Skip to main content
Erschienen in: Molecular and Cellular Pediatrics 1/2016

Open Access 01.12.2016 | Mini review

Update on host-pathogen interactions in cystic fibrosis lung disease

verfasst von: Andreas Hector, Nina Frey, Dominik Hartl

Erschienen in: Molecular and Cellular Pediatrics | Ausgabe 1/2016

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

Bacterial and fungal infections are hallmarks of cystic fibrosis (CF) lung disease. In the era of long-term inhaled antibiotics and increasing CF patient survival, new “emerging” pathogens are detected in CF airways, yet their pathophysiological disease relevance remains largely controversial and incompletely defined. As a response to chronic microbial triggers, innate immune cells, particularly neutrophils, are continuously recruited into CF airways where they combat pathogens but also cause tissue injury through release of oxidants and proteases. The coordinated interplay between host immune cell activation and pathogens is essential for the outcome of CF lung disease. Here, we provide a concise overview and update on host-pathogen interactions in CF lung disease.
Hinweise

Authors’ contributions

AH reviewed the literature and wrote the manuscript. NF co-wrote the manuscript. DH supervised and contributed to the manuscript writing and the related discussions. All authors read and approved the final manuscript.

Manuscript

CF lung disease

Lung disease determines the morbidity and mortality of patients with cystic fibrosis (CF), a lethal monogenetic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene [21]. Hallmarks of CF lung disease are its chronic, non-resolving and perpetuating nature. Importantly, a key characteristic of CF lung disease is the early and maintained interplay of microbial infection and severe airway inflammation [16]. The altered CF lung environment, characterized by mucus obstruction, airway surface liquid dehydration, pH dysregulation (lower, acidic pH), and high burden of extracellular proteases (mainly neutrophil elastase and matrix metalloproteases) favors microbial airway colonization and abnormal/inefficient host immunity [16, 21]. While inflammation in general is essential and indispensable to clear microbial infections and restore tissue integrity and homeostasis in acute infective conditions such as bacterial pneumonia, the pro-inflammatory response mechanisms activated in CF lung disease seem to be acting in an excessive, non-balanced, and therefore perpetuated manner [6]. The resulting immune cell infiltration leads to irreversible tissue remodeling with bronchiectasis and loss of lung function. Overall, host-pathogen interactions in CF are complex since they (1) depend on the individual CFTR mutation class, (2) evolve mutually in a temporal and spatial manner, and (3) are regulated by bacterial and fungal phenotypes, such as biofilm formations [17, 28, 35]. Here, we aim to provide a concise overview on host-pathogen interactions in CF lung disease in order to shed light on new avenues for future research and treatment approaches.

Microbial airway colonization in CF lung disease

CF airways are mainly colonized by specific bacteria and fungi [28]. Among bacteria, Pseudomonas aeruginosa and Staphylococcus aureus are the most abundant and consequently most thoroughly studied pathogens. In early infancy, CF airways are typically colonized with S. aureus and Haemophilus influenzae. Later on in childhood, P. aeruginosa predominates and modulates disease outcome substantially [3]. Upon chronic colonization, P. aeruginosa can adapt this phenotype by conversion into a mucoid form that is more resistant to antibiotics and host defense. The majority of inhaled or systemic antibiotics used to treat CF patients is actually directed against P. aeruginosa in order to eradicate or suppress this opportunistic Gram-negative bacterium [7]. The underlying host-pathogen interaction mechanisms regulating the CF-characteristic microbial “switch” from S. aureus and H. influenzae to P. aeruginosa remain, however, controversial and incompletely understood, but probably involve pathogen-derived factors, such as pyocyanin and host-derived immune factors as well as environmental influences. In the era of commonly and early used inhaled antibiotics and prolonged patient survival, new “emerging” pathogens are increasingly detected in CF airway fluids, particularly fungi, such as Aspergillus fumigatus [2, 26], Candida albicans [9, 10], and Scedosporium species [22], and the bacteria Stenotrophomonas maltophilia [13], Achromobacter xylosoxidans [12, 15], methicillin-resistant S. aureus (MRSA) [14], Burkholderia cepacia [11, 25], and atypical mycobacteria (nontuberculous mycobacteria, NTMs) [1, 23], which are often hard to treat in the clinics due to antibiotic resistance patterns [7, 8, 31, 33, 34]. Whereas the prevalence (or at least the detection rate) of these microbial species increases in most CF centers, their pathophysiological disease relevance for the outcome of CF lung disease remains controversial and poorly defined. MRSA [14], B. cepacia, and NTMs [23] are broadly accepted as harmful CF pathogens, while for other rare species (such as S. maltophilia [13, 30, 32]), this is less clear.

Host immunity

Faced with the presence of bacterial and fungal microbial species, the host immune response reacts by recruiting innate and adaptive immune cells into the infected CF airway compartment. Among innate immune cells, neutrophils are the most rapid and predominant cell type transmigrating into CF airways, while in adaptive immunity, T-helper cell type 2 (Th2) and Th17 cell responses are predominant [16], while regulatory T cell responses are impaired [18]. Remarkably, phagocytic innate immune cells (neutrophils and macrophages) preferentially accumulate within the airway compartment, whereas, in contrast, lymphocytes are mainly found in lung tissues, but are very low within the airway lumen [24]. The underlying migratory and/or tissue homeostatic mechanisms regulating this distinct immune cell tissue compartment localization/distribution remain to be defined, yet recent studies suggest that neutrophils can suppress and thereby dampen T cell activity at sites of inflammation [19]. When innate immune cells are in physical contact with pathogens, several factors decide which anti-microbial defense mechanisms are employed; phagocytotic uptake is the most rapid and principal effector function against smaller bacteria and fungi, particularly after antibody- and/or complement-mediated opsonisation [20]. If pathogen size exceeds a critical threshold or pathogens shield themselves through biofilms, neutrophils are unable to efficiently phagocytose pathogens and utilize their extracellular host defense armamentarium, consisting of neutrophil extracellular trap (NET) formation [4] and the release of intracellularly stored anti-microbial effector proteins (such as defensins and proteases) [20]. In CF airways in vivo, probably a combination of these host defense mechanisms is operative, yet studies comparing the relative contribution of these distinct neutrophil functionalities to host defense outcome within the CF airways are lacking (to the best of our knowledge). Beyond cellular mechanisms, studies involved a dysregulated ceramide homeostasis/turnover in CF lung disease by showing that ceramide accumulates in CF airways and mediates inflammation, cell death, and infection susceptibility [29].

Conclusion

Our understanding of host-pathogen interactions in CF lung disease is continuously and substantially renewed by current findings in microbiology (for instance by the microbiome [27]) and immunology/cell biology (for instance by the discovery of NET formation [5]). The challenge for the future remains to combine insights from these two often disconnected scientific fields and to translate them efficiently into the complex pathogenesis of CF lung disease. A more precise dissection/stratification of host-pathogen interaction components into beneficial (anti-infective, host defensive) and harmful (collateral tissue damage) subtypes could pave the way to develop novel optimized strategies for biomarker development and therapeutic drug targeting in CF lung disease.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors’ contributions

AH reviewed the literature and wrote the manuscript. NF co-wrote the manuscript. DH supervised and contributed to the manuscript writing and the related discussions. All authors read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat Adjemian J, Olivier KN, Prevots DR (2014) Nontuberculous mycobacteria among patients with cystic fibrosis in the United States: screening practices and environmental risk. Am J Respir Crit Care Med 190:581–586PubMedCentralCrossRefPubMed Adjemian J, Olivier KN, Prevots DR (2014) Nontuberculous mycobacteria among patients with cystic fibrosis in the United States: screening practices and environmental risk. Am J Respir Crit Care Med 190:581–586PubMedCentralCrossRefPubMed
2.
Zurück zum Zitat Amin R, Dupuis A, Aaron SD et al (2010) The effect of chronic infection with Aspergillus fumigatus on lung function and hospitalization in patients with cystic fibrosis. Chest 137:171–176CrossRefPubMed Amin R, Dupuis A, Aaron SD et al (2010) The effect of chronic infection with Aspergillus fumigatus on lung function and hospitalization in patients with cystic fibrosis. Chest 137:171–176CrossRefPubMed
3.
Zurück zum Zitat Bendiak GN, Ratjen F (2009) The approach to Pseudomonas aeruginosa in cystic fibrosis. Semin Respir Crit Care Med 30:587–595CrossRefPubMed Bendiak GN, Ratjen F (2009) The approach to Pseudomonas aeruginosa in cystic fibrosis. Semin Respir Crit Care Med 30:587–595CrossRefPubMed
4.
Zurück zum Zitat Branzk N, Lubojemska A, Hardison SE et al (2014) Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens. Nat Immunol 15:1017–1025PubMedCentralCrossRefPubMed Branzk N, Lubojemska A, Hardison SE et al (2014) Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens. Nat Immunol 15:1017–1025PubMedCentralCrossRefPubMed
5.
Zurück zum Zitat Brinkmann V, Zychlinsky A (2007) Beneficial suicide: why neutrophils die to make NETs. Nature reviews. Microbiology 5:577–582PubMed Brinkmann V, Zychlinsky A (2007) Beneficial suicide: why neutrophils die to make NETs. Nature reviews. Microbiology 5:577–582PubMed
6.
Zurück zum Zitat Cantin AM, Hartl D, Konstan MW et al (2015) Inflammation in cystic fibrosis lung disease: pathogenesis and therapy. J Cyst Fibros 14:419–430CrossRefPubMed Cantin AM, Hartl D, Konstan MW et al (2015) Inflammation in cystic fibrosis lung disease: pathogenesis and therapy. J Cyst Fibros 14:419–430CrossRefPubMed
7.
Zurück zum Zitat Chmiel JF, Aksamit TR, Chotirmall SH et al (2014) Antibiotic management of lung infections in cystic fibrosis. I. The microbiome, methicillin-resistant Staphylococcus aureus, gram-negative bacteria, and multiple infections. Ann Am Thorac Soc 11:1120–1129CrossRefPubMed Chmiel JF, Aksamit TR, Chotirmall SH et al (2014) Antibiotic management of lung infections in cystic fibrosis. I. The microbiome, methicillin-resistant Staphylococcus aureus, gram-negative bacteria, and multiple infections. Ann Am Thorac Soc 11:1120–1129CrossRefPubMed
8.
Zurück zum Zitat Chmiel JF, Aksamit TR, Chotirmall SH et al (2014) Antibiotic management of lung infections in cystic fibrosis. II. Nontuberculous mycobacteria, anaerobic bacteria, and fungi. Ann Am Thorac Soc 11:1298–1306CrossRefPubMed Chmiel JF, Aksamit TR, Chotirmall SH et al (2014) Antibiotic management of lung infections in cystic fibrosis. II. Nontuberculous mycobacteria, anaerobic bacteria, and fungi. Ann Am Thorac Soc 11:1298–1306CrossRefPubMed
9.
Zurück zum Zitat Chotirmall SH, Greene CM, Mcelvaney NG (2010) Candida species in cystic fibrosis: a road less travelled. Med Mycol 48:S114–S124CrossRefPubMed Chotirmall SH, Greene CM, Mcelvaney NG (2010) Candida species in cystic fibrosis: a road less travelled. Med Mycol 48:S114–S124CrossRefPubMed
10.
Zurück zum Zitat Chotirmall SH, O’donoghue E, Bennett K et al (2010) Sputum Candida albicans presages FEV(1) decline and hospital-treated exacerbations in cystic fibrosis. Chest 138:1186–1195CrossRefPubMed Chotirmall SH, O’donoghue E, Bennett K et al (2010) Sputum Candida albicans presages FEV(1) decline and hospital-treated exacerbations in cystic fibrosis. Chest 138:1186–1195CrossRefPubMed
11.
Zurück zum Zitat Courtney JM, Dunbar KE, Mcdowell A et al (2004) Clinical outcome of Burkholderia cepacia complex infection in cystic fibrosis adults. J Cyst Fibros 3:93–98CrossRefPubMed Courtney JM, Dunbar KE, Mcdowell A et al (2004) Clinical outcome of Burkholderia cepacia complex infection in cystic fibrosis adults. J Cyst Fibros 3:93–98CrossRefPubMed
12.
Zurück zum Zitat De Baets F, Schelstraete P, Van Daele S et al (2007) Achromobacter xylosoxidans in cystic fibrosis: prevalence and clinical relevance. J Cyst Fibros 6:75–78CrossRefPubMed De Baets F, Schelstraete P, Van Daele S et al (2007) Achromobacter xylosoxidans in cystic fibrosis: prevalence and clinical relevance. J Cyst Fibros 6:75–78CrossRefPubMed
13.
Zurück zum Zitat Goss CH, Mayer-Hamblett N, Aitken ML et al (2004) Association between Stenotrophomonas maltophilia and lung function in cystic fibrosis. Thorax 59:955–959PubMedCentralCrossRefPubMed Goss CH, Mayer-Hamblett N, Aitken ML et al (2004) Association between Stenotrophomonas maltophilia and lung function in cystic fibrosis. Thorax 59:955–959PubMedCentralCrossRefPubMed
14.
Zurück zum Zitat Goss CH, Muhlebach MS (2011) Review: Staphylococcus aureus and MRSA in cystic fibrosis. J Cyst Fibros 10:298–306CrossRefPubMed Goss CH, Muhlebach MS (2011) Review: Staphylococcus aureus and MRSA in cystic fibrosis. J Cyst Fibros 10:298–306CrossRefPubMed
15.
Zurück zum Zitat Hansen CR, Pressler T, Nielsen KG et al (2010) Inflammation in Achromobacter xylosoxidans infected cystic fibrosis patients. J Cyst Fibros 9:51–58CrossRefPubMed Hansen CR, Pressler T, Nielsen KG et al (2010) Inflammation in Achromobacter xylosoxidans infected cystic fibrosis patients. J Cyst Fibros 9:51–58CrossRefPubMed
16.
Zurück zum Zitat Hartl D, Gaggar A, Bruscia E et al (2012) Innate immunity in cystic fibrosis lung disease. J Cyst Fibros 11:363–382CrossRefPubMed Hartl D, Gaggar A, Bruscia E et al (2012) Innate immunity in cystic fibrosis lung disease. J Cyst Fibros 11:363–382CrossRefPubMed
17.
Zurück zum Zitat Hassett DJ, Korfhagen TR, Irvin RT et al (2010) Pseudomonas aeruginosa biofilm infections in cystic fibrosis: insights into pathogenic processes and treatment strategies. Expert Opin Ther Targets 14:117–130CrossRefPubMed Hassett DJ, Korfhagen TR, Irvin RT et al (2010) Pseudomonas aeruginosa biofilm infections in cystic fibrosis: insights into pathogenic processes and treatment strategies. Expert Opin Ther Targets 14:117–130CrossRefPubMed
18.
Zurück zum Zitat Hector A, Schafer H, Poschel S et al (2015) Regulatory T cell impairment in cystic fibrosis patients with chronic pseudomonas infection. Am J Respir Crit Care Med 191(8):914–923CrossRefPubMed Hector A, Schafer H, Poschel S et al (2015) Regulatory T cell impairment in cystic fibrosis patients with chronic pseudomonas infection. Am J Respir Crit Care Med 191(8):914–923CrossRefPubMed
19.
Zurück zum Zitat Ingersoll SA, Laval J, Forrest OA et al (2015) Mature cystic fibrosis airway neutrophils suppress T cell function: evidence for a role of arginase 1 but not programmed death-ligand 1. J Immunol 194:5520–5528CrossRefPubMed Ingersoll SA, Laval J, Forrest OA et al (2015) Mature cystic fibrosis airway neutrophils suppress T cell function: evidence for a role of arginase 1 but not programmed death-ligand 1. J Immunol 194:5520–5528CrossRefPubMed
20.
21.
22.
Zurück zum Zitat Nagano Y, Cherie MB, Goldsmith CE, et al. (2009) Emergence of Scedosporium apiospermum in patients with cystic fibrosis. BMJ Case Reports:bcr2007119503 Nagano Y, Cherie MB, Goldsmith CE, et al. (2009) Emergence of Scedosporium apiospermum in patients with cystic fibrosis. BMJ Case Reports:bcr2007119503
23.
Zurück zum Zitat Nick JA (2003) Nontuberculous mycobacteria in cystic fibrosis. Semin Respir Crit Care Med 24:693–702CrossRefPubMed Nick JA (2003) Nontuberculous mycobacteria in cystic fibrosis. Semin Respir Crit Care Med 24:693–702CrossRefPubMed
24.
Zurück zum Zitat Regamey N, Tsartsali L, Hilliard TN et al (2011) Distinct patterns of inflammation in the airway lumen and bronchial mucosa of children with cystic fibrosis. Thorax 67(2):164–170CrossRefPubMed Regamey N, Tsartsali L, Hilliard TN et al (2011) Distinct patterns of inflammation in the airway lumen and bronchial mucosa of children with cystic fibrosis. Thorax 67(2):164–170CrossRefPubMed
25.
Zurück zum Zitat Regan KH, Bhatt J (2014) Eradication therapy for Burkholderia cepacia complex in people with cystic fibrosis. Cochrane Database Syst Rev 10, CD009876PubMed Regan KH, Bhatt J (2014) Eradication therapy for Burkholderia cepacia complex in people with cystic fibrosis. Cochrane Database Syst Rev 10, CD009876PubMed
26.
Zurück zum Zitat Shoseyov D, Brownlee KG, Conway SP et al (2006) Aspergillus bronchitis in cystic fibrosis. Chest 130:222–226CrossRefPubMed Shoseyov D, Brownlee KG, Conway SP et al (2006) Aspergillus bronchitis in cystic fibrosis. Chest 130:222–226CrossRefPubMed
27.
Zurück zum Zitat Surette MG (2014) The cystic fibrosis lung microbiome. Ann Am Thorac Soc 11(Suppl 1):S61–S65CrossRefPubMed Surette MG (2014) The cystic fibrosis lung microbiome. Ann Am Thorac Soc 11(Suppl 1):S61–S65CrossRefPubMed
28.
Zurück zum Zitat Tang AC, Turvey SE, Alves MP et al (2014) Current concepts: host-pathogen interactions in cystic fibrosis airways disease. Eur Respir Rev 23:320–332CrossRefPubMed Tang AC, Turvey SE, Alves MP et al (2014) Current concepts: host-pathogen interactions in cystic fibrosis airways disease. Eur Respir Rev 23:320–332CrossRefPubMed
29.
Zurück zum Zitat Teichgraber V, Ulrich M, Endlich N et al (2008) Ceramide accumulation mediates inflammation, cell death and infection susceptibility in cystic fibrosis. Nat Med 14:382–391CrossRefPubMed Teichgraber V, Ulrich M, Endlich N et al (2008) Ceramide accumulation mediates inflammation, cell death and infection susceptibility in cystic fibrosis. Nat Med 14:382–391CrossRefPubMed
30.
Zurück zum Zitat Waters V, Atenafu EG, Salazar JG et al (2012) Chronic Stenotrophomonas maltophilia infection and exacerbation outcomes in cystic fibrosis. J Cyst Fibros 11:8–13CrossRefPubMed Waters V, Atenafu EG, Salazar JG et al (2012) Chronic Stenotrophomonas maltophilia infection and exacerbation outcomes in cystic fibrosis. J Cyst Fibros 11:8–13CrossRefPubMed
31.
Zurück zum Zitat Waters V, Ratjen F (2014) Antibiotic treatment for nontuberculous mycobacteria lung infection in people with cystic fibrosis. Cochrane Database Syst Rev 12, CD010004PubMed Waters V, Ratjen F (2014) Antibiotic treatment for nontuberculous mycobacteria lung infection in people with cystic fibrosis. Cochrane Database Syst Rev 12, CD010004PubMed
32.
Zurück zum Zitat Waters V, Yau Y, Prasad S et al (2011) Stenotrophomonas maltophilia in cystic fibrosis: serologic response and effect on lung disease. Am J Respir Crit Care Med 183:635–640CrossRefPubMed Waters V, Yau Y, Prasad S et al (2011) Stenotrophomonas maltophilia in cystic fibrosis: serologic response and effect on lung disease. Am J Respir Crit Care Med 183:635–640CrossRefPubMed
33.
Zurück zum Zitat Waters VJ, Ratjen FA (2014) Is there a role for antimicrobial stewardship in cystic fibrosis? Ann Am Thorac Soc 11:1116–1119CrossRefPubMed Waters VJ, Ratjen FA (2014) Is there a role for antimicrobial stewardship in cystic fibrosis? Ann Am Thorac Soc 11:1116–1119CrossRefPubMed
34.
Zurück zum Zitat Waters VJ, Stanojevic S, Sonneveld N et al (2015) Factors associated with response to treatment of pulmonary exacerbations in cystic fibrosis patients. J Cyst Fibros 14(6):755–762CrossRefPubMed Waters VJ, Stanojevic S, Sonneveld N et al (2015) Factors associated with response to treatment of pulmonary exacerbations in cystic fibrosis patients. J Cyst Fibros 14(6):755–762CrossRefPubMed
35.
Zurück zum Zitat Yonker LM, Cigana C, Hurley BP et al (2015) Host-pathogen interplay in the respiratory environment of cystic fibrosis. J Cyst Fibros 14:431–439CrossRefPubMed Yonker LM, Cigana C, Hurley BP et al (2015) Host-pathogen interplay in the respiratory environment of cystic fibrosis. J Cyst Fibros 14:431–439CrossRefPubMed
Metadaten
Titel
Update on host-pathogen interactions in cystic fibrosis lung disease
verfasst von
Andreas Hector
Nina Frey
Dominik Hartl
Publikationsdatum
01.12.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Molecular and Cellular Pediatrics / Ausgabe 1/2016
Elektronische ISSN: 2194-7791
DOI
https://doi.org/10.1186/s40348-016-0039-5

Weitere Artikel der Ausgabe 1/2016

Molecular and Cellular Pediatrics 1/2016 Zur Ausgabe

Kinder mit anhaltender Sinusitis profitieren häufig von Antibiotika

30.04.2024 Rhinitis und Sinusitis Nachrichten

Persistieren Sinusitisbeschwerden bei Kindern länger als zehn Tage, ist eine Antibiotikatherapie häufig gut wirksam: Ein Therapieversagen ist damit zu über 40% seltener zu beobachten als unter Placebo.

Neuer Typ-1-Diabetes bei Kindern am Wochenende eher übersehen

23.04.2024 Typ-1-Diabetes Nachrichten

Wenn Kinder an Werktagen zum Arzt gehen, werden neu auftretender Typ-1-Diabetes und diabetische Ketoazidosen häufiger erkannt als bei Arztbesuchen an Wochenenden oder Feiertagen.

Neue Studienergebnisse zur Myopiekontrolle mit Atropin

22.04.2024 Fehlsichtigkeit Nachrichten

Augentropfen mit niedrig dosiertem Atropin können helfen, das Fortschreiten einer Kurzsichtigkeit bei Kindern zumindest zu verlangsamen, wie die Ergebnisse einer aktuellen Studie mit verschiedenen Dosierungen zeigen.

Spinale Muskelatrophie: Neugeborenen-Screening lohnt sich

18.04.2024 Spinale Muskelatrophien Nachrichten

Seit 2021 ist die Untersuchung auf spinale Muskelatrophie Teil des Neugeborenen-Screenings in Deutschland. Eine Studie liefert weitere Evidenz für den Nutzen der Maßnahme.

Update Pädiatrie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.