Skip to main content
Erschienen in: Child's Nervous System 8/2013

01.08.2013 | Original Paper

Virtual reality simulation: basic concepts and use in endoscopic neurosurgery training

verfasst von: Alan R. Cohen, Subash Lohani, Sunil Manjila, Suriya Natsupakpong, Nathan Brown, M. Cenk Cavusoglu

Erschienen in: Child's Nervous System | Ausgabe 8/2013

Einloggen, um Zugang zu erhalten

Abstract

Introduction

Virtual reality simulation is a promising alternative to training surgical residents outside the operating room. It is also a useful aide to anatomic study, residency training, surgical rehearsal, credentialing, and recertification.

Discussion

Surgical simulation is based on a virtual reality with varying degrees of immersion and realism. Simulators provide a no-risk environment for harmless and repeatable practice. Virtual reality has three main components of simulation: graphics/volume rendering, model behavior/tissue deformation, and haptic feedback. The challenge of accurately simulating the forces and tactile sensations experienced in neurosurgery limits the sophistication of a virtual simulator. The limited haptic feedback available in minimally invasive neurosurgery makes it a favorable subject for simulation.

Conclusions

Virtual simulators with realistic graphics and force feedback have been developed for ventriculostomy, intraventricular surgery, and transsphenoidal pituitary surgery, thus allowing preoperative study of the individual anatomy and increasing the safety of the procedure. The authors also present experiences with their own virtual simulation of endoscopic third ventriculostomy.
Literatur
1.
Zurück zum Zitat Agrawal A, Kato Y, Sano H, Kanno T (2013) The incorporation of neuroendoscopy in neurosurgical training programs. World Neurosurg 79:S15.e11–S15.e13 Agrawal A, Kato Y, Sano H, Kanno T (2013) The incorporation of neuroendoscopy in neurosurgical training programs. World Neurosurg 79:S15.e11–S15.e13
2.
Zurück zum Zitat Balogh AA, Preul MC, Laszlo K, Schornak M, Hickman M, Deshmukh P, Spetzler RF (2006) Multilayer image grid reconstruction technology: four-dimensional interactive image reconstruction of microsurgical neuroanatomic dissections. Neurosurgery 58:ONS157–165, discussion ONS157-165PubMedCrossRef Balogh AA, Preul MC, Laszlo K, Schornak M, Hickman M, Deshmukh P, Spetzler RF (2006) Multilayer image grid reconstruction technology: four-dimensional interactive image reconstruction of microsurgical neuroanatomic dissections. Neurosurgery 58:ONS157–165, discussion ONS157-165PubMedCrossRef
3.
Zurück zum Zitat Malone HR, Syed ON, Downes MS, D’Ambrosio AL, Quest DO, Kaiser MG (2010) Simulation in neurosurgery: a review of computer-based simulation environments and their surgical applications. Neurosurgery 67:1105–1116PubMedCrossRef Malone HR, Syed ON, Downes MS, D’Ambrosio AL, Quest DO, Kaiser MG (2010) Simulation in neurosurgery: a review of computer-based simulation environments and their surgical applications. Neurosurgery 67:1105–1116PubMedCrossRef
4.
Zurück zum Zitat Robinson RALC, Apuzzo MLJ (2011) Man mind and machine: the past and future of virtual reality simulation in neurologic surgery. World Neurosurg 76:419–430CrossRef Robinson RALC, Apuzzo MLJ (2011) Man mind and machine: the past and future of virtual reality simulation in neurologic surgery. World Neurosurg 76:419–430CrossRef
5.
Zurück zum Zitat Babineau TJ, Becker J, Gibbons G, Sentovich S, Hess D, Robertson S, Stone M (2004) The "cost" of operative training for surgical residents. Arch Surg 139:366–369, discussion 369–370PubMedCrossRef Babineau TJ, Becker J, Gibbons G, Sentovich S, Hess D, Robertson S, Stone M (2004) The "cost" of operative training for surgical residents. Arch Surg 139:366–369, discussion 369–370PubMedCrossRef
6.
Zurück zum Zitat Delorme S, Laroche D, DiRaddo R, Del Maestro RF (2012) NeuroTouch: a physics-based virtual simulator for cranial microneurosurgery training. Neurosurgery 71:32–42PubMedCrossRef Delorme S, Laroche D, DiRaddo R, Del Maestro RF (2012) NeuroTouch: a physics-based virtual simulator for cranial microneurosurgery training. Neurosurgery 71:32–42PubMedCrossRef
7.
Zurück zum Zitat Spicer MA, van Velsen M, Caffrey JP, Apuzzo ML (2004) Virtual reality neurosurgery: a simulator blueprint. Neurosurgery 54:783–797, discussion 797–788PubMedCrossRef Spicer MA, van Velsen M, Caffrey JP, Apuzzo ML (2004) Virtual reality neurosurgery: a simulator blueprint. Neurosurgery 54:783–797, discussion 797–788PubMedCrossRef
8.
Zurück zum Zitat Wang P, Becker AA, Jones IA, Glover AT, Benford SD, Greenhalgh CM, Vloeberghs M (2006) A virtual reality surgery simulation of cutting and retraction in neurosurgery with force-feedback. Computer methods and programs in biomedicine 84:11–18PubMedCrossRef Wang P, Becker AA, Jones IA, Glover AT, Benford SD, Greenhalgh CM, Vloeberghs M (2006) A virtual reality surgery simulation of cutting and retraction in neurosurgery with force-feedback. Computer methods and programs in biomedicine 84:11–18PubMedCrossRef
9.
Zurück zum Zitat Massie TH SJ (1994) The PHANTOM haptic interface: a device for probing virtual objects. Proceedings of the ASME Winter Annual Meeting, Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, Chicago Massie TH SJ (1994) The PHANTOM haptic interface: a device for probing virtual objects. Proceedings of the ASME Winter Annual Meeting, Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, Chicago
10.
Zurück zum Zitat Dai JX, Chung MS, Qu RM, Yuan L, Liu SW, Shin DS (2012) The Visible Human Projects in Korea and China with improved images and diverse applications. Surgical and radiologic anatomy : SRA 34:527–534PubMedCrossRef Dai JX, Chung MS, Qu RM, Yuan L, Liu SW, Shin DS (2012) The Visible Human Projects in Korea and China with improved images and diverse applications. Surgical and radiologic anatomy : SRA 34:527–534PubMedCrossRef
11.
Zurück zum Zitat Larsen OVHJ, Ostergard LR, Hansen KV, Nielsen H (2001) The Virtual Brain Project—development of a neurosurgical simulator. Stud Health Technol Inform 81:256–262PubMed Larsen OVHJ, Ostergard LR, Hansen KV, Nielsen H (2001) The Virtual Brain Project—development of a neurosurgical simulator. Stud Health Technol Inform 81:256–262PubMed
12.
Zurück zum Zitat Kockro RA, Serra L, Tseng-Tsai Y, Chan C, Yih-Yian S, Gim-Guan C, Lee E, Hoe LY, Hern N, Nowinski WL (2000) Planning and simulation of neurosurgery in a virtual reality environment. Neurosurgery 46:118–135, discussion 135–117PubMedCrossRef Kockro RA, Serra L, Tseng-Tsai Y, Chan C, Yih-Yian S, Gim-Guan C, Lee E, Hoe LY, Hern N, Nowinski WL (2000) Planning and simulation of neurosurgery in a virtual reality environment. Neurosurgery 46:118–135, discussion 135–117PubMedCrossRef
13.
Zurück zum Zitat Radetzky ARM, Starkie S, Davies B, Auer LM (2000) ROBO-SIM: a simulator for minimally invasive neurosurgery using an active manipulator. Stud Health Technol Inform 77:1165–1169PubMed Radetzky ARM, Starkie S, Davies B, Auer LM (2000) ROBO-SIM: a simulator for minimally invasive neurosurgery using an active manipulator. Stud Health Technol Inform 77:1165–1169PubMed
14.
Zurück zum Zitat Lemole GM Jr, Banerjee PP, Luciano C, Neckrysh S, Charbel FT (2007) Virtual reality in neurosurgical education: part-task ventriculostomy simulation with dynamic visual and haptic feedback. Neurosurgery 61:142–148, discussion 148–149PubMedCrossRef Lemole GM Jr, Banerjee PP, Luciano C, Neckrysh S, Charbel FT (2007) Virtual reality in neurosurgical education: part-task ventriculostomy simulation with dynamic visual and haptic feedback. Neurosurgery 61:142–148, discussion 148–149PubMedCrossRef
15.
Zurück zum Zitat Thomas RGJN, Delieu JM (2010) Augmented reality for anatomical education. J Vis Commun Med 33:6–15PubMedCrossRef Thomas RGJN, Delieu JM (2010) Augmented reality for anatomical education. J Vis Commun Med 33:6–15PubMedCrossRef
16.
Zurück zum Zitat Brown NNS, Johannsen S, Manjila S, Cai Q, Liberatore V, Cohen AR, Cavusoglu MC (2006) Virtual environment-based training simulator for endoscopic third ventriculostomy. Stud Health Technol Inform 119:73–75PubMed Brown NNS, Johannsen S, Manjila S, Cai Q, Liberatore V, Cohen AR, Cavusoglu MC (2006) Virtual environment-based training simulator for endoscopic third ventriculostomy. Stud Health Technol Inform 119:73–75PubMed
17.
Zurück zum Zitat Burtscher JBR, Dessl A, Eisner W, Twerdy K, Sweeney RA, Felber S (2002) Virtual endoscopy for planning neuro-endoscopic intraventricular surgery. Minimally invasive neurosurgery : MIN 45:24–31PubMedCrossRef Burtscher JBR, Dessl A, Eisner W, Twerdy K, Sweeney RA, Felber S (2002) Virtual endoscopy for planning neuro-endoscopic intraventricular surgery. Minimally invasive neurosurgery : MIN 45:24–31PubMedCrossRef
18.
Zurück zum Zitat Wolfsberger S, Neubauer A, Buhler K, Wegenkittl R, Czech T, Gentzsch S, Bocher-Schwarz HG, Knosp E (2006) Advanced virtual endoscopy for endoscopic transsphenoidal pituitary surgery. Neurosurgery 59:1001–1009, discussion 1009–1010PubMed Wolfsberger S, Neubauer A, Buhler K, Wegenkittl R, Czech T, Gentzsch S, Bocher-Schwarz HG, Knosp E (2006) Advanced virtual endoscopy for endoscopic transsphenoidal pituitary surgery. Neurosurgery 59:1001–1009, discussion 1009–1010PubMed
19.
Zurück zum Zitat Luciano CBP, Lemole GM Jr, Charbel F (2006) Second generation haptic ventriculostomy simulator using the ImmersiveTouch system. Stud Health Technol Inform 119:343–348PubMed Luciano CBP, Lemole GM Jr, Charbel F (2006) Second generation haptic ventriculostomy simulator using the ImmersiveTouch system. Stud Health Technol Inform 119:343–348PubMed
20.
Zurück zum Zitat Philips NJN (2000) Web-based surgical simulation for ventricular catheterization. Neurosurgery 46:933–937 Philips NJN (2000) Web-based surgical simulation for ventricular catheterization. Neurosurgery 46:933–937
21.
Zurück zum Zitat Rohde V, Krombach GA, Struffert T, Gilsbach JM (2001) Virtual MRI endoscopy: detection of anomalies of the ventricular anatomy and its possible role as a presurgical planning tool for endoscopic third ventriculostomy. Acta Neurochir (Wien) 143:1085–1091CrossRef Rohde V, Krombach GA, Struffert T, Gilsbach JM (2001) Virtual MRI endoscopy: detection of anomalies of the ventricular anatomy and its possible role as a presurgical planning tool for endoscopic third ventriculostomy. Acta Neurochir (Wien) 143:1085–1091CrossRef
22.
Zurück zum Zitat Boor S, Resch KM, Perneczky A, Stoeter P (1998) Virtual endoscopy (VE) of the basal cisterns: its value in planning the neurosurgical approach. Minimally invasive neurosurgery : MIN 41:177–182PubMedCrossRef Boor S, Resch KM, Perneczky A, Stoeter P (1998) Virtual endoscopy (VE) of the basal cisterns: its value in planning the neurosurgical approach. Minimally invasive neurosurgery : MIN 41:177–182PubMedCrossRef
23.
Zurück zum Zitat Bartz D (2005) Virtual endoscopy in research and clinical practice. Computer Graphics Forum 24:111–126CrossRef Bartz D (2005) Virtual endoscopy in research and clinical practice. Computer Graphics Forum 24:111–126CrossRef
24.
Zurück zum Zitat Radetzky A, Nurnberger A (2002) Visualization and simulation techniques for surgical simulators using actual patient’s data. Artificial intelligence in medicine 26:255–279PubMedCrossRef Radetzky A, Nurnberger A (2002) Visualization and simulation techniques for surgical simulators using actual patient’s data. Artificial intelligence in medicine 26:255–279PubMedCrossRef
25.
Zurück zum Zitat Stredney DWG, Bryan J, Sessanna D, Murakami J, Schmalbrock P, Powell K, Welling B (2002) Temporal bone dissection simulation–an update. Stud Health Technol Inform 85:507–513PubMed Stredney DWG, Bryan J, Sessanna D, Murakami J, Schmalbrock P, Powell K, Welling B (2002) Temporal bone dissection simulation–an update. Stud Health Technol Inform 85:507–513PubMed
26.
Zurück zum Zitat Kockro RA, Hwang PY (2009) Virtual temporal bone: an interactive 3-dimensional learning aid for cranial base surgery. Neurosurgery 64:216–229, discussion 229–230PubMedCrossRef Kockro RA, Hwang PY (2009) Virtual temporal bone: an interactive 3-dimensional learning aid for cranial base surgery. Neurosurgery 64:216–229, discussion 229–230PubMedCrossRef
27.
Zurück zum Zitat Bernardo A, Preul MC, Zabramski JM, Spetzler RF (2003) A three-dimensional interactive virtual dissection model to simulate transpetrous surgical avenues. Neurosurgery 52:499–505, discussion 504–495PubMedCrossRef Bernardo A, Preul MC, Zabramski JM, Spetzler RF (2003) A three-dimensional interactive virtual dissection model to simulate transpetrous surgical avenues. Neurosurgery 52:499–505, discussion 504–495PubMedCrossRef
28.
Zurück zum Zitat Cavuşoğlu MCGT, Tendick F (2006) GiPSi:a framework for open source/open architecture software development for organ-level surgical simulation. IEEE Trans Inf Technol Biomed 10:312–322PubMedCrossRef Cavuşoğlu MCGT, Tendick F (2006) GiPSi:a framework for open source/open architecture software development for organ-level surgical simulation. IEEE Trans Inf Technol Biomed 10:312–322PubMedCrossRef
29.
Zurück zum Zitat Jacobs PFM, Cavusoglu MC (2010) High fidelity haptic rendering of frictional contact with deformable objects in virtual environments using multi-rate simulation. Int J Robot Res 29:1778–1792CrossRef Jacobs PFM, Cavusoglu MC (2010) High fidelity haptic rendering of frictional contact with deformable objects in virtual environments using multi-rate simulation. Int J Robot Res 29:1778–1792CrossRef
Metadaten
Titel
Virtual reality simulation: basic concepts and use in endoscopic neurosurgery training
verfasst von
Alan R. Cohen
Subash Lohani
Sunil Manjila
Suriya Natsupakpong
Nathan Brown
M. Cenk Cavusoglu
Publikationsdatum
01.08.2013
Verlag
Springer Berlin Heidelberg
Erschienen in
Child's Nervous System / Ausgabe 8/2013
Print ISSN: 0256-7040
Elektronische ISSN: 1433-0350
DOI
https://doi.org/10.1007/s00381-013-2139-z

Weitere Artikel der Ausgabe 8/2013

Child's Nervous System 8/2013 Zur Ausgabe

Wie erfolgreich ist eine Re-Ablation nach Rezidiv?

23.04.2024 Ablationstherapie Nachrichten

Nach der Katheterablation von Vorhofflimmern kommt es bei etwa einem Drittel der Patienten zu Rezidiven, meist binnen eines Jahres. Wie sich spätere Rückfälle auf die Erfolgschancen einer erneuten Ablation auswirken, haben Schweizer Kardiologen erforscht.

Hinter dieser Appendizitis steckte ein Erreger

23.04.2024 Appendizitis Nachrichten

Schmerzen im Unterbauch, aber sonst nicht viel, was auf eine Appendizitis hindeutete: Ein junger Mann hatte Glück, dass trotzdem eine Laparoskopie mit Appendektomie durchgeführt und der Wurmfortsatz histologisch untersucht wurde.

Mehr Schaden als Nutzen durch präoperatives Aussetzen von GLP-1-Agonisten?

23.04.2024 Operationsvorbereitung Nachrichten

Derzeit wird empfohlen, eine Therapie mit GLP-1-Rezeptoragonisten präoperativ zu unterbrechen. Eine neue Studie nährt jedoch Zweifel an der Notwendigkeit der Maßnahme.

Ureterstriktur: Innovative OP-Technik bewährt sich

19.04.2024 EAU 2024 Kongressbericht

Die Ureterstriktur ist eine relativ seltene Komplikation, trotzdem bedarf sie einer differenzierten Versorgung. In komplexen Fällen wird dies durch die roboterassistierte OP-Technik gewährleistet. Erste Resultate ermutigen.

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

Karpaltunnelsyndrom BDC Leitlinien Webinare
CME: 2 Punkte

Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

Radiusfraktur BDC Leitlinien Webinare
CME: 2 Punkte

Das Webinar beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

Appendizitis BDC Leitlinien Webinare
CME: 2 Punkte

Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.