Skip to main content
Erschienen in: Respiratory Research 1/2020

Open Access 01.12.2020 | Research

Value of metalloproteinases in predicting COPD in heavy urban smokers

verfasst von: Jun-Chieh J. Tsay, Yingjie Hu, Judith D. Goldberg, Bin Wang, Soumya Vijayalekshmy, Ting-An Yie, Katrina Bantis, Daniel H. Sterman, William N. Rom

Erschienen in: Respiratory Research | Ausgabe 1/2020

Abstract

Background

Emphysema in asymptomatic heavy smokers can be detected during CT-scan screening for lung cancer. Metalloproteinases (MMPs) have been found to play a role in the pathogenesis of chronic obstructive pulmonary disease and to possibly serve as biomarkers for emphysema.

Methods

The NYU Lung Cancer Biomarker Center enrolled study subjects over 50 years of age with lung cancer risk factors from January 1, 2010, to December 31, 2015. These subjects received chest multi-detector computed tomography, spirometry, and provided serum for immunoassays for metalloproteinases (MMP) -1, -2, -7, -9, -10 and tissue inhibitor of metalloproteinases (TIMP) -1 and -2.

Results

Three hundred sixteen study subjects were enrolled. Of the 222 patients who met the inclusion criteria, 46% had emphysema. Smokers with emphysema had increased pack-years of smoking compared to smokers without emphysema (51 ± 24 pack-years (mean ± sd) versus 37 ± 20; p < 0.0001). Smokers with emphysema also had lower FEV1/FVC percent compared to smokers without emphysema (68 ± 11 (mean ± sd) versus 75 ± 8; p < 0.0001). Increased age and pack-years of smoking were associated with increased odds of emphysema. None of the metalloproteinases or tissue inhibitors of metalloproteinases were useful to predict the presence of emphysema in smokers.

Conclusion

Emphysema was detected by CT in almost half of heavy urban smokers. Serum MMP levels provided minimal additional information to improve the detection of mild emphysema among smokers given their clinical characteristics (age, pack-years, and FEV1/FVC ratio).

Introduction

In the United States, the prevalence of chronic obstructive pulmonary disease (COPD) is estimated to be 24 million individuals, of which half remains undiagnosed, and it is the third leading cause of death worldwide [1]. Detection of emphysema may act as a catalyst for patients to quit smoking and subsequently prevent worsening lung function. While the U.S. Preventive Services Task Force recommends against screening adults for COPD using spirometry [2, 3], the respiratory societies do recommend spirometry for adults with respiratory symptoms, especially dyspnea [4]. Among the > 20,000 randomly selected participants in a large population based survey, the prevalence of COPD was 8.2%, however only 6.5% of these diagnosed subjects had ever been examined with spirometry [5]. Lung cancer screening can be useful to detect emphysema in asymptomatic heavy smokers, [73% sensitivity and 88% specificity based on the NELSON Trials [6]]. However, there will still be a cohort of asymptomatic smokers who will remain undiagnosed. The Multi-Ethnic Study of Atherosclerosis (MESA) study showed that smokers have an increased mortality if emphysema was present on CT scans [7], therefore it is important to detect subjects with asymptomatic emphysema.
Serum biomarkers can be useful to detect smokers with emphysema. Researchers have been studying the role of matrix metalloproteinases (MMPs) in COPD pathogenesis. D’Armiento and colleagues [8] reported that MMPs and tissue inhibitors of MMPs (TIMP) did not predict progression to emphysema. They found elevations of MMP levels (MMP-1, -9, -12, TIMP -1) in the bronchoalveolar lavage (BAL) of the emphysematous lung. The aim of this study is to evaluate the utility of serum MMP levels in the identification of patients with asymptomatic emphysema. We hypothesized that in asymptomatic smokers (or those with exposure to second-hand smoke), serum MMP and TIMP biomarkers could improve predicting the presence of emphysema.

Methods

Study cohort

We enrolled 316 study subjects from January 1, 2010, to December 31, 2015. Subjects were excluded if CT-scans indicated other disease findings, were irretrievable from outside hospitals or no blood samples were available (See Fig. 1). Two hundred and fifty six of these remaining subjects were > 50 years of age, most with smoking histories of over 20 pack-years who consented to participate in the lung cancer screening protocol of the NYU Lung Cancer Biomarker Center. Among those 256 subjects, 34 samples were excluded due to technical errors that occurred during assay processing. The distribution of the demographics and clinical characteristics of these 34 subjects were similar to the remaining subjects in the dataset. After excluding these patients, samples from the remaining 222 patients were analyzed. This study was approved by the NYU Institutional Review Board. Each participant completed a low-dose computerized tomography (CT) of the chest, a baseline demographic questionnaire, and a peripheral blood draw. We utilized the American Thoracic Society (ATS) respiratory questionnaire which included questions on demographic characteristics, tobacco use, occupation, occupational exposures, alcohol use, family history, and medical history (Supporting Document). Spirometry was performed by a trained technician according to ATS standards.

CT chest radiograph

CT-scans, the gold standard for detecting emphysema, utilized 64 multi-detector scanners obtaining 5 mm–thick images; images were reconstructed every 5 mm using 1 mm collimation. This technique allowed simultaneous prospective reconstruction of contiguous 1 mm images for high-resolution detailed analysis. CT-scans were read by a thoracic radiologist and confirmed by two additional pulmonologists for the presence of emphysema using a qualitative assessment.

MMP measurements

The Luminex bead multiplex assay (Austin, Texas, USA) was utilized for measuring serum MMPs -1, -2, -7, -9, -10 and TIMPs -1 and -2, as per manufacturer’s instruction. The patients were classified into two groups: smokers with emphysema (n = 101), and smokers without emphysema (n = 121).

Statistical methods

In addition to detecting emphysema we sought to evaluate whether a panel of biomarkers (MMPs -1, -2, -7, -9, and -10, and TIMPs -1 and -2) could distinguish emphysema from no emphysema among heavy smokers. Distributions of patients and disease characteristics including clinical features, smoking history, pulmonary function, and other variables were compared using frequency distributions and proportions using Fisher’s exact tests for categorical variables.
Seventy-eight of the 222 eligible subjects (35%) had undetectable MMP-10 measurements below the limits of detection. Therefore, we used binary classes (detectable, undetectable: detectable if value ≥27 pg/ml and undetectable if value < 27 pg/ml) to explore the potential utility of this marker.
Biomarker levels were measured in two batches because limited laboratory personnel and assay kits were available to pull the sequentially identified samples for thaw and aliquot. Batch 1 had 44 smokers with emphysema and 68 without emphysema, while in Batch 2 there were 57 with emphysema and 53 non-emphysema. The analyses of the batch effects using Fisher’s exact test suggested that the distributions of subjects with and without emphysema did not differ significantly between batches (56% of batch 1 and 44% of batch 2 had no emphysema (Supplement Table 1, p = 0.08). Nonparametric Wilcoxon rank-sum tests were used to evaluate differences in the distributions of individual biomarkers between the two batches with respect to emphysema and non-emphysema separately. The results indicated that all biomarkers had significantly different distributions by batch with the exception of MMP-1 (Supplement Table 2). Batch effects were adjusted with a log2 transformation to each biomarker to remove skewness and the biomarker levels were standardized within each batch. After standardization within batches, the Wilcoxon rank sum test indicated that the distributions of the biomarkers of emphysema (and of smokers) did not differ significantly between the two batches (Supplement Table 2).
We first used stepwise multiple logistic regression with bidirectional variable selection to distinguish smokers with emphysema from those without emphysema, including only their clinical characteristics (Model 1: Age, BMI, pack-years, FEV1/FVC ratio). Next, we used the same regression method and included both clinical variables and biomarkers (MMP1, MMP2, MMP7, MMP9, TIMP1 and TIMP2) to obtain Model 2. An additional model that included only the set of biomarkers (MMPs/TIMPs) was also evaluated (Model 3). Receiving Operating Characteristic (ROC) curves were plotted from these logistic models; Areas Under the Curve (AUC) and Akaike Information Criterion (AIC) [9] for the resulting models were calculated under these three scenarios for comparison of these models. The Youden Index [10] was used to identify the optimal cut points for the models and estimates of sensitivity and specificity of each model provided at the cut point. All data analyses were performed with R version 3.4.3, MASS package version 7.3-48, and pROC package 1.15.0.

Results

We recruited 316 individuals; 222 were included in these analyses (Fig. 1). Distributions of baseline characteristics of the 222 subjects are shown in Table 1. There were 101 smokers with emphysema (46%) and 121 smokers without emphysema (54%). The smokers with emphysema were older (65 ± 7 years) than those without emphysema (61 ± 7 years; p < 0.0001). There were no differences in gender (p = 0.42). Further, there were no differences in BMI (emphysema 28 ± 5, non-emphysema 27 ± 5; p = 0.24). There were more current smokers in the emphysema group (emphysema 49% versus non-emphysema 31%; p = 0.01). There was an increase in pack-years among smokers with emphysema (51 ± 24 pack-year) compared to smokers without emphysema (37 ± 20 pack-years; p < 0 .0001).
Table 1
Clinical Characteristics by Emphysema Status in Smokers in Batch 1 and Batch 2 (222 subjects)
 
Smokers without Emphysema
Smokers with Emphysema
P value
Mean ± SD or %
N
Mean ± SD or %
N
Age (years)
60.8 ± 7.1
121
64.8 ± 7.0
101
< 0.0001
Height (cm)
169.1 ± 10.0
120
170.3 ± 9.2
101
0.51
Weight (kg)
80.9 ± 17.8
120
79.4 ± 18.7
101
0.50
BMI
28.2 ± 5.3
120
27.2 ± 5.3
101
0.24
Start smoke age
16.9 ± 4.0
121
16.6 ± 4.5
101
0.80
Cigarettes Daily
24.0 ± 11.0
121
26.3 ± 11.1
101
0.11
Smoke Duration Years
31.7 ± 11.5
121
39.6 ± 10.8
101
< 0.0001
Pack Years
37.2 ± 20.4
121
50.9 ± 23.8
101
< 0.0001
FEV1/FVC
75.5 ± 7.9
111
67.5 ± 10.6
95
< 0.0001
Gender
 
121
 
102
 
 Female
61 (50%)
 
45 (45%)
 
0.42
 Male
60 (50%)
 
57 (55%)
  
Race
 
121
 
102
0.06
 African American
4 (3%)
 
9 (9%)
  
 Asian
0 (0%)
 
1 (1%)
  
 Caucasian
110 (91%)
 
90 (89%)
  
 Indian
1 (1%)
 
0 (0%)
  
 Other
6 (5%)
 
1 (1%)
  
Cough
 
121
 
102
0.04
 Yes
20 (17%)
 
29 (29%)
  
 No
101 (83%)
 
73 (71%)
  
Current Smoker
 
121
 
102
0.01
 Yes
38 (31%)
 
49 (49%)
  
 No
83 (69%)
 
52 (51%)
  
Phlegm
 
120
 
101
0.11
 Yes
8 (7%)
 
14 (14%)
  
 No
112 (93%)
 
86 (86%)
  
MRC Score
 
121
 
101
0.12
 0
87 (72%)
 
63 (62%)
  
 1
12 (10%)
 
23 (23%)
  
 2
8 (7%)
 
5 (5%)
  
 3
2 (2%)
 
3 (3%)
  
 4
6 (5%)
 
5 (5%)
  
 5
6 (5%)
 
2 (2%)
  
MMP10
 
121
 
101
0.40
 Detectable
75 (62%)
 
69 (68%)
  
 Undetectable
46 (38%)
 
32 (32%)
  
P values from nonparametric Wilcoxon Rank-Sum rank sum test (2-sided). All other P values based on
Fisher’s Exact Test
P values ≤0.05 bolded

Clinical characteristics

The FEV1/FVC ratio was lower in those with radiographic emphysema (emphysema 68 ± 11%(SD) versus non-emphysema 76 ± 8%(SD); p < 0.0001). A higher percentage of emphysema subjects had symptoms of cough (emphysema 29%, non-emphysema 17%; p = 0.04) and reports of phlegm (emphysema 14%, non-emphysema 7%; p = 0.11) than those without emphysema. Next, three stepwise multiple logistic models were conducted to explore the extent to which MMP biomarkers could help identify emphysema among smokers. Table 2 shows the results of Model 1, a stepwise multiple logistic regression with bidirectional elimination using clinical characteristics including age, smoking duration, pack-years, cough and FEV1/FVC ratio. With the exception of smoking duration, the other 4 variables were all highly associated with emphysema among smokers.
Table 2
Odds Ratios and 95% Confidence Interval (CI) for Emphysema Based on Stepwise Multiple Logistic Regression models with Clinical Characteristics Only. (222 subjects)
Predictors
OR
95% CI
Age
1.07
(1.02, 1.12)
Pack-Years
1.02
(1.01, 1.04)
FEV1/FVC
0.93
(0.89, 0.96)
Cough
1.91
(0.87, 4.28)
AIC = 238.13
Smokers without Emphysema are Baseline
The full models contained Age, Smoking duration (year), Pack-Years, FEV1/FVC, Cough (Yes vs. No)
Final model: Log-odds of emphysema = 1.07*Age + 1.02*Pack-Years + 0.93* FEV1/FVC + 1.91*Cough

MMP/ TIMP as biomarkers for presence of emphysema

In order to explore the potential ability to predict emphysema using biomarker levels, we added biomarkers log2 (TIMP-1), log2 (TIMP-2), log2 (MMP-1), log2 (MMP-2), log2 (MMP-7) and log2 (MMP-9) and obtained Model 2 (Table 3). Age, FEV1/FVC and pack-years remained statistically significant, but none of the biomarkers showed a significant association with emphysema. We further compared the AIC of these models. The AIC of Model 1 is 238.1 and the AIC of Model 2 is 237.93 with the addition of the biomarkers as predictors. The ROC curves for Models 1 and 2 are shown in Fig. 2, with AUC as 0.788 and 0.789 respectively. The optimal cut-point based on the Youden Index for Model 1 is 0.405 (sensitivity 0.789 and specificity 0.703), and for Model 2 is 0.500 (sensitivity 0.674 and specificity 0.802) (Fig. 2). These results suggest that the serum-based MMP biomarkers do not add additional value to clinical characteristics predicting emphysema in smokers.
Table 3
Odds Ratios and 95% Confidence Interval (CI) for Emphysema Based on Stepwise Multiple Logistic Regression models with Clinical Characters and Biomarkers. (222 subjects)
Predictors
OR
95% CI
Age
1.06
(1.01,1.11)
FEV1/FVC
0.92
(0.88,0.96)
Pack-Years
1.02
(1.01,1.04)
log2(MMP-1)
0.75
(0.52,1.06)
log2(MMP-7)
1.40
(0.98,2.02)
AIC = 237.93
Smokers without Emphysema are Baseline
The full models contained Age, Smoking duration (year), Pack-Years, FEV1/FVC, Cough (Yes vs. No), log2(TIMP-1), log2(TIMP-2), log2(MMP-1), log2(MMP-2), log2 (MMP-7), log2(MMP-9)
Final model: Log-odds of emphysema = 1.06*Age+ 1.02*Pack-Years+ 0.92* FEV1/FVC + 0.75 *log2(MMP-1) + 1.40* log2(MMP-7)

Discussion

In our cohort of lung cancer screening subjects, low dose CT scans were able to detect a high percentage of radiographic emphysema (46%); in addition, spirometry detected significant airway obstruction among heavy smokers who had minimal respiratory symptoms. These results confirm that many smokers are likely underdiagnosed for COPD, and there may be a role in screening certain smokers for COPD. This study showed that serum-based MMP biomarkers did not improve prediction of emphysema in smokers but that traditional clinical information such as age, lung function, and smoking history were better predictors.
The Global Initiative for Chronic Obstructive Lung Disease requires spirometry for the clinical diagnosis of COPD and recommends an assessment of symptoms, the severity of airflow limitation, history of exacerbations, and comorbidities [11]. Spirometry cannot fully categorize the heterogeneity in COPD, but concomitant CT-scans can evaluate the extent of emphysema and other findings such as airway remodeling, gas trapping, and regional ventilation abnormalities [12]. The COPD Gene study enrolled 10,131 study subjects with > 10 pack-years and found increasing emphysema scores with mild COPD (4.4 adjusted mean) to moderate (5.3) to severe emphysema (11.0) [13].
Matrix metalloproteinases and their tissue inhibitors are involved in matrix dissolution and remodeling which makes them reasonable targets for evaluation in emphysema, a destructive disease of the lung matrix. The TIMPs are produced by macrophages and epithelial cells, and the N-terminal domains inhibit all MMPs by binding to their catalytic domain. Serum levels of MMPs -1, -2, -7, -9, and TIMP-1 have been reported to be elevated in emphysema subjects and correlate with the GOLD stages [14]. D’Armiento and colleagues studied severe emphysema using bronchoalveolar lavage fluid and found increased MMPs -1, -9, -12, collagenase and elastase activity in emphysema subjects compared to non-smoking controls. There was a decrease in plasma MMP-1, -9, and TIMP-1 in emphysema compared to controls and no association with FEV1/FVC percent predicted or change in FEV1 over 3, 6, or 18 months of follow-up. The same investigators also studied MMP-1 transgenic mice and found morphological and physiological evidence for emphysema in this model expressing the human MMP-1 gene [15]. Cigarette smoke targets the MMP-1 promoter and stimulates the extracellular regulated kinase/mitogen-activated protein kinase pathway to degrade types I/III collagens in the lung [16, 17]. However, in our study, we were not able to identify a biomarker for emphysema based on serum MMP levels.
Alcaide and colleagues studied 203 subjects with low-dose CT scans in a lung cancer screening program and found that visually detected emphysema (n = 154) was associated with quality of life impairment, an abnormal diffusing capacity, and a significant drop in SpO2 during the 6-min walking test [18]. In those with emphysema with DLCO< 80% (n = 66) compared to those with emphysema and DLCO> 80% (n = 73), there was a significantly reduced FEV1 percent predicted (96 ± 15% versus 105 ± 16%; p < 0.01). We also found a decrease in the FEV1/FVC in those with visual emphysema on their CT-scans.
One of the limitations of this study is that this is a single center observational study with a small number of subjects. Severity, frequency, and pattern of emphysema were not assessed to evaluate whether these features are associated with MMP levels. Detection of emphysema can be delayed because it may take up to 30% of lung destruction before there is airflow limitation. Importantly, we should continue to use clinical predictors such as age, smoking history, and pulmonary function to screen those at risk of developing COPD as there is no benefit to the addition of serum MMP biomarker.

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s12931-020-01496-9.

Acknowledgments

The authors thank Ellen Eylers RN, Ting-An Yie MS, Siham Akleh RN, Xinhua Jia MD and staff of the NYU Lung Cancer Biomarker Center for assistance. Funding from NCI CA086137. Partial support for statistical analysis provided by NCI Cancer Center Support Grant to NYU Langone Health P30 CA016087 and the NIEHS Center of Excellence Grant to NYU Langone Health P30 ES00026.
This study was approved by the NYU Institutional Review Board (study ID 8896). Written informed consent was obtained from all patients before enrollment in the study.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Bhatt SP, Balte PP, Schwartz JE, Cassano PA, Couper D, Jacobs DR Jr, et al. Discriminative accuracy of FEV1:FVC thresholds for COPD-related hospitalization and mortality. Jama. 2019;321(24):2438–47.CrossRef Bhatt SP, Balte PP, Schwartz JE, Cassano PA, Couper D, Jacobs DR Jr, et al. Discriminative accuracy of FEV1:FVC thresholds for COPD-related hospitalization and mortality. Jama. 2019;321(24):2438–47.CrossRef
2.
Zurück zum Zitat Force USPST. Screening for chronic obstructive pulmonary disease using spirometry: U.S. preventive services task force recommendation statement. Ann Intern Med. 2008;148(7):529–34.CrossRef Force USPST. Screening for chronic obstructive pulmonary disease using spirometry: U.S. preventive services task force recommendation statement. Ann Intern Med. 2008;148(7):529–34.CrossRef
3.
Zurück zum Zitat Guirguis-Blake JM, Senger CA, Webber EM, Mularski RA, Whitlock EP. Screening for chronic obstructive pulmonary disease: evidence report and systematic review for the US preventive services task force. Jama. 2016;315(13):1378–93.CrossRef Guirguis-Blake JM, Senger CA, Webber EM, Mularski RA, Whitlock EP. Screening for chronic obstructive pulmonary disease: evidence report and systematic review for the US preventive services task force. Jama. 2016;315(13):1378–93.CrossRef
4.
Zurück zum Zitat Qaseem A, Wilt TJ, Weinberger SE, Hanania NA, Criner G, van der Molen T, et al. Diagnosis and management of stable chronic obstructive pulmonary disease: a clinical practice guideline update from the American College of Physicians, American College of Chest Physicians, American Thoracic Society, and European Respiratory Society. Ann Intern Med. 2011;155(3):179–91.CrossRef Qaseem A, Wilt TJ, Weinberger SE, Hanania NA, Criner G, van der Molen T, et al. Diagnosis and management of stable chronic obstructive pulmonary disease: a clinical practice guideline update from the American College of Physicians, American College of Chest Physicians, American Thoracic Society, and European Respiratory Society. Ann Intern Med. 2011;155(3):179–91.CrossRef
5.
Zurück zum Zitat Zhong N, Wang C, Yao W, Chen P, Kang J, Huang S, et al. Prevalence of chronic obstructive pulmonary disease in China: a large, population-based survey. Am J Respir Crit Care Med. 2007;176(8):753–60.CrossRef Zhong N, Wang C, Yao W, Chen P, Kang J, Huang S, et al. Prevalence of chronic obstructive pulmonary disease in China: a large, population-based survey. Am J Respir Crit Care Med. 2007;176(8):753–60.CrossRef
6.
Zurück zum Zitat Mets OM, Schmidt M, Buckens CF, Gondrie MJ, Isgum I, Oudkerk M, et al. Diagnosis of chronic obstructive pulmonary disease in lung cancer screening computed tomography scans: independent contribution of emphysema, air trapping and bronchial wall thickening. Respir Res. 2013;14:59.CrossRef Mets OM, Schmidt M, Buckens CF, Gondrie MJ, Isgum I, Oudkerk M, et al. Diagnosis of chronic obstructive pulmonary disease in lung cancer screening computed tomography scans: independent contribution of emphysema, air trapping and bronchial wall thickening. Respir Res. 2013;14:59.CrossRef
7.
Zurück zum Zitat Oelsner EC, Hoffman EA, Folsom AR, Carr JJ, Enright PL, Kawut SM, et al. Association between emphysema-like lung on cardiac computed tomography and mortality in persons without airflow obstruction: a cohort study. Ann Intern Med. 2014;161(12):863–73.CrossRef Oelsner EC, Hoffman EA, Folsom AR, Carr JJ, Enright PL, Kawut SM, et al. Association between emphysema-like lung on cardiac computed tomography and mortality in persons without airflow obstruction: a cohort study. Ann Intern Med. 2014;161(12):863–73.CrossRef
8.
Zurück zum Zitat D'Armiento JM, Goldklang MP, Hardigan AA, Geraghty P, Roth MD, Connett JE, et al. Increased matrix metalloproteinase (MMPs) levels do not predict disease severity or progression in emphysema. PLoS One. 2013;8(2):e56352.CrossRef D'Armiento JM, Goldklang MP, Hardigan AA, Geraghty P, Roth MD, Connett JE, et al. Increased matrix metalloproteinase (MMPs) levels do not predict disease severity or progression in emphysema. PLoS One. 2013;8(2):e56352.CrossRef
9.
Zurück zum Zitat Akaike H. A new look at the statistical model identification. IEEE Trans Autom Control. 1974;19(6):716–23.CrossRef Akaike H. A new look at the statistical model identification. IEEE Trans Autom Control. 1974;19(6):716–23.CrossRef
10.
Zurück zum Zitat Ruopp MD, Perkins NJ, Whitcomb BW, Schisterman EF. Youden index and optimal cut-point estimated from observations affected by a lower limit of detection. Biom J. 2008;50(3):419–30.CrossRef Ruopp MD, Perkins NJ, Whitcomb BW, Schisterman EF. Youden index and optimal cut-point estimated from observations affected by a lower limit of detection. Biom J. 2008;50(3):419–30.CrossRef
11.
Zurück zum Zitat Vestbo J, Hurd SS, Agusti AG, Jones PW, Vogelmeier C, Anzueto A, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med. 2013;187(4):347–65.CrossRef Vestbo J, Hurd SS, Agusti AG, Jones PW, Vogelmeier C, Anzueto A, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med. 2013;187(4):347–65.CrossRef
12.
Zurück zum Zitat Coxson HO, Leipsic J, Parraga G, Sin DD. Using pulmonary imaging to move chronic obstructive pulmonary disease beyond FEV1. Am J Respir Crit Care Med. 2014;190(2):135–44.CrossRef Coxson HO, Leipsic J, Parraga G, Sin DD. Using pulmonary imaging to move chronic obstructive pulmonary disease beyond FEV1. Am J Respir Crit Care Med. 2014;190(2):135–44.CrossRef
13.
Zurück zum Zitat Vaz Fragoso CA, McAvay G, Van Ness PH, Casaburi R, Jensen RL, MacIntyre N, et al. Phenotype of normal spirometry in an aging population. Am J Respir Crit Care Med. 2015;192(7):817–25.CrossRef Vaz Fragoso CA, McAvay G, Van Ness PH, Casaburi R, Jensen RL, MacIntyre N, et al. Phenotype of normal spirometry in an aging population. Am J Respir Crit Care Med. 2015;192(7):817–25.CrossRef
14.
Zurück zum Zitat Navratilova Z, Zatloukal J, Kriegova E, Kolek V, Petrek M. Simultaneous up-regulation of matrix metalloproteinases 1, 2, 3, 7, 8, 9 and tissue inhibitors of metalloproteinases 1, 4 in serum of patients with chronic obstructive pulmonary disease. Respirology. 2012;17(6):1006–12.CrossRef Navratilova Z, Zatloukal J, Kriegova E, Kolek V, Petrek M. Simultaneous up-regulation of matrix metalloproteinases 1, 2, 3, 7, 8, 9 and tissue inhibitors of metalloproteinases 1, 4 in serum of patients with chronic obstructive pulmonary disease. Respirology. 2012;17(6):1006–12.CrossRef
15.
Zurück zum Zitat Foronjy RF, Okada Y, Cole R, D'Armiento J. Progressive adult-onset emphysema in transgenic mice expressing human MMP-1 in the lung. Am J Physiol Lung Cell Mol Physiol. 2003;284(5):L727–37.CrossRef Foronjy RF, Okada Y, Cole R, D'Armiento J. Progressive adult-onset emphysema in transgenic mice expressing human MMP-1 in the lung. Am J Physiol Lung Cell Mol Physiol. 2003;284(5):L727–37.CrossRef
16.
Zurück zum Zitat Mercer BA, Wallace AM, Brinckerhoff CE, D'Armiento JM. Identification of a cigarette smoke-responsive region in the distal MMP-1 promoter. Am J Respir Cell Mol Biol. 2009;40(1):4–12.CrossRef Mercer BA, Wallace AM, Brinckerhoff CE, D'Armiento JM. Identification of a cigarette smoke-responsive region in the distal MMP-1 promoter. Am J Respir Cell Mol Biol. 2009;40(1):4–12.CrossRef
17.
Zurück zum Zitat Mercer BA, Kolesnikova N, Sonett J, D'Armiento J. Extracellular regulated kinase/mitogen activated protein kinase is up-regulated in pulmonary emphysema and mediates matrix metalloproteinase-1 induction by cigarette smoke. J Biol Chem. 2004;279(17):17690–6.CrossRef Mercer BA, Kolesnikova N, Sonett J, D'Armiento J. Extracellular regulated kinase/mitogen activated protein kinase is up-regulated in pulmonary emphysema and mediates matrix metalloproteinase-1 induction by cigarette smoke. J Biol Chem. 2004;279(17):17690–6.CrossRef
18.
Zurück zum Zitat Alcaide AB, Sanchez-Salcedo P, Bastarrika G, Campo A, Berto J, Ocon MD, et al. Clinical features of smokers with radiological emphysema but without airway limitation. Chest. 2017;151(2):358–65.CrossRef Alcaide AB, Sanchez-Salcedo P, Bastarrika G, Campo A, Berto J, Ocon MD, et al. Clinical features of smokers with radiological emphysema but without airway limitation. Chest. 2017;151(2):358–65.CrossRef
Metadaten
Titel
Value of metalloproteinases in predicting COPD in heavy urban smokers
verfasst von
Jun-Chieh J. Tsay
Yingjie Hu
Judith D. Goldberg
Bin Wang
Soumya Vijayalekshmy
Ting-An Yie
Katrina Bantis
Daniel H. Sterman
William N. Rom
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
Respiratory Research / Ausgabe 1/2020
Elektronische ISSN: 1465-993X
DOI
https://doi.org/10.1186/s12931-020-01496-9

Weitere Artikel der Ausgabe 1/2020

Respiratory Research 1/2020 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.