020.
95.
Zurück zum Zitat Lloyd-Price J, Arze C, Ananthakrishnan AN et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature. 2019;569:655–662PubMedPubMedCentral Lloyd-Price J, Arze C, Ananthakrishnan AN et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature. 2019;569:655–662PubMedPubMedCentral
96.
Zurück zum Zitat Lamas B, Richard ML, Leducq V et al. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat Med. 2016;22:598–605PubMedPubMedCentral Lamas B, Richard ML, Leducq V et al. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat Med. 2016;22:598–605PubMedPubMedCentral
97.
Zurück zum Zitat Scott SA, Fu J, Chang PV. Microbial tryptophan metabolites regulate gut barrier function via the aryl hydrocarbon receptor. Proc Natl Acad Sci USA 2020;117:19376–19387PubMedPubMedCentral Scott SA, Fu J, Chang PV. Microbial tryptophan metabolites regulate gut barrier function via the aryl hydrocarbon receptor. Proc Natl Acad Sci USA 2020;117:19376–19387PubMedPubMedCentral
98.
Zurück zum Zitat Artis D, Spits H. The biology of innate lymphoid cells. Nature. 2015;517:293–301PubMed Artis D, Spits H. The biology of innate lymphoid cells. Nature. 2015;517:293–301PubMed
99.
Zurück zum Zitat Sano T, Huang W, Hall JA et al. An IL-23R/IL-22 circuit regulates epithelial serum amyloid A to promote local effector Th17 responses. Cell. 2015;163:381–393PubMedPubMedCentral Sano T, Huang W, Hall JA et al. An IL-23R/IL-22 circuit regulates epithelial serum amyloid A to promote local effector Th17 responses. Cell. 2015;163:381–393PubMedPubMedCentral
100.
Zurück zum Zitat Atarashi K, Tanoue T, Ando M et al. Th17 cell induction by adhesion of microbes to intestinal epithelial cells. Cell. 2015;163:367–380PubMedPubMedCentral Atarashi K, Tanoue T, Ando M et al. Th17 cell induction by adhesion of microbes to intestinal epithelial cells. Cell. 2015;163:367–380PubMedPubMedCentral
101.
Zurück zum Zitat Mielke LA, Jones SA, Raverdeau M et al. Retinoic acid expression associates with enhanced IL-22 production by gammadelta T cells and innate lymphoid cells and attenuation of intestinal inflammation. J Exp Med. 2013;210:1117–1124PubMedPubMedCentral Mielke LA, Jones SA, Raverdeau M et al. Retinoic acid expression associates with enhanced IL-22 production by gammadelta T cells and innate lymphoid cells and attenuation of intestinal inflammation. J Exp Med. 2013;210:1117–1124PubMedPubMedCentral
102.
Zurück zum Zitat Longman RS, Diehl GE, Victorio DA et al. CX(3)CR1(+) mononuclear phagocytes support colitis-associated innate lymphoid cell production of IL-22. J Exp Med. 2014;211:1571–1583PubMedPubMedCentral Longman RS, Diehl GE, Victorio DA et al. CX(3)CR1(+) mononuclear phagocytes support colitis-associated innate lymphoid cell production of IL-22. J Exp Med. 2014;211:1571–1583PubMedPubMedCentral
103.
Zurück zum Zitat Castellanos JG, Woo V, Viladomiu M et al. Microbiota-induced TNF-like ligand 1A drives group 3 innate lymphoid cell-mediated barrier protection and intestinal T cell activation during colitis. Immunity. 2018;49:e5 Castellanos JG, Woo V, Viladomiu M et al. Microbiota-induced TNF-like ligand 1A drives group 3 innate lymphoid cell-mediated barrier protection and intestinal T cell activation during colitis. Immunity. 2018;49:e5
104.
Zurück zum Zitat Mortha A, Chudnovskiy A, Hashimoto D et al. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis. Science. 2014;343:1249288PubMedPubMedCentral Mortha A, Chudnovskiy A, Hashimoto D et al. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis. Science. 2014;343:1249288PubMedPubMedCentral
105.
Zurück zum Zitat Levy M, Thaiss CA, Zeevi D et al. Microbiota-modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling. Cell. 2015;163:1428–1443PubMedPubMedCentral Levy M, Thaiss CA, Zeevi D et al. Microbiota-modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling. Cell. 2015;163:1428–1443PubMedPubMedCentral
106.
Zurück zum Zitat Munoz M, Eidenschenk C, Ota N et al. Interleukin-22 induces interleukin-18 expression from epithelial cells during intestinal infection. Immunity. 2015;42:321–331PubMed Munoz M, Eidenschenk C, Ota N et al. Interleukin-22 induces interleukin-18 expression from epithelial cells during intestinal infection. Immunity. 2015;42:321–331PubMed
107.
Zurück zum Zitat Hepworth MR, Fung TC, Masur SH et al. Group 3 innate lymphoid cells mediate intestinal selection of commensal bacteria-specific CD4(+) T cells. Science. 2015;348:1031–1035PubMedPubMedCentral Hepworth MR, Fung TC, Masur SH et al. Group 3 innate lymphoid cells mediate intestinal selection of commensal bacteria-specific CD4(+) T cells. Science. 2015;348:1031–1035PubMedPubMedCentral
108.
Zurück zum Zitat Hepworth MR, Monticelli LA, Fung TC et al. Innate lymphoid cells regulate CD4+ T-cell responses to intestinal commensal bacteria. Nature. 2013;498:113–117PubMedPubMedCentral Hepworth MR, Monticelli LA, Fung TC et al. Innate lymphoid cells regulate CD4+ T-cell responses to intestinal commensal bacteria. Nature. 2013;498:113–117PubMedPubMedCentral
109.
Zurück zum Zitat Neurath MF. Current and emerging therapeutic targets for IBD. Nat Rev Gastroenterol Hepatol. 2017;14:269–278PubMed Neurath MF. Current and emerging therapeutic targets for IBD. Nat Rev Gastroenterol Hepatol. 2017;14:269–278PubMed
110.
Zurück zum Zitat Withers DR, Hepworth MR, Wang X et al. Transient inhibition of ROR-gammat therapeutically limits intestinal inflammation by reducing TH17 cells and preserving group 3 innate lymphoid cells. Nat Med. 2016;22:319–323PubMedPubMedCentral Withers DR, Hepworth MR, Wang X et al. Transient inhibition of ROR-gammat therapeutically limits intestinal inflammation by reducing TH17 cells and preserving group 3 innate lymphoid cells. Nat Med. 2016;22:319–323PubMedPubMedCentral
111.
Zurück zum Zitat Hueber W, Sands BE, Lewitzky S et al. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn’s disease: unexpected results of a randomised, double-blind placebo-controlled trial. Gut. 2012;61:1693–1700PubMed Hueber W, Sands BE, Lewitzky S et al. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn’s disease: unexpected results of a randomised, double-blind placebo-controlled trial. Gut. 2012;61:1693–1700PubMed
112.
Zurück zum Zitat Withers DR, Hepworth MR. Group 3 innate lymphoid cells: communications hubs of the intestinal immune system. Front Immunol. 2017;8:1298PubMedPubMedCentral Withers DR, Hepworth MR. Group 3 innate lymphoid cells: communications hubs of the intestinal immune system. Front Immunol. 2017;8:1298PubMedPubMedCentral
113.
Zurück zum Zitat Kaser A. Not all monoclonals are created equal-lessons from failed drug trials in Crohn’s disease. Best Pract Res Clin Gastroenterol. 2014;28:437–449PubMed Kaser A. Not all monoclonals are created equal-lessons from failed drug trials in Crohn’s disease. Best Pract Res Clin Gastroenterol. 2014;28:437–449PubMed
114.
Zurück zum Zitat Colombel JF, Sendid B, Jouault T, Poulain D. Secukinumab failure in Crohn’s disease: the yeast connection? Gut. 2013;62:800–801PubMed Colombel JF, Sendid B, Jouault T, Poulain D. Secukinumab failure in Crohn’s disease: the yeast connection? Gut. 2013;62:800–801PubMed
115.
Zurück zum Zitat Zhou L, Sonnenberg GF. Essential immunologic orchestrators of intestinal homeostasis. Sci Immunol. 2018;3. Zhou L, Sonnenberg GF. Essential immunologic orchestrators of intestinal homeostasis. Sci Immunol. 2018;3.
116.
Zurück zum Zitat Sandborn WJ, Ferrante M, Bhandari BR, et al. Efficacy and safety of mirikizumab in a randomized phase 2 study of patients with ulcerative colitis. Gastroenterology. 2019. Sandborn WJ, Ferrante M, Bhandari BR, et al. Efficacy and safety of mirikizumab in a randomized phase 2 study of patients with ulcerative colitis. Gastroenterology. 2019.
117.
118.
Zurück zum Zitat Tang C, Kakuta S, Shimizu K, et al. Suppression of IL-17F, but not of IL-17A, provides protection against colitis by inducing Treg cells through modification of the intestinal microbiota. Nat Immunol. 2018. Tang C, Kakuta S, Shimizu K, et al. Suppression of IL-17F, but not of IL-17A, provides protection against colitis by inducing Treg cells through modification of the intestinal microbiota. Nat Immunol. 2018.
119.
Zurück zum Zitat Reinisch W, de Villiers W, Bene L et al. Fontolizumab in moderate to severe Crohn’s disease: a phase 2, randomized, double-blind, placebo-controlled, multiple-dose study. Inflamm Bowel Dis. 2010;16:233–242PubMed Reinisch W, de Villiers W, Bene L et al. Fontolizumab in moderate to severe Crohn’s disease: a phase 2, randomized, double-blind, placebo-controlled, multiple-dose study. Inflamm Bowel Dis. 2010;16:233–242PubMed
120.
Zurück zum Zitat Goldberg R, Prescott N, Lord GM, MacDonald TT, Powell N. The unusual suspects–innate lymphoid cells as novel therapeutic targets in IBD. Nat Rev Gastroenterol Hepatol. 2015;12:271–283PubMed Goldberg R, Prescott N, Lord GM, MacDonald TT, Powell N. The unusual suspects–innate lymphoid cells as novel therapeutic targets in IBD. Nat Rev Gastroenterol Hepatol. 2015;12:271–283PubMed
121.
Zurück zum Zitat Rutgeerts P, Sandborn WJ, Feagan BG et al. Infliximab for induction and maintenance therapy for ulcerative colitis. N Engl J Med. 2005;353:2462–2476PubMed Rutgeerts P, Sandborn WJ, Feagan BG et al. Infliximab for induction and maintenance therapy for ulcerative colitis. N Engl J Med. 2005;353:2462–2476PubMed
122.
Zurück zum Zitat Pelczar P, Witkowski M, Perez LG et al. A pathogenic role for T cell-derived IL-22BP in inflammatory bowel disease. Science. 2016;354:358–362PubMed Pelczar P, Witkowski M, Perez LG et al. A pathogenic role for T cell-derived IL-22BP in inflammatory bowel disease. Science. 2016;354:358–362PubMed
123.
Zurück zum Zitat Danese S, Vermeire S, Hellstern P et al. Randomised trial and open-label extension study of an anti-interleukin-6 antibody in Crohn’s disease (ANDANTE I and II). Gut. 2019;68:40–48PubMed Danese S, Vermeire S, Hellstern P et al. Randomised trial and open-label extension study of an anti-interleukin-6 antibody in Crohn’s disease (ANDANTE I and II). Gut. 2019;68:40–48PubMed
124.
Zurück zum Zitat Powell N, Walker AW, Stolarczyk E et al. The transcription factor T-bet regulates intestinal inflammation mediated by interleukin-7 receptor+ innate lymphoid cells. Immunity. 2012;37:674–684PubMedPubMedCentral Powell N, Walker AW, Stolarczyk E et al. The transcription factor T-bet regulates intestinal inflammation mediated by interleukin-7 receptor+ innate lymphoid cells. Immunity. 2012;37:674–684PubMedPubMedCentral
125.
Zurück zum Zitat Ermann J, Staton T, Glickman JN, de Waal Malefyt R, Glimcher LH. Nod/Ripk2 signaling in dendritic cells activates IL-17A-secreting innate lymphoid cells and drives colitis in T-bet-/-.Rag2-/- (TRUC) mice. Proc Natl Acad Sci USA. 2014;111:E2559-66. Ermann J, Staton T, Glickman JN, de Waal Malefyt R, Glimcher LH. Nod/Ripk2 signaling in dendritic cells activates IL-17A-secreting innate lymphoid cells and drives colitis in T-bet-/-.Rag2-/- (TRUC) mice. Proc Natl Acad Sci USA. 2014;111:E2559-66.
Metadaten
Titel
Update: Innate Lymphoid Cells in Inflammatory Bowel Disease
verfasst von
Weiwei Luo
Li Tian
Bei Tan
Zhaohua Shen
Mengwei Xiao
Shuai Wu
Xiangrui Meng
Xing Wu
Xiaoyan Wang
Publikationsdatum
20.02.2021
Verlag
Springer US
Erschienen in
Digestive Diseases and Sciences / Ausgabe 1/2022
Print ISSN: 0163-2116
Elektronische ISSN: 1573-2568
DOI
https://doi.org/10.1007/s10620-021-06831-8

Weitere Artikel der Ausgabe 1/2022

Digestive Diseases and Sciences 1/2022 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.