Skip to main content
Erschienen in: Nuclear Medicine and Molecular Imaging 3/2019

16.04.2019 | Original Article

Use of Molecular Imaging in Clinical Drug Development: a Systematic Review

verfasst von: Hyeomin Son, Kyungho Jang, Heechan Lee, Sang Eun Kim, Keon Wook Kang, Howard Lee

Erschienen in: Nuclear Medicine and Molecular Imaging | Ausgabe 3/2019

Einloggen, um Zugang zu erhalten

Abstract

Background

Molecular imaging such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT) can provide the crucial pharmacokinetic-pharmacodynamic information of a drug non-invasively at an early stage of clinical drug development. Nevertheless, not much has been known how molecular imaging has been actually used in drug development studies.

Methods

We searched PubMed using such keywords as molecular imaging, PET, SPECT, drug development, and new drug, or any combination of those to select papers in English, published from January 1, 1990, to December 31, 2015. The information about the publication year, therapeutic area of a drug candidate, drug development phase, and imaging modality and utility of imaging were extracted.

Results

Of 10,264 papers initially screened, 208 papers met the eligibility criteria. The more recent the publication year, the bigger the number of papers, particularly since 2010. The two major therapeutic areas using molecular imaging to develop drugs were oncology (47.6%) and the central nervous system (CNS, 36.5%), in which efficacy (63.5%) and proof-of-concept through either receptor occupancy (RO) or other than RO (29.7%), respectively, were the primary utility of molecular imaging. PET was used 4.7 times more frequently than SPECT. Molecular imaging was most frequently used in phase I clinical trials (40.8%), whereas it was employed rarely in phase 0 or exploratory IND studies (1.4%).

Conclusions

The present study confirmed the trend that molecular imaging has been more actively employed in recent clinical drug development studies although its adoption was rather slow and rare in phase 0 studies.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Mankoff DA. A definition of molecular imaging. J Nucl Med 2007;48:18N, 21N. Mankoff DA. A definition of molecular imaging. J Nucl Med 2007;48:18N, 21N.
2.
Zurück zum Zitat McDermott S, Kilcoyne A. Molecular imaging-its current role in cancer. QJM. 2016;109:295–9.CrossRefPubMed McDermott S, Kilcoyne A. Molecular imaging-its current role in cancer. QJM. 2016;109:295–9.CrossRefPubMed
3.
Zurück zum Zitat Filipiak-Strzecka D, Kowalczyk E, Hamala P, Kot N, Kasprzak JD, Kusmierek J, et al. Long-term prognostic value of inducible and resting perfusion defects detected by single-photon emission computed tomography in the era of wide availability of coronary revascularization. Clin Physiol Funct Imaging. 2013;33:218–23.CrossRefPubMed Filipiak-Strzecka D, Kowalczyk E, Hamala P, Kot N, Kasprzak JD, Kusmierek J, et al. Long-term prognostic value of inducible and resting perfusion defects detected by single-photon emission computed tomography in the era of wide availability of coronary revascularization. Clin Physiol Funct Imaging. 2013;33:218–23.CrossRefPubMed
4.
Zurück zum Zitat Teng FF, Meng X, Sun XD, Yu JM. New strategy for monitoring targeted therapy: molecular imaging. Int J Nanomedicine. 2013;8:3703–13.PubMedPubMedCentral Teng FF, Meng X, Sun XD, Yu JM. New strategy for monitoring targeted therapy: molecular imaging. Int J Nanomedicine. 2013;8:3703–13.PubMedPubMedCentral
5.
Zurück zum Zitat Oh P, Li Y, Yu J, Durr E, Krasinska KM, Carver LA, et al. Subtractive proteomic mapping of the endothelial surface in lung and solid tumours for tissue-specific therapy. Nature. 2004;429:629–35.CrossRefPubMed Oh P, Li Y, Yu J, Durr E, Krasinska KM, Carver LA, et al. Subtractive proteomic mapping of the endothelial surface in lung and solid tumours for tissue-specific therapy. Nature. 2004;429:629–35.CrossRefPubMed
6.
Zurück zum Zitat Gross S, Piwnica-Worms D. Molecular imaging strategies for drug discovery and development. Curr Opin Chem Biol. 2006;10:334–42.CrossRefPubMed Gross S, Piwnica-Worms D. Molecular imaging strategies for drug discovery and development. Curr Opin Chem Biol. 2006;10:334–42.CrossRefPubMed
7.
Zurück zum Zitat Rollo FD. Molecular imaging: an overview and clinical applications. Radiol Manage. 2003;25:28–32 quiz 3-5.PubMed Rollo FD. Molecular imaging: an overview and clinical applications. Radiol Manage. 2003;25:28–32 quiz 3-5.PubMed
8.
Zurück zum Zitat Shah K, Jacobs A, Breakefield XO, Weissleder R. Molecular imaging of gene therapy for cancer. Gene Ther. 2004;11:1175–87.CrossRefPubMed Shah K, Jacobs A, Breakefield XO, Weissleder R. Molecular imaging of gene therapy for cancer. Gene Ther. 2004;11:1175–87.CrossRefPubMed
9.
Zurück zum Zitat Galban CJ, Galban S, Van Dort ME, Luker GD, Bhojani MS, Rehemtulla A, et al. Applications of molecular imaging. Prog Mol Biol Transl Sci. 2010;95:237–98.CrossRefPubMedPubMedCentral Galban CJ, Galban S, Van Dort ME, Luker GD, Bhojani MS, Rehemtulla A, et al. Applications of molecular imaging. Prog Mol Biol Transl Sci. 2010;95:237–98.CrossRefPubMedPubMedCentral
10.
11.
Zurück zum Zitat DiMasi JA, Grabowski HG, Hansen RW. Innovation in the pharmaceutical industry: new estimates of R&D costs. J Health Econ. 2016;47:20–33.CrossRefPubMed DiMasi JA, Grabowski HG, Hansen RW. Innovation in the pharmaceutical industry: new estimates of R&D costs. J Health Econ. 2016;47:20–33.CrossRefPubMed
12.
Zurück zum Zitat Willmann JK, van Bruggen N, Dinkelborg LM, Gambhir SS. Molecular imaging in drug development. Nat Rev Drug Discov. 2008;7:591–607.CrossRefPubMed Willmann JK, van Bruggen N, Dinkelborg LM, Gambhir SS. Molecular imaging in drug development. Nat Rev Drug Discov. 2008;7:591–607.CrossRefPubMed
13.
Zurück zum Zitat Josephs D, Spicer J, O'Doherty M. Molecular imaging in clinical trials. Target Oncol. 2009;4:151–68.CrossRefPubMed Josephs D, Spicer J, O'Doherty M. Molecular imaging in clinical trials. Target Oncol. 2009;4:151–68.CrossRefPubMed
14.
Zurück zum Zitat Uppoor RS, Mummaneni P, Cooper E, Pien HH, Sorensen AG, Collins J, et al. The use of imaging in the early development of neuropharmacological drugs: a survey of approved NDAs. Clin Pharmacol Ther. 2008;84:69–74.CrossRefPubMed Uppoor RS, Mummaneni P, Cooper E, Pien HH, Sorensen AG, Collins J, et al. The use of imaging in the early development of neuropharmacological drugs: a survey of approved NDAs. Clin Pharmacol Ther. 2008;84:69–74.CrossRefPubMed
17.
Zurück zum Zitat Owonikoko TK, Ramalingam SS, Miller DL, Force SD, Sica GL, Mendel J, et al. A translational, Pharmacodynamic, and pharmacokinetic phase IB clinical study of everolimus in resectable non-small cell lung cancer. Clin Cancer Res. 2015;21:1859–68.CrossRefPubMedPubMedCentral Owonikoko TK, Ramalingam SS, Miller DL, Force SD, Sica GL, Mendel J, et al. A translational, Pharmacodynamic, and pharmacokinetic phase IB clinical study of everolimus in resectable non-small cell lung cancer. Clin Cancer Res. 2015;21:1859–68.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Dimitrakopoulou-Strauss A. PET-based molecular imaging in personalized oncology: potential of the assessment of therapeutic outcome. Future Oncol. 2015;11:1083–91.CrossRefPubMed Dimitrakopoulou-Strauss A. PET-based molecular imaging in personalized oncology: potential of the assessment of therapeutic outcome. Future Oncol. 2015;11:1083–91.CrossRefPubMed
19.
Zurück zum Zitat Toloza EM, Harpole L, McCrory DC. Noninvasive staging of non-small cell lung cancer: a review of the current evidence. Chest. 2003;123:137S–46S.CrossRefPubMed Toloza EM, Harpole L, McCrory DC. Noninvasive staging of non-small cell lung cancer: a review of the current evidence. Chest. 2003;123:137S–46S.CrossRefPubMed
21.
Zurück zum Zitat Lim KS, Kwon JS, Jang IJ, Jeong JM, Lee JS, Kim HW, et al. Modeling of brain D2 receptor occupancy-plasma concentration relationships with a novel antipsychotic, YKP1358, using serial PET scans in healthy volunteers. Clin Pharmacol Ther. 2007;81:252–8.CrossRefPubMed Lim KS, Kwon JS, Jang IJ, Jeong JM, Lee JS, Kim HW, et al. Modeling of brain D2 receptor occupancy-plasma concentration relationships with a novel antipsychotic, YKP1358, using serial PET scans in healthy volunteers. Clin Pharmacol Ther. 2007;81:252–8.CrossRefPubMed
22.
Zurück zum Zitat Wagner CC, Bauer M, Karch R, Feurstein T, Kopp S, Chiba P, et al. A pilot study to assess the efficacy of tariquidar to inhibit P-glycoprotein at the human blood-brain barrier with (R)-11C-verapamil and PET. J Nucl Med. 2009;50:1954–61.CrossRefPubMedPubMedCentral Wagner CC, Bauer M, Karch R, Feurstein T, Kopp S, Chiba P, et al. A pilot study to assess the efficacy of tariquidar to inhibit P-glycoprotein at the human blood-brain barrier with (R)-11C-verapamil and PET. J Nucl Med. 2009;50:1954–61.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Shah RC, Matthews DC, Andrews RD, Capuano AW, Fleischman DA, VanderLugt JT, et al. An evaluation of MSDC-0160, a prototype mTOT modulating insulin sensitizer, in patients with mild Alzheimer’s disease. Curr Alzheimer Res. 2014;11:564–73.CrossRefPubMedPubMedCentral Shah RC, Matthews DC, Andrews RD, Capuano AW, Fleischman DA, VanderLugt JT, et al. An evaluation of MSDC-0160, a prototype mTOT modulating insulin sensitizer, in patients with mild Alzheimer’s disease. Curr Alzheimer Res. 2014;11:564–73.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Pimlott SL, Sutherland A. Molecular tracers for the PET and SPECT imaging of disease. Chem Soc Rev. 2011;40:149–62.CrossRefPubMed Pimlott SL, Sutherland A. Molecular tracers for the PET and SPECT imaging of disease. Chem Soc Rev. 2011;40:149–62.CrossRefPubMed
25.
Zurück zum Zitat Paans AM, van Waarde A, Elsinga PH, Willemsen AT, Vaalburg W. Positron emission tomography: the conceptual idea using a multidisciplinary approach. Methods. 2002;27:195–207.CrossRefPubMed Paans AM, van Waarde A, Elsinga PH, Willemsen AT, Vaalburg W. Positron emission tomography: the conceptual idea using a multidisciplinary approach. Methods. 2002;27:195–207.CrossRefPubMed
26.
Zurück zum Zitat Miller PW, Long NJ, Vilar R, Gee AD. Synthesis of 11C, 18F, 15O, and 13N radiolabels for positron emission tomography. Angew Chem Int Ed Eng. 2008;47:8998–9033.CrossRef Miller PW, Long NJ, Vilar R, Gee AD. Synthesis of 11C, 18F, 15O, and 13N radiolabels for positron emission tomography. Angew Chem Int Ed Eng. 2008;47:8998–9033.CrossRef
27.
Zurück zum Zitat Catafau AM, Bullich S, Nucci G, Burgess C, Gray F, Merlo-Pich E, et al. Contribution of SPECT measurements of D2 and 5-HT2A occupancy to the clinical development of the antipsychotic SB-773812. J Nucl Med. 2011;52:526–34.CrossRefPubMed Catafau AM, Bullich S, Nucci G, Burgess C, Gray F, Merlo-Pich E, et al. Contribution of SPECT measurements of D2 and 5-HT2A occupancy to the clinical development of the antipsychotic SB-773812. J Nucl Med. 2011;52:526–34.CrossRefPubMed
28.
Zurück zum Zitat Min JJ, Gambhir SS. Gene therapy progress and prospects: noninvasive imaging of gene therapy in living subjects. Gene Ther. 2004;11:115–25.CrossRefPubMed Min JJ, Gambhir SS. Gene therapy progress and prospects: noninvasive imaging of gene therapy in living subjects. Gene Ther. 2004;11:115–25.CrossRefPubMed
29.
Zurück zum Zitat Camilleri M, Vazquez-Roque M, Iturrino J, Boldingh A, Burton D, McKinzie S, et al. Effect of a glucagon-like peptide 1 analog, ROSE-010, on GI motor functions in female patients with constipation-predominant irritable bowel syndrome. Am J Physiol Gastrointest Liver Physiol. 2012;303:G120–8.CrossRefPubMed Camilleri M, Vazquez-Roque M, Iturrino J, Boldingh A, Burton D, McKinzie S, et al. Effect of a glucagon-like peptide 1 analog, ROSE-010, on GI motor functions in female patients with constipation-predominant irritable bowel syndrome. Am J Physiol Gastrointest Liver Physiol. 2012;303:G120–8.CrossRefPubMed
30.
Zurück zum Zitat Camilleri M, Bharucha AE, Ueno R, Burton D, Thomforde GM, Baxter K, et al. Effect of a selective chloride channel activator, lubiprostone, on gastrointestinal transit, gastric sensory, and motor functions in healthy volunteers. Am J Physiol Gastrointest Liver Physiol. 2006;290:G942–7.CrossRefPubMed Camilleri M, Bharucha AE, Ueno R, Burton D, Thomforde GM, Baxter K, et al. Effect of a selective chloride channel activator, lubiprostone, on gastrointestinal transit, gastric sensory, and motor functions in healthy volunteers. Am J Physiol Gastrointest Liver Physiol. 2006;290:G942–7.CrossRefPubMed
31.
Zurück zum Zitat Delgado-Aros S, Chial HJ, Cremonini F, Ferber I, McKinzie S, Burton DD, et al. Effects of asimadoline, a kappa-opioid agonist, on satiation and postprandial symptoms in health. Aliment Pharmacol Ther. 2003;18:507–14.CrossRefPubMed Delgado-Aros S, Chial HJ, Cremonini F, Ferber I, McKinzie S, Burton DD, et al. Effects of asimadoline, a kappa-opioid agonist, on satiation and postprandial symptoms in health. Aliment Pharmacol Ther. 2003;18:507–14.CrossRefPubMed
32.
Zurück zum Zitat Townsend DW, Cherry SR. Combining anatomy and function: the path to true image fusion. Eur Radiol. 2001;11:1968–74.CrossRef Townsend DW, Cherry SR. Combining anatomy and function: the path to true image fusion. Eur Radiol. 2001;11:1968–74.CrossRef
33.
Zurück zum Zitat Beyer T, Townsend DW, Brun T, Kinahan PE, Charron M, Roddy R, et al. A combined PET/CT scanner for clinical oncology. J Nucl Med. 2000;41:1369–79.PubMed Beyer T, Townsend DW, Brun T, Kinahan PE, Charron M, Roddy R, et al. A combined PET/CT scanner for clinical oncology. J Nucl Med. 2000;41:1369–79.PubMed
34.
Zurück zum Zitat Pichler BJ, Judenhofer MS, Pfannenberg C. Multimodal imaging approaches: PET/CT and PET/MRI. Handb Exp Pharmacol. 2008:109–32. Pichler BJ, Judenhofer MS, Pfannenberg C. Multimodal imaging approaches: PET/CT and PET/MRI. Handb Exp Pharmacol. 2008:109–32.
35.
Zurück zum Zitat Brix G, Lechel U, Glatting G, Ziegler SI, Munzing W, Muller SP, et al. Radiation exposure of patients undergoing whole-body dual-modality 18F-FDG PET/CT examinations. J Nucl Med. 2005;46:608–13. Brix G, Lechel U, Glatting G, Ziegler SI, Munzing W, Muller SP, et al. Radiation exposure of patients undergoing whole-body dual-modality 18F-FDG PET/CT examinations. J Nucl Med. 2005;46:608–13.
36.
Zurück zum Zitat de Rosales RT. Potential clinical applications of bimodal PET-MRI or SPECT-MRI agents. J Label Compd Radiopharm. 2014;57:298–303.CrossRef de Rosales RT. Potential clinical applications of bimodal PET-MRI or SPECT-MRI agents. J Label Compd Radiopharm. 2014;57:298–303.CrossRef
37.
Zurück zum Zitat Sauter AW, Wehrl HF, Kolb A, Judenhofer MS, Pichler BJ. Combined PET/MRI: one step further in multimodality imaging. Trends Mol Med. 2010;16:508–15.CrossRefPubMed Sauter AW, Wehrl HF, Kolb A, Judenhofer MS, Pichler BJ. Combined PET/MRI: one step further in multimodality imaging. Trends Mol Med. 2010;16:508–15.CrossRefPubMed
39.
Zurück zum Zitat Fischman AJ, Alpert NM, Rubin RH. Pharmacokinetic imaging: a noninvasive method for determining drug distribution and action. Clin Pharmacokinet. 2002;41:581–602.CrossRefPubMed Fischman AJ, Alpert NM, Rubin RH. Pharmacokinetic imaging: a noninvasive method for determining drug distribution and action. Clin Pharmacokinet. 2002;41:581–602.CrossRefPubMed
40.
Zurück zum Zitat Wagner CC, Langer O. Approaches using molecular imaging technology -- use of PET in clinical microdose studies. Adv Drug Deliv Rev. 2011;63:539–46.CrossRefPubMed Wagner CC, Langer O. Approaches using molecular imaging technology -- use of PET in clinical microdose studies. Adv Drug Deliv Rev. 2011;63:539–46.CrossRefPubMed
41.
Zurück zum Zitat Aboagye EO, Price PM, Jones T. In vivo pharmacokinetics and pharmacodynamics in drug development using positron-emission tomography. Drug Discov Today. 2001;6:293–302.CrossRefPubMed Aboagye EO, Price PM, Jones T. In vivo pharmacokinetics and pharmacodynamics in drug development using positron-emission tomography. Drug Discov Today. 2001;6:293–302.CrossRefPubMed
42.
Zurück zum Zitat Rudin M, Weissleder R. Molecular imaging in drug discovery and development. Nat Rev Drug Discov. 2003;2:123–31.CrossRefPubMed Rudin M, Weissleder R. Molecular imaging in drug discovery and development. Nat Rev Drug Discov. 2003;2:123–31.CrossRefPubMed
43.
Zurück zum Zitat Gomes CM, Abrunhosa AJ, Ramos P, Pauwels EK. Molecular imaging with SPECT as a tool for drug development. Adv Drug Deliv Rev. 2011;63:547–54.CrossRefPubMed Gomes CM, Abrunhosa AJ, Ramos P, Pauwels EK. Molecular imaging with SPECT as a tool for drug development. Adv Drug Deliv Rev. 2011;63:547–54.CrossRefPubMed
44.
Zurück zum Zitat Kummar S, Rubinstein L, Kinders R, Parchment RE, Gutierrez ME, Murgo AJ, et al. Phase 0 clinical trials: conceptions and misconceptions. Cancer J. 2008;14:133–7.CrossRefPubMed Kummar S, Rubinstein L, Kinders R, Parchment RE, Gutierrez ME, Murgo AJ, et al. Phase 0 clinical trials: conceptions and misconceptions. Cancer J. 2008;14:133–7.CrossRefPubMed
45.
Zurück zum Zitat Lappin G, Kuhnz W, Jochemsen R, Kneer J, Chaudhary A, Oosterhuis B, et al. Use of microdosing to predict pharmacokinetics at the therapeutic dose: experience with 5 drugs. Clin Pharmacol Ther. 2006;80:203–15.CrossRefPubMed Lappin G, Kuhnz W, Jochemsen R, Kneer J, Chaudhary A, Oosterhuis B, et al. Use of microdosing to predict pharmacokinetics at the therapeutic dose: experience with 5 drugs. Clin Pharmacol Ther. 2006;80:203–15.CrossRefPubMed
46.
Zurück zum Zitat Saleem A, Harte RJ, Matthews JC, Osman S, Brady F, Luthra SK, et al. Pharmacokinetic evaluation of N-[2-(dimethylamino)ethyl]acridine-4-carboxamide in patients by positron emission tomography. J Clin Oncol. 2001;19:1421–9.CrossRefPubMed Saleem A, Harte RJ, Matthews JC, Osman S, Brady F, Luthra SK, et al. Pharmacokinetic evaluation of N-[2-(dimethylamino)ethyl]acridine-4-carboxamide in patients by positron emission tomography. J Clin Oncol. 2001;19:1421–9.CrossRefPubMed
Metadaten
Titel
Use of Molecular Imaging in Clinical Drug Development: a Systematic Review
verfasst von
Hyeomin Son
Kyungho Jang
Heechan Lee
Sang Eun Kim
Keon Wook Kang
Howard Lee
Publikationsdatum
16.04.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Nuclear Medicine and Molecular Imaging / Ausgabe 3/2019
Print ISSN: 1869-3474
Elektronische ISSN: 1869-3482
DOI
https://doi.org/10.1007/s13139-019-00593-y

Weitere Artikel der Ausgabe 3/2019

Nuclear Medicine and Molecular Imaging 3/2019 Zur Ausgabe