Skip to main content
Erschienen in: Pediatric Radiology 13/2019

28.08.2019 | Original Article

2-D magnetic resonance spectroscopic imaging of the pediatric brain using compressed sensing

verfasst von: Rohini Vidya Shankar, Houchun H. Hu, Nutandev Bikkamane Jayadev, John C. Chang, Vikram D. Kodibagkar

Erschienen in: Pediatric Radiology | Ausgabe 13/2019

Einloggen, um Zugang zu erhalten

Abstract

Background

Magnetic resonance spectroscopic imaging helps to determine abnormal brain tissue conditions by evaluating metabolite concentrations. Although a powerful technique, it is underutilized in routine clinical studies because of its long scan times.

Objective

In this study, we evaluated the feasibility of scan time reduction in metabolic imaging using compressed-sensing-based MR spectroscopic imaging in pediatric patients undergoing routine brain exams.

Materials and methods

We retrospectively evaluated compressed-sensing reconstructions in MR spectroscopic imaging datasets from 20 pediatric patients (11 males, 9 females; average age: 5.4±4.5 years; age range: 3 days to 16 years). We performed retrospective under-sampling of the MR spectroscopic imaging datasets to simulate accelerations of 2-, 3-, 4-, 5-, 7- and 10-fold, with subsequent reconstructions in MATLAB. Metabolite maps of N-acetylaspartate, creatine, choline and lactate (where applicable) were quantitatively evaluated in terms of the root-mean-square error (RMSE), peak amplitudes and total scan time. We used the two-tailed paired t-test along with linear regression analysis to statistically compare the compressed-sensing reconstructions at each acceleration with the fully sampled reference dataset.

Results

High fidelity was maintained in the compressed-sensing MR spectroscopic imaging reconstructions from 50% to 80% under-sampling, with the RMSE not exceeding 3% in any dataset. Metabolite intensities and ratios evaluated on a voxel-by-voxel basis showed no statistically significant differences and mean metabolite intensities showed high correlation compared to the fully sampled reference dataset up to an acceleration factor of 5.

Conclusion

Compressed-sensing MR spectroscopic imaging has the potential to reduce MR spectroscopic imaging scan times for pediatric patients, with negligible information loss.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Panigrahy A, Nelson MD Jr, Bluml S (2010) Magnetic resonance spectroscopy in pediatric neuroradiology: clinical and research applications. Pediatr Radiol 40:3–30CrossRef Panigrahy A, Nelson MD Jr, Bluml S (2010) Magnetic resonance spectroscopy in pediatric neuroradiology: clinical and research applications. Pediatr Radiol 40:3–30CrossRef
2.
Zurück zum Zitat Xu D, Vigneron D (2010) Magnetic resonance spectroscopy imaging of the newborn brain — a technical review. Semin Perinatol 34:20–27CrossRef Xu D, Vigneron D (2010) Magnetic resonance spectroscopy imaging of the newborn brain — a technical review. Semin Perinatol 34:20–27CrossRef
3.
Zurück zum Zitat Astrakas LG, Zurakowski D, Tzika AA et al (2004) Noninvasive magnetic resonance spectroscopic imaging biomarkers to predict the clinical grade of pediatric brain tumors. Clin Cancer Res 10:8220–8228CrossRef Astrakas LG, Zurakowski D, Tzika AA et al (2004) Noninvasive magnetic resonance spectroscopic imaging biomarkers to predict the clinical grade of pediatric brain tumors. Clin Cancer Res 10:8220–8228CrossRef
4.
Zurück zum Zitat Gonen O, Wang ZJ, Viswanathan AK et al (1999) Three-dimensional multivoxel proton MR spectroscopy of the brain in children with neurofibromatosis type 1. AJNR Am J Neuroradiol 20:1333–1341PubMed Gonen O, Wang ZJ, Viswanathan AK et al (1999) Three-dimensional multivoxel proton MR spectroscopy of the brain in children with neurofibromatosis type 1. AJNR Am J Neuroradiol 20:1333–1341PubMed
5.
Zurück zum Zitat Hourani R, Horska A, Albayram S et al (2006) Proton magnetic resonance spectroscopic imaging to differentiate between nonneoplastic lesions and brain tumors in children. J Magn Reson Imaging 23:99–107CrossRef Hourani R, Horska A, Albayram S et al (2006) Proton magnetic resonance spectroscopic imaging to differentiate between nonneoplastic lesions and brain tumors in children. J Magn Reson Imaging 23:99–107CrossRef
6.
Zurück zum Zitat Laprie A, Pirzkall A, Haas-Kogan DA et al (2005) Longitudinal multivoxel MR spectroscopy study of pediatric diffuse brainstem gliomas treated with radiotherapy. Int J Radiat Oncol Biol Phys 62:20–31CrossRef Laprie A, Pirzkall A, Haas-Kogan DA et al (2005) Longitudinal multivoxel MR spectroscopy study of pediatric diffuse brainstem gliomas treated with radiotherapy. Int J Radiat Oncol Biol Phys 62:20–31CrossRef
7.
Zurück zum Zitat Marcus KJ, Astrakas LG, Zurakowski D et al (2007) Predicting survival of children with CNS tumors using proton magnetic resonance spectroscopic imaging biomarkers. Int J Oncol 30:651–657PubMed Marcus KJ, Astrakas LG, Zurakowski D et al (2007) Predicting survival of children with CNS tumors using proton magnetic resonance spectroscopic imaging biomarkers. Int J Oncol 30:651–657PubMed
8.
Zurück zum Zitat Moore GJ (1998) Proton magnetic resonance spectroscopy in pediatric neuroradiology. Pediatr Radiol 28:805–814CrossRef Moore GJ (1998) Proton magnetic resonance spectroscopy in pediatric neuroradiology. Pediatr Radiol 28:805–814CrossRef
9.
Zurück zum Zitat Tafazoli S, O'Neill J, Bejjani A et al (2013) 1H MRSI of middle frontal gyrus in pediatric ADHD. J Psychiatr Res 47:505–512CrossRef Tafazoli S, O'Neill J, Bejjani A et al (2013) 1H MRSI of middle frontal gyrus in pediatric ADHD. J Psychiatr Res 47:505–512CrossRef
10.
Zurück zum Zitat Thakur SB, Karimi S, Dunkel IJ et al (2006) Longitudinal MR spectroscopic imaging of pediatric diffuse pontine tumors to assess tumor aggression and progression. AJNR Am J Neuroradiol 27:806–809PubMed Thakur SB, Karimi S, Dunkel IJ et al (2006) Longitudinal MR spectroscopic imaging of pediatric diffuse pontine tumors to assess tumor aggression and progression. AJNR Am J Neuroradiol 27:806–809PubMed
11.
Zurück zum Zitat Tzika AA (2008) Proton magnetic resonance spectroscopic imaging as a cancer biomarker for pediatric brain tumors. Int J Oncol 32:517–526CrossRef Tzika AA (2008) Proton magnetic resonance spectroscopic imaging as a cancer biomarker for pediatric brain tumors. Int J Oncol 32:517–526CrossRef
12.
Zurück zum Zitat Wu WE, Kirov II, Tal A et al (2013) Brain MR spectroscopic abnormalities in "MRI-negative" tuberous sclerosis complex patients. Epilepsy Behav 27:319–325CrossRef Wu WE, Kirov II, Tal A et al (2013) Brain MR spectroscopic abnormalities in "MRI-negative" tuberous sclerosis complex patients. Epilepsy Behav 27:319–325CrossRef
13.
Zurück zum Zitat Howe FA, Opstad KS (2003) 1H MR spectroscopy of brain tumours and masses. NMR Biomed 16:123–131CrossRef Howe FA, Opstad KS (2003) 1H MR spectroscopy of brain tumours and masses. NMR Biomed 16:123–131CrossRef
14.
Zurück zum Zitat Skoch A, Jiru F, Bunke J (2008) Spectroscopic imaging: basic principles. Eur J Radiol 67:230–239CrossRef Skoch A, Jiru F, Bunke J (2008) Spectroscopic imaging: basic principles. Eur J Radiol 67:230–239CrossRef
15.
Zurück zum Zitat Donoho DL (2006) Compressed sensing. IEEE Trans Inf Theory 52:18 Donoho DL (2006) Compressed sensing. IEEE Trans Inf Theory 52:18
16.
Zurück zum Zitat Lustig M, Donoho D, Pauly JM (2007) Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 58:1182–1195CrossRef Lustig M, Donoho D, Pauly JM (2007) Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 58:1182–1195CrossRef
17.
Zurück zum Zitat Bhave S, Lingala SG, Newell JD et al (2016) Blind compressed sensing enables 3-dimensional dynamic free breathing magnetic resonance imaging of lung volumes and diaphragm motion. Investig Radiol 51:387–399CrossRef Bhave S, Lingala SG, Newell JD et al (2016) Blind compressed sensing enables 3-dimensional dynamic free breathing magnetic resonance imaging of lung volumes and diaphragm motion. Investig Radiol 51:387–399CrossRef
18.
Zurück zum Zitat Dyvorne H, Knight-Greenfield A, Jajamovich G et al (2015) Abdominal 4D flow MR imaging in a breath hold: combination of spiral sampling and dynamic compressed sensing for highly accelerated acquisition. Radiology 275:245–254CrossRef Dyvorne H, Knight-Greenfield A, Jajamovich G et al (2015) Abdominal 4D flow MR imaging in a breath hold: combination of spiral sampling and dynamic compressed sensing for highly accelerated acquisition. Radiology 275:245–254CrossRef
19.
Zurück zum Zitat Jung H, Sung K, Nayak KS et al (2009) K-t FOCUSS: a general compressed sensing framework for high resolution dynamic MRI. Magn Reson Med 61:103–116CrossRef Jung H, Sung K, Nayak KS et al (2009) K-t FOCUSS: a general compressed sensing framework for high resolution dynamic MRI. Magn Reson Med 61:103–116CrossRef
20.
Zurück zum Zitat Zhang T, Cheng JY, Potnick AG et al (2015) Fast pediatric 3D free-breathing abdominal dynamic contrast enhanced MRI with high spatiotemporal resolution. J Magn Reson Imaging 41:460–473CrossRef Zhang T, Cheng JY, Potnick AG et al (2015) Fast pediatric 3D free-breathing abdominal dynamic contrast enhanced MRI with high spatiotemporal resolution. J Magn Reson Imaging 41:460–473CrossRef
21.
Zurück zum Zitat Hu S, Lustig M, Balakrishnan A et al (2010) 3D compressed sensing for highly accelerated hyperpolarized (13)C MRSI with in vivo applications to transgenic mouse models of cancer. Magn Reson Med 63:312–321CrossRef Hu S, Lustig M, Balakrishnan A et al (2010) 3D compressed sensing for highly accelerated hyperpolarized (13)C MRSI with in vivo applications to transgenic mouse models of cancer. Magn Reson Med 63:312–321CrossRef
22.
Zurück zum Zitat Geethanath S, Baek HM, Ganji SK et al (2012) Compressive sensing could accelerate 1H MR metabolic imaging in the clinic. Radiology 262:985–994CrossRef Geethanath S, Baek HM, Ganji SK et al (2012) Compressive sensing could accelerate 1H MR metabolic imaging in the clinic. Radiology 262:985–994CrossRef
23.
Zurück zum Zitat Furuyama JK, Wilson NE, Burns BL et al (2012) Application of compressed sensing to multidimensional spectroscopic imaging in human prostate. Magn Reson Med 67:1499–1505CrossRef Furuyama JK, Wilson NE, Burns BL et al (2012) Application of compressed sensing to multidimensional spectroscopic imaging in human prostate. Magn Reson Med 67:1499–1505CrossRef
24.
Zurück zum Zitat Maguire ML, Geethanath S, Lygate CA et al (2015) Compressed sensing to accelerate magnetic resonance spectroscopic imaging: evaluation and application to 23Na-imaging of mouse hearts. J Cardiovasc Magn Reson 17:45CrossRef Maguire ML, Geethanath S, Lygate CA et al (2015) Compressed sensing to accelerate magnetic resonance spectroscopic imaging: evaluation and application to 23Na-imaging of mouse hearts. J Cardiovasc Magn Reson 17:45CrossRef
25.
Zurück zum Zitat Cao P, Wu EX (2015) Accelerating phase-encoded proton MR spectroscopic imaging by compressed sensing. J Magn Reson Imaging 41:487–495CrossRef Cao P, Wu EX (2015) Accelerating phase-encoded proton MR spectroscopic imaging by compressed sensing. J Magn Reson Imaging 41:487–495CrossRef
26.
Zurück zum Zitat Wilson NE, Iqbal Z, Burns BL et al (2016) Accelerated five-dimensional echo planar J-resolved spectroscopic imaging: implementation and pilot validation in human brain. Magn Reson Med 75:42–51CrossRef Wilson NE, Iqbal Z, Burns BL et al (2016) Accelerated five-dimensional echo planar J-resolved spectroscopic imaging: implementation and pilot validation in human brain. Magn Reson Med 75:42–51CrossRef
27.
Zurück zum Zitat Hsiao A, Lustig M, Alley MT et al (2012) Rapid pediatric cardiac assessment of flow and ventricular volume with compressed sensing parallel imaging volumetric cine phase-contrast MRI. AJR Am J Roentgenol 198:W250–W259CrossRef Hsiao A, Lustig M, Alley MT et al (2012) Rapid pediatric cardiac assessment of flow and ventricular volume with compressed sensing parallel imaging volumetric cine phase-contrast MRI. AJR Am J Roentgenol 198:W250–W259CrossRef
28.
Zurück zum Zitat Kim DH, Gu M, Cunningham C et al (2009) Fast 3D (1)H MRSI of the corticospinal tract in pediatric brain. J Magn Reson Imaging 29:1–6CrossRef Kim DH, Gu M, Cunningham C et al (2009) Fast 3D (1)H MRSI of the corticospinal tract in pediatric brain. J Magn Reson Imaging 29:1–6CrossRef
29.
Zurück zum Zitat Vasanawala SS, Alley MT, Hargreaves BA et al (2010) Improved pediatric MR imaging with compressed sensing. Radiology 256:607–616CrossRef Vasanawala SS, Alley MT, Hargreaves BA et al (2010) Improved pediatric MR imaging with compressed sensing. Radiology 256:607–616CrossRef
30.
Zurück zum Zitat Zhang T, Chowdhury S, Lustig M et al (2014) Clinical performance of contrast enhanced abdominal pediatric MRI with fast combined parallel imaging compressed sensing reconstruction. J Magn Reson Imaging 40:13–25CrossRef Zhang T, Chowdhury S, Lustig M et al (2014) Clinical performance of contrast enhanced abdominal pediatric MRI with fast combined parallel imaging compressed sensing reconstruction. J Magn Reson Imaging 40:13–25CrossRef
31.
Zurück zum Zitat Naressi A, Couturier C, Castang I et al (2001) Java-based graphical user interface for MRUI, a software package for quantitation of in vivo/medical magnetic resonance spectroscopy signals. Comput Biol Med 31:269–286CrossRef Naressi A, Couturier C, Castang I et al (2001) Java-based graphical user interface for MRUI, a software package for quantitation of in vivo/medical magnetic resonance spectroscopy signals. Comput Biol Med 31:269–286CrossRef
32.
Zurück zum Zitat Ostrom QT, Gittleman H, Farah P et al (2013) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2006-2010. Neuro Oncol 15:ii1–i56CrossRef Ostrom QT, Gittleman H, Farah P et al (2013) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2006-2010. Neuro Oncol 15:ii1–i56CrossRef
33.
Zurück zum Zitat Knoll F, Clason C, Diwoky C, Stollberger R (2011) Adapted random sampling patterns for accelerated MRI. MAGMA 24:43–50CrossRef Knoll F, Clason C, Diwoky C, Stollberger R (2011) Adapted random sampling patterns for accelerated MRI. MAGMA 24:43–50CrossRef
34.
Zurück zum Zitat Zijlstra F, Viergever MA, Seevinck PR (2015) Evaluation of variable density and data-driven k-space undersampling for compressed sensing magnetic resonance imaging. Investig Radiol 51:410–419CrossRef Zijlstra F, Viergever MA, Seevinck PR (2015) Evaluation of variable density and data-driven k-space undersampling for compressed sensing magnetic resonance imaging. Investig Radiol 51:410–419CrossRef
Metadaten
Titel
2-D magnetic resonance spectroscopic imaging of the pediatric brain using compressed sensing
verfasst von
Rohini Vidya Shankar
Houchun H. Hu
Nutandev Bikkamane Jayadev
John C. Chang
Vikram D. Kodibagkar
Publikationsdatum
28.08.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Pediatric Radiology / Ausgabe 13/2019
Print ISSN: 0301-0449
Elektronische ISSN: 1432-1998
DOI
https://doi.org/10.1007/s00247-019-04495-1

Weitere Artikel der Ausgabe 13/2019

Pediatric Radiology 13/2019 Zur Ausgabe

Hermes

Hermes

Screening-Mammografie offenbart erhöhtes Herz-Kreislauf-Risiko

26.04.2024 Mammografie Nachrichten

Routinemäßige Mammografien helfen, Brustkrebs frühzeitig zu erkennen. Anhand der Röntgenuntersuchung lassen sich aber auch kardiovaskuläre Risikopatientinnen identifizieren. Als zuverlässiger Anhaltspunkt gilt die Verkalkung der Brustarterien.

S3-Leitlinie zu Pankreaskrebs aktualisiert

23.04.2024 Pankreaskarzinom Nachrichten

Die Empfehlungen zur Therapie des Pankreaskarzinoms wurden um zwei Off-Label-Anwendungen erweitert. Und auch im Bereich der Früherkennung gibt es Aktualisierungen.

Fünf Dinge, die im Kindernotfall besser zu unterlassen sind

18.04.2024 Pädiatrische Notfallmedizin Nachrichten

Im Choosing-Wisely-Programm, das für die deutsche Initiative „Klug entscheiden“ Pate gestanden hat, sind erstmals Empfehlungen zum Umgang mit Notfällen von Kindern erschienen. Fünf Dinge gilt es demnach zu vermeiden.

„Nur wer sich gut aufgehoben fühlt, kann auch für Patientensicherheit sorgen“

13.04.2024 Klinik aktuell Kongressbericht

Die Teilnehmer eines Forums beim DGIM-Kongress waren sich einig: Fehler in der Medizin sind häufig in ungeeigneten Prozessen und mangelnder Kommunikation begründet. Gespräche mit Patienten und im Team können helfen.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.