Skip to main content
Erschienen in: Pediatric Nephrology 4/2014

01.04.2014 | Review

Urinary tract pacemaker cells: current knowledge and insights from nonrenal pacemaker cells provide a basis for future discovery

verfasst von: Meghan M. Feeney, Norman D. Rosenblum

Erschienen in: Pediatric Nephrology | Ausgabe 4/2014

Einloggen, um Zugang zu erhalten

Abstract

Coordinated ureteric peristalsis propels urine from the kidney to the bladder. Cells in the renal pelvis and ureter spontaneously generate and propagate electrical activity to control this process. Recently, c-kit tyrosine kinase and hyperpolarization-activated cyclic nucleotide-gated channel 3 (HCN3) were identified in the upper urinary tract. Both of these proteins are required for coordinated proximal to distal contractions in the ureter. Alterations in pacemaker cell expression are present in multiple congenital kidney diseases, suggesting a functional contribution by these cells to pathologic states. In contrast to gut and heart pacemaker cells, the developmental biology of ureteric pacemaker cells, including cell lineage and signaling mechanisms, is undefined. Here, we review pacemaker cell identify and function in the urinary pelvis and ureter and the control of pacemaker function by Hedgehog-GLI signaling. Next, we highlight current knowledge of gut and heart pacemaker cells that is likely to provide insight into developmental mechanisms that could control urinary pacemaker cells.
Literatur
1.
Zurück zum Zitat David SG, Cebrian C, Vaughan ED Jr, Herzlinger D (2005) C-Kit and ureteral peristalsis. J Urol 173(1):292–295PubMedCrossRef David SG, Cebrian C, Vaughan ED Jr, Herzlinger D (2005) C-Kit and ureteral peristalsis. J Urol 173(1):292–295PubMedCrossRef
2.
Zurück zum Zitat Hurtado R, Bub G, Herzlinger D (2009) The pelvis-kidney junction contains HCN3, a hyperpolarization-activated cation channel that triggers ureter peristalsis. Kidney Int 77(6):500–508PubMedCrossRef Hurtado R, Bub G, Herzlinger D (2009) The pelvis-kidney junction contains HCN3, a hyperpolarization-activated cation channel that triggers ureter peristalsis. Kidney Int 77(6):500–508PubMedCrossRef
3.
Zurück zum Zitat Bozler E (1942) The activity of the pacemaker previous to the discharge of a muscular impulse. Am J Physiol 136:543–552 Bozler E (1942) The activity of the pacemaker previous to the discharge of a muscular impulse. Am J Physiol 136:543–552
4.
Zurück zum Zitat Gosling JA, Dixon JS (1971) Morphologic evidence that the renal calyx and pelvis control ureteric activity in the rabbit. Am J Anat 130:393–408PubMedCrossRef Gosling JA, Dixon JS (1971) Morphologic evidence that the renal calyx and pelvis control ureteric activity in the rabbit. Am J Anat 130:393–408PubMedCrossRef
5.
Zurück zum Zitat Björk L, Nylén O (1972) Cineradiographic investigations of contraction in the normal upper urinary tract in man. Acta Radiol Diagn 12(1):25–33 Björk L, Nylén O (1972) Cineradiographic investigations of contraction in the normal upper urinary tract in man. Acta Radiol Diagn 12(1):25–33
6.
Zurück zum Zitat Gosling JA (1970) Atypical muscle cells in the wall of the renal calix and pelvis with a note on their possible significance. Experientia 26(7):769–770PubMedCrossRef Gosling JA (1970) Atypical muscle cells in the wall of the renal calix and pelvis with a note on their possible significance. Experientia 26(7):769–770PubMedCrossRef
7.
Zurück zum Zitat Gosling JA, Dixon JS (1974) Species variation in the location of upper urinary tract pacemaker cells. Invest Urol 11(5):418–423PubMed Gosling JA, Dixon JS (1974) Species variation in the location of upper urinary tract pacemaker cells. Invest Urol 11(5):418–423PubMed
8.
Zurück zum Zitat Klemm MF, Exintaris B, Lang RJ (1999) Identification of the cells underlying pacemaker activity in the guinea-pig upper urinary tract. J Physiol 519(Pt 3):867–884PubMedCrossRef Klemm MF, Exintaris B, Lang RJ (1999) Identification of the cells underlying pacemaker activity in the guinea-pig upper urinary tract. J Physiol 519(Pt 3):867–884PubMedCrossRef
9.
Zurück zum Zitat Metzger R, Schuster T, Till H, Stehr M, Franke F-E, Dietz H-G (2004) Cajal-like cells in the human upper urinary tract. J Urol 172(2):769–772PubMedCrossRef Metzger R, Schuster T, Till H, Stehr M, Franke F-E, Dietz H-G (2004) Cajal-like cells in the human upper urinary tract. J Urol 172(2):769–772PubMedCrossRef
10.
Zurück zum Zitat Metzger R, Schuster T, Till H, Franke F-E, Dietz H-G (2005) Cajal-like cells in the upper urinary tract: comparative study in various species. Pediatr Surg Intl 21(3):169–174CrossRef Metzger R, Schuster T, Till H, Franke F-E, Dietz H-G (2005) Cajal-like cells in the upper urinary tract: comparative study in various species. Pediatr Surg Intl 21(3):169–174CrossRef
11.
Zurück zum Zitat Pezzone MA, Watkins SC, Alber SM, King WE, de Groat WC, Chancellor MB, Fraser MO (2003) Identification of c-kit-positive cells in the mouse ureter: the interstitial cells of Cajal of the urinary tract. Am J Renal Physiol 284(5):F925–F929 Pezzone MA, Watkins SC, Alber SM, King WE, de Groat WC, Chancellor MB, Fraser MO (2003) Identification of c-kit-positive cells in the mouse ureter: the interstitial cells of Cajal of the urinary tract. Am J Renal Physiol 284(5):F925–F929
12.
Zurück zum Zitat Lang RJ, Zoltkowski BZ, Hammer JM, Meeker WF, Wendt I (2007) Electrical characterization of interstitial cells of Cajal-like cells and smooth muscle cells isolated from the mouse ureteropelvic junction. J Urol 177(4):1573–1580PubMedCrossRef Lang RJ, Zoltkowski BZ, Hammer JM, Meeker WF, Wendt I (2007) Electrical characterization of interstitial cells of Cajal-like cells and smooth muscle cells isolated from the mouse ureteropelvic junction. J Urol 177(4):1573–1580PubMedCrossRef
13.
Zurück zum Zitat Tekgül S, Riedmiller H, Hoebeke P, Kočvara R, Nijman RJM, Radmayr C, Stein R, Dogan HS (2012) EAU guidelines on vesicoureteral reflux in children. Eur Urol 62(3):534–542PubMedCrossRef Tekgül S, Riedmiller H, Hoebeke P, Kočvara R, Nijman RJM, Radmayr C, Stein R, Dogan HS (2012) EAU guidelines on vesicoureteral reflux in children. Eur Urol 62(3):534–542PubMedCrossRef
14.
Zurück zum Zitat Schwentner C, Oswald J, Lunacek A, Fritsch H, Deibl M, Bartsch G, Radmayr C (2005) Loss of interstitial cells of Cajal and Gap junction protein connexin 43 at the vesicoureteral junction in children with vesicoureteral reflux. J Urol 174(5):1981–1986PubMedCrossRef Schwentner C, Oswald J, Lunacek A, Fritsch H, Deibl M, Bartsch G, Radmayr C (2005) Loss of interstitial cells of Cajal and Gap junction protein connexin 43 at the vesicoureteral junction in children with vesicoureteral reflux. J Urol 174(5):1981–1986PubMedCrossRef
15.
Zurück zum Zitat Oberritter Z, Rolle U, Juhasz Z, Cserni T, Puri P (2009) Altered expression of c-kit-positive cells in the ureterovesical junction after surgically created vesicoureteral reflux. Pediatr Surg Int 25(12):1103–1107PubMedCrossRef Oberritter Z, Rolle U, Juhasz Z, Cserni T, Puri P (2009) Altered expression of c-kit-positive cells in the ureterovesical junction after surgically created vesicoureteral reflux. Pediatr Surg Int 25(12):1103–1107PubMedCrossRef
16.
Zurück zum Zitat Solari V, Piotrowska AP, Puri P (2003) Altered expression of interstitial cells of Cajal in congenital ureteropelvic junction obstruction. J Urol 170(6):2420–2422PubMedCrossRef Solari V, Piotrowska AP, Puri P (2003) Altered expression of interstitial cells of Cajal in congenital ureteropelvic junction obstruction. J Urol 170(6):2420–2422PubMedCrossRef
17.
Zurück zum Zitat Cain JE, Islam E, Haxho F, Blake J, Rosenblum ND (2011) GLI3 repressor controls functional development of the mouse ureter. J Clin Invest 121(3):1199–1206PubMedCentralPubMedCrossRef Cain JE, Islam E, Haxho F, Blake J, Rosenblum ND (2011) GLI3 repressor controls functional development of the mouse ureter. J Clin Invest 121(3):1199–1206PubMedCentralPubMedCrossRef
18.
Zurück zum Zitat Christoffels VM, Smits GJ, Kispert A, Moorman AFM (2010) Development of the pacemaker tissues of the heart. Circ Res 106(2):240–254PubMedCrossRef Christoffels VM, Smits GJ, Kispert A, Moorman AFM (2010) Development of the pacemaker tissues of the heart. Circ Res 106(2):240–254PubMedCrossRef
19.
Zurück zum Zitat Mangoni ME, Nargeot J (2007) Genesis and regulation of the heart automaticity. Physiol Rev 88(3):919–982CrossRef Mangoni ME, Nargeot J (2007) Genesis and regulation of the heart automaticity. Physiol Rev 88(3):919–982CrossRef
20.
Zurück zum Zitat Mikawa T, Hurtado R (2007) Development of the cardiac conduction system. Semin Cell Dev Biol 18(1):90–100PubMedCrossRef Mikawa T, Hurtado R (2007) Development of the cardiac conduction system. Semin Cell Dev Biol 18(1):90–100PubMedCrossRef
21.
Zurück zum Zitat Hoogaars WHM, Tessari A, Moorman AFM, de Boer PAJ, Hagoort J, Soufan AT, Campione M, Cristoffels VM (2004) The transcriptional repressor Tbx3 delineates the developing central conduction system of the heart. Cardiovasc Res 62(3):489–499PubMedCrossRef Hoogaars WHM, Tessari A, Moorman AFM, de Boer PAJ, Hagoort J, Soufan AT, Campione M, Cristoffels VM (2004) The transcriptional repressor Tbx3 delineates the developing central conduction system of the heart. Cardiovasc Res 62(3):489–499PubMedCrossRef
22.
Zurück zum Zitat Garcia-Frigola C, Shi Y, Evans SM (2003) Expression of the hyperpolarization-activated cyclic nucleotide-gated cation channel HCN4 during mouse heart development. Gene Expr Patterns 3(6):777–783PubMedCrossRef Garcia-Frigola C, Shi Y, Evans SM (2003) Expression of the hyperpolarization-activated cyclic nucleotide-gated cation channel HCN4 during mouse heart development. Gene Expr Patterns 3(6):777–783PubMedCrossRef
23.
Zurück zum Zitat Buckingham M, Meilhac S, Zaffran S (2005) Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet 6(11):826–835PubMedCrossRef Buckingham M, Meilhac S, Zaffran S (2005) Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet 6(11):826–835PubMedCrossRef
24.
Zurück zum Zitat Christoffels VM, Mommersteeg MT, Trowe MO, Prall OW, de Gier-de Vries C, Soufan AT, Bussen M, Schuster-Gossler K, Harvey RP, Moorman AF, Kispert A (2006) Formation of the venous pole of the heart from an Nkx2-5-negative precursor population requires Tbx18. Circ Res 98(12):1555–1563PubMedCrossRef Christoffels VM, Mommersteeg MT, Trowe MO, Prall OW, de Gier-de Vries C, Soufan AT, Bussen M, Schuster-Gossler K, Harvey RP, Moorman AF, Kispert A (2006) Formation of the venous pole of the heart from an Nkx2-5-negative precursor population requires Tbx18. Circ Res 98(12):1555–1563PubMedCrossRef
25.
Zurück zum Zitat Mommersteeg MTM, Dominguez JN, Wiese C, Norden J, de Gier-de Vries C, Burch JB, Kispert A, Brown NA, Moorman AF, Christoffels VM (2010) The sinus venosus progenitors separate and diversify from the first and second heart fields early in development. Cardiovasc Res 87(1):92–101PubMedCrossRef Mommersteeg MTM, Dominguez JN, Wiese C, Norden J, de Gier-de Vries C, Burch JB, Kispert A, Brown NA, Moorman AF, Christoffels VM (2010) The sinus venosus progenitors separate and diversify from the first and second heart fields early in development. Cardiovasc Res 87(1):92–101PubMedCrossRef
26.
Zurück zum Zitat Hoogaars WMH, Engel A, Brons JF, Verkerk AO, de Lange FJ, Wong LY, Bakker ML, Clout DE, Wakker V, Barnett P, Ravesloot JH, Moorman AF, Verheijck EE, Christoffels VM (2007) Tbx3 controls the sinoatrial node gene program and imposes pacemaker function on the atria. Genes Dev 21(9):1098–1112PubMedCrossRef Hoogaars WMH, Engel A, Brons JF, Verkerk AO, de Lange FJ, Wong LY, Bakker ML, Clout DE, Wakker V, Barnett P, Ravesloot JH, Moorman AF, Verheijck EE, Christoffels VM (2007) Tbx3 controls the sinoatrial node gene program and imposes pacemaker function on the atria. Genes Dev 21(9):1098–1112PubMedCrossRef
27.
Zurück zum Zitat Mommersteeg MTM, Hoogaars WMH, Prall OWJ, de Gier-de Vries C, Wiese C, Clout DEW, Papaioannou VE, Brown NA, Harvey RP, Moorman AFM, Cristoffels VM (2007) Molecular pathway for the localized formation of the sinoatrial node. Circ Res 100(3):354–362PubMedCrossRef Mommersteeg MTM, Hoogaars WMH, Prall OWJ, de Gier-de Vries C, Wiese C, Clout DEW, Papaioannou VE, Brown NA, Harvey RP, Moorman AFM, Cristoffels VM (2007) Molecular pathway for the localized formation of the sinoatrial node. Circ Res 100(3):354–362PubMedCrossRef
28.
Zurück zum Zitat Blaschke RJ, Hahuij ND, Kuijper S, Just S, Wisse LJ, Deissler K, Maxelon T, Anastassiadis K, Spitzer J, Hardt SE, Scholer H, Feitma H, Rottbauer W, Blum M, Meijlink, Rappold G, Gittenberger-de Groot AC (2007) Targeted mutation reveals essential functions of the homeodomain transcription factor Shox2 in sinoatrial and pacemaking development. Circulation 115(14):1830–1838PubMedCrossRef Blaschke RJ, Hahuij ND, Kuijper S, Just S, Wisse LJ, Deissler K, Maxelon T, Anastassiadis K, Spitzer J, Hardt SE, Scholer H, Feitma H, Rottbauer W, Blum M, Meijlink, Rappold G, Gittenberger-de Groot AC (2007) Targeted mutation reveals essential functions of the homeodomain transcription factor Shox2 in sinoatrial and pacemaking development. Circulation 115(14):1830–1838PubMedCrossRef
29.
Zurück zum Zitat Espinoza-Lewis RA, Yu L, He F, Liu H, Tang R, Shi J, Sun X, Martin JF, Wang D, Yang J, Chen Y (2009) Shox2 is essential for the differentiation of cardiac pacemaker cells by repressing Nkx2-5. Dev Biol 327(2):376–385PubMedCentralPubMedCrossRef Espinoza-Lewis RA, Yu L, He F, Liu H, Tang R, Shi J, Sun X, Martin JF, Wang D, Yang J, Chen Y (2009) Shox2 is essential for the differentiation of cardiac pacemaker cells by repressing Nkx2-5. Dev Biol 327(2):376–385PubMedCentralPubMedCrossRef
30.
Zurück zum Zitat Wiese C, Grieskamp T, Airik R, Mommersteeg MTM, Gardiwal A, de Gier-de Vries C, Schuster-Gossler K, Moorman AF, Kispert A, Christoffels VM (2009) Formation of the sinus node head and differentiation of sinus node myocardium are independently regulated by Tbx18 and Tbx3. Circ Res 104(3):388–397PubMedCrossRef Wiese C, Grieskamp T, Airik R, Mommersteeg MTM, Gardiwal A, de Gier-de Vries C, Schuster-Gossler K, Moorman AF, Kispert A, Christoffels VM (2009) Formation of the sinus node head and differentiation of sinus node myocardium are independently regulated by Tbx18 and Tbx3. Circ Res 104(3):388–397PubMedCrossRef
31.
Zurück zum Zitat Cheng G, Litchenberg WH, Cole CJ, Mikawa T, Thompson RP, Gourdie RG (1999) Development of the cardiac conduction system involves recruitment within a multipotent cardiomyogenic lineage. Development 126(22):5041–5049PubMed Cheng G, Litchenberg WH, Cole CJ, Mikawa T, Thompson RP, Gourdie RG (1999) Development of the cardiac conduction system involves recruitment within a multipotent cardiomyogenic lineage. Development 126(22):5041–5049PubMed
32.
Zurück zum Zitat Aanhaanen WTJ, Brons JF, Domínguez JN, Rana MS, Norden J, Airik R, Wakker V, de Gier-de Vries C, Brown NA, Kispert A, Moorman AFM, Cristoffels VM (2009) The Tbx2+ primary myocardium of the atrioventricular canal forms the atrioventricular node and the base of the left ventricle. Circ Res 104(11):1267–1274PubMedCrossRef Aanhaanen WTJ, Brons JF, Domínguez JN, Rana MS, Norden J, Airik R, Wakker V, de Gier-de Vries C, Brown NA, Kispert A, Moorman AFM, Cristoffels VM (2009) The Tbx2+ primary myocardium of the atrioventricular canal forms the atrioventricular node and the base of the left ventricle. Circ Res 104(11):1267–1274PubMedCrossRef
33.
Zurück zum Zitat Streutker CJ, Huizinga JD, Driman DK, Riddell RH (2007) Interstitial cells of Cajal in health and disease. Part I: normal ICC structure and function with associated motility disorders. Histopathology 50(2):176–189PubMedCrossRef Streutker CJ, Huizinga JD, Driman DK, Riddell RH (2007) Interstitial cells of Cajal in health and disease. Part I: normal ICC structure and function with associated motility disorders. Histopathology 50(2):176–189PubMedCrossRef
34.
Zurück zum Zitat Torihashi S, Ward SM, Sanders KM (1997) Development of c-Kit-positive cells and the onset of electrical rhythmicity in murine small intestine. Gastroenterology 112(1):144–155PubMedCrossRef Torihashi S, Ward SM, Sanders KM (1997) Development of c-Kit-positive cells and the onset of electrical rhythmicity in murine small intestine. Gastroenterology 112(1):144–155PubMedCrossRef
35.
Zurück zum Zitat Lecoin L, Gabella G, Le Douarin N (1996) Origin of the c-kit-positive interstitial cells in the avian bowel. Development 122(3):725–733PubMed Lecoin L, Gabella G, Le Douarin N (1996) Origin of the c-kit-positive interstitial cells in the avian bowel. Development 122(3):725–733PubMed
36.
Zurück zum Zitat Young HM, Ciampoli D, Southwell BR, Newgreen DF (1996) Origin of interstitial cells of Cajal in the mouse intestine. Dev Biol 180(1):97–107PubMedCrossRef Young HM, Ciampoli D, Southwell BR, Newgreen DF (1996) Origin of interstitial cells of Cajal in the mouse intestine. Dev Biol 180(1):97–107PubMedCrossRef
37.
Zurück zum Zitat Kluppel M, Huizinga JD, Malysz J, Bernstein A (1998) Developmental origin and Kit-dependent development of the interstitial cells of Cajal in the mammalian small intestine. Dev Dyn 211(1):60–71PubMedCrossRef Kluppel M, Huizinga JD, Malysz J, Bernstein A (1998) Developmental origin and Kit-dependent development of the interstitial cells of Cajal in the mammalian small intestine. Dev Dyn 211(1):60–71PubMedCrossRef
38.
Zurück zum Zitat Sohal GS, Ali MM, Farooqui FA (2002) A second source of precursor cells for the developing enteric nervous system and interstitial cells of Cajal. Int J Dev Neurosci 20:619–626PubMedCrossRef Sohal GS, Ali MM, Farooqui FA (2002) A second source of precursor cells for the developing enteric nervous system and interstitial cells of Cajal. Int J Dev Neurosci 20:619–626PubMedCrossRef
39.
Zurück zum Zitat Jiang J, Hui C-C (2008) Hedgehog signaling in development and cancer. Dev Cell 15(6):801–812PubMedCrossRef Jiang J, Hui C-C (2008) Hedgehog signaling in development and cancer. Dev Cell 15(6):801–812PubMedCrossRef
Metadaten
Titel
Urinary tract pacemaker cells: current knowledge and insights from nonrenal pacemaker cells provide a basis for future discovery
verfasst von
Meghan M. Feeney
Norman D. Rosenblum
Publikationsdatum
01.04.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
Pediatric Nephrology / Ausgabe 4/2014
Print ISSN: 0931-041X
Elektronische ISSN: 1432-198X
DOI
https://doi.org/10.1007/s00467-013-2631-4

Weitere Artikel der Ausgabe 4/2014

Pediatric Nephrology 4/2014 Zur Ausgabe

Kinder mit anhaltender Sinusitis profitieren häufig von Antibiotika

30.04.2024 Rhinitis und Sinusitis Nachrichten

Persistieren Sinusitisbeschwerden bei Kindern länger als zehn Tage, ist eine Antibiotikatherapie häufig gut wirksam: Ein Therapieversagen ist damit zu über 40% seltener zu beobachten als unter Placebo.

Neuer Typ-1-Diabetes bei Kindern am Wochenende eher übersehen

23.04.2024 Typ-1-Diabetes Nachrichten

Wenn Kinder an Werktagen zum Arzt gehen, werden neu auftretender Typ-1-Diabetes und diabetische Ketoazidosen häufiger erkannt als bei Arztbesuchen an Wochenenden oder Feiertagen.

Neue Studienergebnisse zur Myopiekontrolle mit Atropin

22.04.2024 Fehlsichtigkeit Nachrichten

Augentropfen mit niedrig dosiertem Atropin können helfen, das Fortschreiten einer Kurzsichtigkeit bei Kindern zumindest zu verlangsamen, wie die Ergebnisse einer aktuellen Studie mit verschiedenen Dosierungen zeigen.

Spinale Muskelatrophie: Neugeborenen-Screening lohnt sich

18.04.2024 Spinale Muskelatrophien Nachrichten

Seit 2021 ist die Untersuchung auf spinale Muskelatrophie Teil des Neugeborenen-Screenings in Deutschland. Eine Studie liefert weitere Evidenz für den Nutzen der Maßnahme.

Update Pädiatrie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.