Skip to main content
Erschienen in: Graefe's Archive for Clinical and Experimental Ophthalmology 4/2006

01.04.2006 | Clinical Investigation

Visual acuity and X-linked color blindness

verfasst von: Herbert Jägle, Emanuela de Luca, Ludwig Serey, Michael Bach, Lindsay T. Sharpe

Erschienen in: Graefe's Archive for Clinical and Experimental Ophthalmology | Ausgabe 4/2006

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Optimal sampling for visual acuity requires a fine array of cones with identical sensitivity. Thus, dichromats, whose inner fovea is made up of cones having the same spectral sensitivity, may have better than normal visual acuity. We investigated this by comparing the visual acuities of trichromats and X-linked dichromats, while taking into account the different molecular genetics underlying the disorder.

Methods

Our subjects were age- and refraction-matched groups of normals (n=8) and X-linked dichromats (n=13). The dichromats (four protanopes and nine deuteranopes) were genotyped and classified according to whether they carried a single (n=6) or multiple (n=7) visual pigment genes on their X-chromosome. Visual acuity was measured in both eyes with the Freiburger Visual Acuity Test.

Results

Normal trichromats and ungenotyped dichromats do not significantly differ in visual acuity, nor do ungenotyped protanopes and deuteranopes. However, multi-gene dichromats, who possess more than one photopigment gene in the array, all of which encode for the same long- or middle-wavelength sensitive photopigment, have significantly higher visual acuity than either normal trichromats or dichromats who have only a single-gene.

Conclusions

Multi-gene dichromats may benefit from a reduction in chromatic aberration and chromatic noise in the high acuity channel, normally a consequence of combining signals from different cone photoreceptor types and of cone-specific patterns of retinal image defocus and blur. Single-gene dichromats may not share in the advantage because of other molecular differences that influence the development of the retinal mosaic and/or its visual pathways.
Literatur
1.
Zurück zum Zitat Abramov I, Gordon J, Wakeland M, Tannazzo T, Delman H, Galand R (2000) Suprathreshold binocular contrast summation. Invest Ophthalmol Vis Sci 41:S731 Abramov I, Gordon J, Wakeland M, Tannazzo T, Delman H, Galand R (2000) Suprathreshold binocular contrast summation. Invest Ophthalmol Vis Sci 41:S731
2.
Zurück zum Zitat Bach M (1996) The Freiburg Visual Acuity test—automatic measurement of visual acuity. Optom Vis Sci 73:49–53PubMedCrossRef Bach M (1996) The Freiburg Visual Acuity test—automatic measurement of visual acuity. Optom Vis Sci 73:49–53PubMedCrossRef
3.
Zurück zum Zitat Bedford RE, Wyszecki GW (1958) Wavelength discrimination for point sources. J Opt Soc Am 48:129–135PubMed Bedford RE, Wyszecki GW (1958) Wavelength discrimination for point sources. J Opt Soc Am 48:129–135PubMed
4.
Zurück zum Zitat Berendschot TT, van de Kraats J, van Norren D (1996) Foveal cone mosaic and visual pigment density in dichromats. J Physiol 492( Pt 1):307–314PubMed Berendschot TT, van de Kraats J, van Norren D (1996) Foveal cone mosaic and visual pigment density in dichromats. J Physiol 492( Pt 1):307–314PubMed
5.
Zurück zum Zitat Campbell FW, Gubisch RW (1967) The effect of chromatic aberration on visual acuity. J Physiol 192:345–358PubMed Campbell FW, Gubisch RW (1967) The effect of chromatic aberration on visual acuity. J Physiol 192:345–358PubMed
6.
Zurück zum Zitat Carroll J, Neitz M, Hofer H, Neitz J, Williams DR (2004) Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness. Proc Natl Acad Sci USA 101:8461–8466PubMedCrossRef Carroll J, Neitz M, Hofer H, Neitz J, Williams DR (2004) Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness. Proc Natl Acad Sci USA 101:8461–8466PubMedCrossRef
7.
Zurück zum Zitat Cicerone CM, Nerger JL (1989) The density of cones in the fovea centralis of the human dichromat. Vision Res 29:1587–1595CrossRefPubMed Cicerone CM, Nerger JL (1989) The density of cones in the fovea centralis of the human dichromat. Vision Res 29:1587–1595CrossRefPubMed
8.
Zurück zum Zitat Curcio CA, Allen KA, Sloan KR, Lerea CL, Hurley JB, Klock IB, Milam AH (1991) Distribution and morphology of human cone photoreceptors stained with anti-blue opsin. J Comp Neurol 312:610–624PubMedCrossRef Curcio CA, Allen KA, Sloan KR, Lerea CL, Hurley JB, Klock IB, Milam AH (1991) Distribution and morphology of human cone photoreceptors stained with anti-blue opsin. J Comp Neurol 312:610–624PubMedCrossRef
9.
Zurück zum Zitat Dain SJ, King-Smith PE (1981) Visual thresholds in dichromats and normals; the importance of post-receptoral processes. Vision Res 21:573–580PubMedCrossRef Dain SJ, King-Smith PE (1981) Visual thresholds in dichromats and normals; the importance of post-receptoral processes. Vision Res 21:573–580PubMedCrossRef
10.
Zurück zum Zitat Deeb SS, Hayashi T, Winderickx J, Yamaguchi T (2000) Molecular analysis of human red/green visual pigment gene locus: relationship to color vision. Methods Enzymol 316:651–670PubMedCrossRef Deeb SS, Hayashi T, Winderickx J, Yamaguchi T (2000) Molecular analysis of human red/green visual pigment gene locus: relationship to color vision. Methods Enzymol 316:651–670PubMedCrossRef
11.
Zurück zum Zitat Gordon H, Delman H, Abramov I, Tannazzo T, Scuello M (2000) Supersensitivity in color-anomalous observers. Invest Ophthalmol Vis Sci 41:S807 Gordon H, Delman H, Abramov I, Tannazzo T, Scuello M (2000) Supersensitivity in color-anomalous observers. Invest Ophthalmol Vis Sci 41:S807
12.
Zurück zum Zitat Jagla WM, Jägle H, Hayashi T, Sharpe LT, Deeb SS (2002) The molecular basis of dichromatic color vision in males with multiple red and green visual pigment genes. Hum Mol Genet 11:23–32PubMedCrossRef Jagla WM, Jägle H, Hayashi T, Sharpe LT, Deeb SS (2002) The molecular basis of dichromatic color vision in males with multiple red and green visual pigment genes. Hum Mol Genet 11:23–32PubMedCrossRef
13.
Zurück zum Zitat Kremers J, Usui T, Scholl HP, Sharpe LT (1999) Cone signal contributions to electroretinograms in dichromats and trichromats. Invest Ophthalmol Vis Sci 40:920–930PubMed Kremers J, Usui T, Scholl HP, Sharpe LT (1999) Cone signal contributions to electroretinograms in dichromats and trichromats. Invest Ophthalmol Vis Sci 40:920–930PubMed
14.
Zurück zum Zitat Loop MS, Shows JF, Mangel SC, Kuyk TK (2003) Colour thresholds in dichromats and normals. Vision Res 43:983–992PubMedCrossRef Loop MS, Shows JF, Mangel SC, Kuyk TK (2003) Colour thresholds in dichromats and normals. Vision Res 43:983–992PubMedCrossRef
15.
Zurück zum Zitat Nathans J, Davenport CM, Maumenee IH, Lewis RA, Hejtmancik JF, Litt M, Lovrien E, Weleber R, Bachynski B, Zwas F, et al. (1989) Molecular genetics of human blue cone monochromacy. Science 245:831–838PubMedCrossRef Nathans J, Davenport CM, Maumenee IH, Lewis RA, Hejtmancik JF, Litt M, Lovrien E, Weleber R, Bachynski B, Zwas F, et al. (1989) Molecular genetics of human blue cone monochromacy. Science 245:831–838PubMedCrossRef
16.
Zurück zum Zitat Nathans J, Piantanida TP, Eddy RL, Shows TB, Hogness DS (1986) Molecular genetics of inherited variation in human color vision. Science 232:203–210PubMedCrossRef Nathans J, Piantanida TP, Eddy RL, Shows TB, Hogness DS (1986) Molecular genetics of inherited variation in human color vision. Science 232:203–210PubMedCrossRef
17.
Zurück zum Zitat Neitz M, Carroll J, Renner A, Knau H, Werner JS, Neitz J (2004) Variety of genotypes in males diagnosed as dichromatic on a conventional clinical anomaloscope. Vis Neurosci 21:205–216PubMedCrossRef Neitz M, Carroll J, Renner A, Knau H, Werner JS, Neitz J (2004) Variety of genotypes in males diagnosed as dichromatic on a conventional clinical anomaloscope. Vis Neurosci 21:205–216PubMedCrossRef
18.
Zurück zum Zitat Osorio D, Ruderman DL, Cronin TW (1998) Estimation of errors in luminance signals encoded by primate retina resulting from sampling of natural images with red and green cones. J Opt Soc Am A Opt Image Sci Vis 15:16–22PubMedCrossRef Osorio D, Ruderman DL, Cronin TW (1998) Estimation of errors in luminance signals encoded by primate retina resulting from sampling of natural images with red and green cones. J Opt Soc Am A Opt Image Sci Vis 15:16–22PubMedCrossRef
19.
Zurück zum Zitat Petersen J (1993) Erroneous vision determination and quantitative effects. Ophthalmologie 90:533–538PubMed Petersen J (1993) Erroneous vision determination and quantitative effects. Ophthalmologie 90:533–538PubMed
20.
Zurück zum Zitat Schlaer S (1937) The relation between visual acuity and illumination. J Gen Physiol 21:165–188CrossRef Schlaer S (1937) The relation between visual acuity and illumination. J Gen Physiol 21:165–188CrossRef
21.
Zurück zum Zitat Schwartz SH (1994) Spectral sensitivity of dichromats: role of postreceptoral processes. Vision Res 34:2983–2990PubMedCrossRef Schwartz SH (1994) Spectral sensitivity of dichromats: role of postreceptoral processes. Vision Res 34:2983–2990PubMedCrossRef
22.
Zurück zum Zitat Sharpe LT, Stockman A, Jägle H, Knau H, Klausen G, Reitner A, Nathans J (1998) Red, green, and red-green hybrid pigments in the human retina: correlations between deduced protein sequences and psychophysically measured spectral sensitivities. J Neurosci 18:10053–10069PubMed Sharpe LT, Stockman A, Jägle H, Knau H, Klausen G, Reitner A, Nathans J (1998) Red, green, and red-green hybrid pigments in the human retina: correlations between deduced protein sequences and psychophysically measured spectral sensitivities. J Neurosci 18:10053–10069PubMed
23.
Zurück zum Zitat Sharpe LT, Stockman A, Jägle H, Nathans J (1999) Opsin genes, cone photopigments, color vision, and color blindness. In: Gegenfurtner K, Sharpe LT (eds) Color vision: from genes to perception. Cambridge University Press, Cambridge; pp 3–51 Sharpe LT, Stockman A, Jägle H, Nathans J (1999) Opsin genes, cone photopigments, color vision, and color blindness. In: Gegenfurtner K, Sharpe LT (eds) Color vision: from genes to perception. Cambridge University Press, Cambridge; pp 3–51
24.
Zurück zum Zitat Smallwood PM, Wang Y, Nathans J (2002) Role of a locus control region in the mutually exclusive expression of human red and green cone pigment genes. Proc Natl Acad Sci USA 99:1008–1011PubMedCrossRef Smallwood PM, Wang Y, Nathans J (2002) Role of a locus control region in the mutually exclusive expression of human red and green cone pigment genes. Proc Natl Acad Sci USA 99:1008–1011PubMedCrossRef
25.
Zurück zum Zitat Stockman A, Sharpe LT (2000) The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype. Vision Res 40:1711–1737PubMedCrossRef Stockman A, Sharpe LT (2000) The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype. Vision Res 40:1711–1737PubMedCrossRef
26.
Zurück zum Zitat Thibos LN, Ye M, Zhang X, Bradley A (1992) The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans. Applied Optics 31:3594–3600 Thibos LN, Ye M, Zhang X, Bradley A (1992) The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans. Applied Optics 31:3594–3600
27.
Zurück zum Zitat Uhthoff W (1890) Weitere untersuchungen über die abhängigkeit der sehschärfe von der intensität, sowie von der wellenlänge im spektrum. Arch Ophthalmol 36:33–61 Uhthoff W (1890) Weitere untersuchungen über die abhängigkeit der sehschärfe von der intensität, sowie von der wellenlänge im spektrum. Arch Ophthalmol 36:33–61
28.
Zurück zum Zitat Wesemann W (2002) Visual acuity measured via the Freiburg visual acuity test (FVT), Bailey Lovie chart and Landolt Ring chart. Klin Monatsbl Augenheilkd 219:660–667CrossRefPubMed Wesemann W (2002) Visual acuity measured via the Freiburg visual acuity test (FVT), Bailey Lovie chart and Landolt Ring chart. Klin Monatsbl Augenheilkd 219:660–667CrossRefPubMed
29.
Zurück zum Zitat Wesner MF, Pokorny J, Shevell SK, Smith VC (1991) Foveal cone detection statistics in color-normals and dichromats. Vision Res 31:1021–1037CrossRefPubMed Wesner MF, Pokorny J, Shevell SK, Smith VC (1991) Foveal cone detection statistics in color-normals and dichromats. Vision Res 31:1021–1037CrossRefPubMed
30.
31.
Zurück zum Zitat Winderickx J, Battisti L, Motulsky AG, Deeb SS (1992) Selective expression of human X chromosome-linked green opsin genes. Proc Natl Acad Sci USA 89:9710–9714PubMedCrossRef Winderickx J, Battisti L, Motulsky AG, Deeb SS (1992) Selective expression of human X chromosome-linked green opsin genes. Proc Natl Acad Sci USA 89:9710–9714PubMedCrossRef
Metadaten
Titel
Visual acuity and X-linked color blindness
verfasst von
Herbert Jägle
Emanuela de Luca
Ludwig Serey
Michael Bach
Lindsay T. Sharpe
Publikationsdatum
01.04.2006
Verlag
Springer-Verlag
Erschienen in
Graefe's Archive for Clinical and Experimental Ophthalmology / Ausgabe 4/2006
Print ISSN: 0721-832X
Elektronische ISSN: 1435-702X
DOI
https://doi.org/10.1007/s00417-005-0086-4

Weitere Artikel der Ausgabe 4/2006

Graefe's Archive for Clinical and Experimental Ophthalmology 4/2006 Zur Ausgabe

Announcements

Announcements

Neu im Fachgebiet Augenheilkunde

Ophthalmika in der Schwangerschaft

Die Verwendung von Ophthalmika in der Schwangerschaft und Stillzeit stellt immer eine Off-label-Anwendung dar. Ein Einsatz von Arzneimitteln muss daher besonders sorgfältig auf sein Risiko-Nutzen-Verhältnis bewertet werden. In der vorliegenden …

Operative Therapie und Keimnachweis bei endogener Endophthalmitis

Vitrektomie Originalie

Die endogene Endophthalmitis ist eine hämatogen fortgeleitete, bakterielle oder fungale Infektion, die über choroidale oder retinale Gefäße in den Augapfel eingeschwemmt wird [ 1 – 3 ]. Von dort infiltrieren die Keime in die Netzhaut, den …

Bakterielle endogene Endophthalmitis

Vitrektomie Leitthema

Eine endogene Endophthalmitis stellt einen ophthalmologischen Notfall dar, der umgehender Diagnostik und Therapie bedarf. Es sollte mit geeigneten Methoden, wie beispielsweise dem Freiburger Endophthalmitis-Set, ein Keimnachweis erfolgen. Bei der …

So erreichen Sie eine bestmögliche Wundheilung der Kornea

Die bestmögliche Wundheilung der Kornea, insbesondere ohne die Ausbildung von lichtstreuenden Narben, ist oberstes Gebot, um einer dauerhaften Schädigung der Hornhaut frühzeitig entgegenzuwirken und die Funktion des Auges zu erhalten.   

Update Augenheilkunde

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.