Skip to main content
Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging 11/2008

01.11.2008 | Original Article

A contrast-oriented algorithm for FDG-PET-based delineation of tumour volumes for the radiotherapy of lung cancer: derivation from phantom measurements and validation in patient data

verfasst von: Andrea Schaefer, Stephanie Kremp, Dirk Hellwig, Christian Rübe, Carl-Martin Kirsch, Ursula Nestle

Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging | Ausgabe 11/2008

Einloggen, um Zugang zu erhalten

Abstract

Purpose

An easily applicable algorithm for the FDG-PET-based delineation of tumour volumes for the radiotherapy of lung cancer was developed by phantom measurements and validated in patient data.

Methods

PET scans were performed (ECAT-ART tomograph) on two cylindrical phantoms (phan1, phan2) containing glass spheres of different volumes (7.4–258 ml) which were filled with identical FDG concentrations. Gradually increasing the activity of the fillable background, signal-to-background ratios from 33:1 to 2.5:1 were realised. The mean standardised uptake value (SUV) of the region-of-interest (ROI) surrounded by a 70% isocontour (mSUV70) was used to represent the FDG accumulation of each sphere (or tumour). Image contrast was defined as:\(C = {{\left( {{\text{mSUV}}_{{\text{70}}} - {\text{BG}}} \right)} \mathord{\left/ {\vphantom {{\left( {{\text{mSUV}}_{{\text{70}}} - {\text{BG}}} \right)} {{\text{BG}}}}} \right. \kern-\nulldelimiterspace} {{\text{BG}}}}\) where BG is the mean background − SUV. For the spheres of phan1, the threshold SUVs (TS) best matching the known sphere volumes were determined. A regression function representing the relationship between TS/(mSUV70 − BG) and C was calculated and used for delineation of the spheres in phan2 and the gross tumour volumes (GTVs) of eight primary lung tumours. These GTVs were compared to those defined using CT.

Results

The relationship between TS/(mSUV70 − BG) and C is best described by an inverse regression function which can be converted to the linear relationship \({\text{TS}} = a \times {\text{mSUV}}_{70} + b \times {\text{BG}}\). Using this algorithm, the volumes delineated in phan2 differed by only −0.4 to +0.7 mm in radius from the true ones, whilst the PET-GTVs differed by only −0.7 to +1.2 mm compared with the values determined by CT.

Conclusion

By the contrast-oriented algorithm presented in this study, a PET-based delineation of GTVs for primary tumours of lung cancer patients is feasible.
Literatur
1.
Zurück zum Zitat Baum RP, Hellwig D, Mezzetti M. Position of nuclear medicine modalities in the diagnostic workup of cancer patients: lung cancer. Q J Nucl Med Mol Imaging 2004;48:119–42.PubMed Baum RP, Hellwig D, Mezzetti M. Position of nuclear medicine modalities in the diagnostic workup of cancer patients: lung cancer. Q J Nucl Med Mol Imaging 2004;48:119–42.PubMed
2.
3.
Zurück zum Zitat Gambhir SS, Czernin J, Schwimmer J, Silverman DH, Coleman RE, Phelps ME. A tabulated summary of the FDG PET literature. J Nucl Med 2001;42:1S–93S.PubMed Gambhir SS, Czernin J, Schwimmer J, Silverman DH, Coleman RE, Phelps ME. A tabulated summary of the FDG PET literature. J Nucl Med 2001;42:1S–93S.PubMed
4.
Zurück zum Zitat ICRU. Prescribing, recording and reporting photon beam therapy. Supplement to report 50. Bethesda, MD: ICRU; 1999. ICRU. Prescribing, recording and reporting photon beam therapy. Supplement to report 50. Bethesda, MD: ICRU; 1999.
5.
Zurück zum Zitat Grosu AL, Piert M, Weber WA, Jeremic B, Picchio M, Schratzenstaller U, et al. Positron emission tomography for radiation treatment planning. Strahlenther Onkol 2005;181:483–99.PubMedCrossRef Grosu AL, Piert M, Weber WA, Jeremic B, Picchio M, Schratzenstaller U, et al. Positron emission tomography for radiation treatment planning. Strahlenther Onkol 2005;181:483–99.PubMedCrossRef
6.
Zurück zum Zitat Nestle U, Kremp S, Grosu A. Practical integration of [(18)F]-FDG-PET and PET-CT in the planning of radiotherapy for non-small cell lung cancer (NSCLC): the technical basis, ICRU-target volumes, problems, perspectives. Radiother Oncol 2006;81:209–25.PubMedCrossRef Nestle U, Kremp S, Grosu A. Practical integration of [(18)F]-FDG-PET and PET-CT in the planning of radiotherapy for non-small cell lung cancer (NSCLC): the technical basis, ICRU-target volumes, problems, perspectives. Radiother Oncol 2006;81:209–25.PubMedCrossRef
7.
Zurück zum Zitat Pötzsch C, Hofheinz F, van den Hoff J. Vergleich der inter-observer-variabilität bei manueller und automatischer volumenbestimmung in der PET. Nuklearmediziner 2006;45:A42. Pötzsch C, Hofheinz F, van den Hoff J. Vergleich der inter-observer-variabilität bei manueller und automatischer volumenbestimmung in der PET. Nuklearmediziner 2006;45:A42.
8.
Zurück zum Zitat Knight SB, Delbeke D, Stewart JR, Sandler MP. Evaluation of pulmonary lesions with FDG-PET. Comparison of findings in patients with and without a history of prior malignancy. Chest 1996;109:982–8.PubMedCrossRef Knight SB, Delbeke D, Stewart JR, Sandler MP. Evaluation of pulmonary lesions with FDG-PET. Comparison of findings in patients with and without a history of prior malignancy. Chest 1996;109:982–8.PubMedCrossRef
9.
Zurück zum Zitat Erdi YE, Mawlawi O, Larson SM, Imbriaco M, Yeung H, Finn R, et al. Segmentation of lung lesion volume by adaptive positron emission tomography image thresholding. Cancer 1997;80:2505–9.PubMedCrossRef Erdi YE, Mawlawi O, Larson SM, Imbriaco M, Yeung H, Finn R, et al. Segmentation of lung lesion volume by adaptive positron emission tomography image thresholding. Cancer 1997;80:2505–9.PubMedCrossRef
10.
Zurück zum Zitat Hellwig D, Graeter TP, Gröschel A, Sybrecht GW, Schäfers HJ, Kirsch CM. FDG-PET for mediastinal staging of lung cancer: which SUV threshold makes sense? J Nucl Med 2007;48:1761–6.PubMedCrossRef Hellwig D, Graeter TP, Gröschel A, Sybrecht GW, Schäfers HJ, Kirsch CM. FDG-PET for mediastinal staging of lung cancer: which SUV threshold makes sense? J Nucl Med 2007;48:1761–6.PubMedCrossRef
11.
Zurück zum Zitat Boellaard R, Krak NC, Hoekstra OS, Lammertsma AA. Effects of noise, image resolution, and ROI definition on the accuracy of standard uptake values: a simulation study. J Nucl Med 2004;45:1519–27.PubMed Boellaard R, Krak NC, Hoekstra OS, Lammertsma AA. Effects of noise, image resolution, and ROI definition on the accuracy of standard uptake values: a simulation study. J Nucl Med 2004;45:1519–27.PubMed
12.
Zurück zum Zitat Jaskowiak CJ, Bianco JA, Perlman SB, Fine JP. Influence of reconstruction iterations on 18F-FDG PET/CT standardized uptake values. J Nucl Med 2005;46:424–8.PubMed Jaskowiak CJ, Bianco JA, Perlman SB, Fine JP. Influence of reconstruction iterations on 18F-FDG PET/CT standardized uptake values. J Nucl Med 2005;46:424–8.PubMed
13.
Zurück zum Zitat Lindholm P, Minn H, Leskinen-Kallio S, Bergman J, Ruotsalainen U, Joensuu H. Influence of the blood glucose concentration on FDG uptake in cancer—a PET study. J Nucl Med 1993;34:1–6.PubMed Lindholm P, Minn H, Leskinen-Kallio S, Bergman J, Ruotsalainen U, Joensuu H. Influence of the blood glucose concentration on FDG uptake in cancer—a PET study. J Nucl Med 1993;34:1–6.PubMed
14.
Zurück zum Zitat Menda Y, Bushnell DL, Madsen MT, McLaughlin K, Kahn D, Kernstine KH. Evaluation of various corrections to the standardized uptake value for diagnosis of pulmonary malignancy. Nucl Med Commun 2001;22:1077–81.PubMedCrossRef Menda Y, Bushnell DL, Madsen MT, McLaughlin K, Kahn D, Kernstine KH. Evaluation of various corrections to the standardized uptake value for diagnosis of pulmonary malignancy. Nucl Med Commun 2001;22:1077–81.PubMedCrossRef
15.
Zurück zum Zitat Paquet N, Albert A, Foidart J, Hustinx R. Within-patient variability of 18F-FDG: standardized uptake values in normal tissues. J Nucl Med 2004;45:784–8.PubMed Paquet N, Albert A, Foidart J, Hustinx R. Within-patient variability of 18F-FDG: standardized uptake values in normal tissues. J Nucl Med 2004;45:784–8.PubMed
16.
Zurück zum Zitat Schoder H, Erdi YE, Chao K, Gonen M, Larson SM, Yeung HW. Clinical implications of different image reconstruction parameters for interpretation of whole-body PET studies in cancer patients. J Nucl Med 2004;45:559–66.PubMed Schoder H, Erdi YE, Chao K, Gonen M, Larson SM, Yeung HW. Clinical implications of different image reconstruction parameters for interpretation of whole-body PET studies in cancer patients. J Nucl Med 2004;45:559–66.PubMed
17.
Zurück zum Zitat Nestle U, Kremp S, Schaefer-Schuler A, Sebastian-Welsch C, Hellwig D, Rübe C, et al. Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-small cell lung cancer. J Nucl Med 2005;46:1342–8.PubMed Nestle U, Kremp S, Schaefer-Schuler A, Sebastian-Welsch C, Hellwig D, Rübe C, et al. Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-small cell lung cancer. J Nucl Med 2005;46:1342–8.PubMed
18.
Zurück zum Zitat Daisne JF, Sibomana M, Bol A, Doumont T, Lonneux M, Gregoire V. Tri-dimensional automatic segmentation of PET volumes based on measured source-to-background ratios: influence of reconstruction algorithms. Radiother Oncol 2003;69:247–50.PubMedCrossRef Daisne JF, Sibomana M, Bol A, Doumont T, Lonneux M, Gregoire V. Tri-dimensional automatic segmentation of PET volumes based on measured source-to-background ratios: influence of reconstruction algorithms. Radiother Oncol 2003;69:247–50.PubMedCrossRef
19.
Zurück zum Zitat Black QC, Grills IS, Kestin LL, Wong CY, Wong JW, Martinez AA, et al. Defining a radiotherapy target with positron emission tomography. Int J Radiat Oncol Biol Phys 2004;60:1272–82.PubMed Black QC, Grills IS, Kestin LL, Wong CY, Wong JW, Martinez AA, et al. Defining a radiotherapy target with positron emission tomography. Int J Radiat Oncol Biol Phys 2004;60:1272–82.PubMed
20.
Zurück zum Zitat Daisne JF, Duprez T, Weynand B, Lonneux M, Hamoir M, Reychler H, et al. Tumor volume in pharyngolaryngeal squamous cell carcinoma: comparison at CT, MR imaging, and FDG PET and validation with surgical specimen. Radiology 2004;233:93–100.PubMedCrossRef Daisne JF, Duprez T, Weynand B, Lonneux M, Hamoir M, Reychler H, et al. Tumor volume in pharyngolaryngeal squamous cell carcinoma: comparison at CT, MR imaging, and FDG PET and validation with surgical specimen. Radiology 2004;233:93–100.PubMedCrossRef
21.
Zurück zum Zitat Geets X, Daisne JF, Gregoire V, Hamoir M, Lonneux M. Role of 11-C-methionine positron emission tomography for the delineation of the tumor volume in pharyngo-laryngeal squamous cell carcinoma: comparison with FDG-PET and CT. Radiother Oncol 2004;71:267–73.PubMedCrossRef Geets X, Daisne JF, Gregoire V, Hamoir M, Lonneux M. Role of 11-C-methionine positron emission tomography for the delineation of the tumor volume in pharyngo-laryngeal squamous cell carcinoma: comparison with FDG-PET and CT. Radiother Oncol 2004;71:267–73.PubMedCrossRef
22.
Zurück zum Zitat Geets X, Daisne JF, Tomsej M, Duprez T, Lonneux M, Gregoire V. Impact of the type of imaging modality on target volumes delineation and dose distribution in pharyngo-laryngeal squamous cell carcinoma: comparison between pre- and per-treatment studies. Radiother Oncol 2006;78:291–7.PubMedCrossRef Geets X, Daisne JF, Tomsej M, Duprez T, Lonneux M, Gregoire V. Impact of the type of imaging modality on target volumes delineation and dose distribution in pharyngo-laryngeal squamous cell carcinoma: comparison between pre- and per-treatment studies. Radiother Oncol 2006;78:291–7.PubMedCrossRef
23.
Zurück zum Zitat Bayne M, MacManus M, Hicks R, Leong T, Peters L, Ball D. Can a mathematical formula help define a radiation target volume using positron emission tomography? In regard to Black et al. (Int J Radiat Oncol Biol Phys 2004;60:1272–1282). Int J Radiat Oncol Biol Phys 2005;62:299–300. author reply 300.PubMedCrossRef Bayne M, MacManus M, Hicks R, Leong T, Peters L, Ball D. Can a mathematical formula help define a radiation target volume using positron emission tomography? In regard to Black et al. (Int J Radiat Oncol Biol Phys 2004;60:1272–1282). Int J Radiat Oncol Biol Phys 2005;62:299–300. author reply 300.PubMedCrossRef
24.
Zurück zum Zitat Kremp S, Nestle U, Sebastian-Welsch C, Schaefer A, Kirsch CM, Rübe C. Möglicher Nutzen der FDG-PET zur Abbildung der Tumorbewegung in der 3-D Bestrahlungsplanung von Bronchialkarzinomen mittels CT-PET fusionierter Bildgebung. Strahlenther Onkol 2006;182:51. Kremp S, Nestle U, Sebastian-Welsch C, Schaefer A, Kirsch CM, Rübe C. Möglicher Nutzen der FDG-PET zur Abbildung der Tumorbewegung in der 3-D Bestrahlungsplanung von Bronchialkarzinomen mittels CT-PET fusionierter Bildgebung. Strahlenther Onkol 2006;182:51.
25.
Zurück zum Zitat Kremp S, Schaefer-Schuler A, Nestle U, Sebastian-Welsch C, Rübe C, Kirsch C-M. Comparison of CT and CT-PET-fusion based 3D treatment plans in the percutaneous radiotherapy of lung cancer. Radiother Oncol 2004;73:S447–8. Kremp S, Schaefer-Schuler A, Nestle U, Sebastian-Welsch C, Rübe C, Kirsch C-M. Comparison of CT and CT-PET-fusion based 3D treatment plans in the percutaneous radiotherapy of lung cancer. Radiother Oncol 2004;73:S447–8.
26.
Zurück zum Zitat Nestle U, Hellwig D, Schmidt S, Licht N, Walter K, Ukena D, et al. 2-Deoxy-2-[18F]fluoro-D-glucose positron emission tomography in target volume definition for radiotherapy of patients with non-small-cell lung cancer. Mol Imaging Biol 2002;4:257–63.PubMedCrossRef Nestle U, Hellwig D, Schmidt S, Licht N, Walter K, Ukena D, et al. 2-Deoxy-2-[18F]fluoro-D-glucose positron emission tomography in target volume definition for radiotherapy of patients with non-small-cell lung cancer. Mol Imaging Biol 2002;4:257–63.PubMedCrossRef
27.
Zurück zum Zitat Nestle U, Walter K, Schmidt S, Licht N, Nieder C, Motaref B, et al. 18F-deoxyglucose positron emission tomography (FDG-PET) for the planning of radiotherapy in lung cancer: high impact in patients with atelectasis. Int J Radiat Oncol Biol Phys 1999;44:593–7.PubMedCrossRef Nestle U, Walter K, Schmidt S, Licht N, Nieder C, Motaref B, et al. 18F-deoxyglucose positron emission tomography (FDG-PET) for the planning of radiotherapy in lung cancer: high impact in patients with atelectasis. Int J Radiat Oncol Biol Phys 1999;44:593–7.PubMedCrossRef
28.
Zurück zum Zitat Nestle U, Hellwig D, Fleckenstein J, Walter K, Ukena D, Rübe C, et al. Comparison of early pulmonary changes in 18FDG-PET and CT after combined radiochemotherapy for advanced non-small-cell lung cancer: a study in 15 patients. Front Radiat Ther Oncol 2002;37:26–33.PubMedCrossRef Nestle U, Hellwig D, Fleckenstein J, Walter K, Ukena D, Rübe C, et al. Comparison of early pulmonary changes in 18FDG-PET and CT after combined radiochemotherapy for advanced non-small-cell lung cancer: a study in 15 patients. Front Radiat Ther Oncol 2002;37:26–33.PubMedCrossRef
29.
Zurück zum Zitat Bailey DL, Young H, Bloomfield PM, Meikle SR, Glass D, Myers MJ, et al. ECAT ART—a continuously rotating PET camera: performance characteristics, initial clinical studies, and installation considerations in a nuclear medicine department. Eur J Nucl Med 1997;24:6–15.PubMedCrossRef Bailey DL, Young H, Bloomfield PM, Meikle SR, Glass D, Myers MJ, et al. ECAT ART—a continuously rotating PET camera: performance characteristics, initial clinical studies, and installation considerations in a nuclear medicine department. Eur J Nucl Med 1997;24:6–15.PubMedCrossRef
30.
Zurück zum Zitat Watson C, Schaefer A, Luk WK, Kirsch CM. Clinical evaluation of single-photon attenuation correction for 3D whole body PET. IEEE Trans Nucl Sci 1999;46:1024–31.CrossRef Watson C, Schaefer A, Luk WK, Kirsch CM. Clinical evaluation of single-photon attenuation correction for 3D whole body PET. IEEE Trans Nucl Sci 1999;46:1024–31.CrossRef
31.
Zurück zum Zitat Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imag 1994;13:601–9.CrossRef Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imag 1994;13:601–9.CrossRef
32.
Zurück zum Zitat Kremp S, Hellwig D, Schaefer-Schuler A, Sebastian-Welsch C, Ukena D, Rübe C. Integration von CT/PET fusionierter Bildgebung in die 3-D-Bestrahlungsplanung des Bronchialkarzinoms. Strahlenther Onkol 2003;179:6. abstract. Kremp S, Hellwig D, Schaefer-Schuler A, Sebastian-Welsch C, Ukena D, Rübe C. Integration von CT/PET fusionierter Bildgebung in die 3-D-Bestrahlungsplanung des Bronchialkarzinoms. Strahlenther Onkol 2003;179:6. abstract.
33.
Zurück zum Zitat Borst GR, Belderbos JS, Boellaard R, Comans EF, Jaeger KD, Lammertsma AA, et al. Standardised FDG uptake: a prognostic factor for inoperable non-small cell lung cancer. Eur J Cancer 2005;41:1533–41.PubMedCrossRef Borst GR, Belderbos JS, Boellaard R, Comans EF, Jaeger KD, Lammertsma AA, et al. Standardised FDG uptake: a prognostic factor for inoperable non-small cell lung cancer. Eur J Cancer 2005;41:1533–41.PubMedCrossRef
34.
Zurück zum Zitat Townsend DW, Wensveen M, Byars LG, Geissbuhler A, Tochon-Danguy HJ, Christin A, et al. A rotating PET scanner using BGO block detectors: design, performance and applications. J Nucl Med 1993;34:1367–76.PubMed Townsend DW, Wensveen M, Byars LG, Geissbuhler A, Tochon-Danguy HJ, Christin A, et al. A rotating PET scanner using BGO block detectors: design, performance and applications. J Nucl Med 1993;34:1367–76.PubMed
35.
Zurück zum Zitat Kadrmas DJ, Christian PE. Comparative evaluation of lesion detectability for 6 PET imaging platforms using a highly reproducible whole-body phantom with (22)Na lesions and localization ROC analysis. J Nucl Med 2002;43:1545–54.PubMed Kadrmas DJ, Christian PE. Comparative evaluation of lesion detectability for 6 PET imaging platforms using a highly reproducible whole-body phantom with (22)Na lesions and localization ROC analysis. J Nucl Med 2002;43:1545–54.PubMed
36.
Zurück zum Zitat Caldwell CB, Mah K, Skinner M, Danjoux CE. Can PET provide the 3D extent of tumor motion for individualized internal target volumes? A phantom study of the limitations of CT and the promise of PET. Int J Radiat Oncol Biol Phys 2003;55:1381–93.PubMed Caldwell CB, Mah K, Skinner M, Danjoux CE. Can PET provide the 3D extent of tumor motion for individualized internal target volumes? A phantom study of the limitations of CT and the promise of PET. Int J Radiat Oncol Biol Phys 2003;55:1381–93.PubMed
37.
Zurück zum Zitat Vesselle H, Pugsley JM, Vallieres E, Wood DE. The impact of fluorodeoxyglucose F 18 positron-emission tomography on the surgical staging of non-small cell lung cancer. J Thorac Cardiovasc Surg 2002;124:511–9.PubMedCrossRef Vesselle H, Pugsley JM, Vallieres E, Wood DE. The impact of fluorodeoxyglucose F 18 positron-emission tomography on the surgical staging of non-small cell lung cancer. J Thorac Cardiovasc Surg 2002;124:511–9.PubMedCrossRef
38.
Zurück zum Zitat Nestle U, Schaefer-Schuler A, Kremp S, Groeschel A, Hellwig D, Rube C, et al. Target volume definition for (18)F-FDG PET-positive lymph nodes in radiotherapy of patients with non-small cell lung cancer. Eur J Nucl Med Mol Imaging 2007;34:453–62.PubMedCrossRef Nestle U, Schaefer-Schuler A, Kremp S, Groeschel A, Hellwig D, Rube C, et al. Target volume definition for (18)F-FDG PET-positive lymph nodes in radiotherapy of patients with non-small cell lung cancer. Eur J Nucl Med Mol Imaging 2007;34:453–62.PubMedCrossRef
39.
Zurück zum Zitat Ciernik IF, Dizendorf E, Baumert BG, Reiner B, Burger C, Davis JB, et al. Radiation treatment planning with an integrated positron emission and computer tomography (PET/CT): a feasibility study. Int J Radiat Oncol Biol Phys 2003;57:853–63.PubMed Ciernik IF, Dizendorf E, Baumert BG, Reiner B, Burger C, Davis JB, et al. Radiation treatment planning with an integrated positron emission and computer tomography (PET/CT): a feasibility study. Int J Radiat Oncol Biol Phys 2003;57:853–63.PubMed
40.
Zurück zum Zitat Ciernik IF, Huser M, Burger C, Davis JB, Szekely G. Automated functional image-guided radiation treatment planning for rectal cancer. Int J Radiat Oncol Biol Phys 2005;62:893–900.PubMed Ciernik IF, Huser M, Burger C, Davis JB, Szekely G. Automated functional image-guided radiation treatment planning for rectal cancer. Int J Radiat Oncol Biol Phys 2005;62:893–900.PubMed
41.
Zurück zum Zitat Davis JB, Reiner B, Huser M, Burger C, Szekely G, Ciernik IF. Assessment of 18F PET signals for automatic target volume definition in radiotherapy treatment planning. Radiother Oncol 2006;80:43–50.PubMedCrossRef Davis JB, Reiner B, Huser M, Burger C, Szekely G, Ciernik IF. Assessment of 18F PET signals for automatic target volume definition in radiotherapy treatment planning. Radiother Oncol 2006;80:43–50.PubMedCrossRef
42.
Zurück zum Zitat Erdi YE, Rosenzweig K, Erdi AK, Macapinlac HA, Hu YC, Braban LE, et al. Radiotherapy treatment planning for patients with non-small cell lung cancer using positron emission tomography (PET). Radiother Oncol 2002;62:51–60.PubMedCrossRef Erdi YE, Rosenzweig K, Erdi AK, Macapinlac HA, Hu YC, Braban LE, et al. Radiotherapy treatment planning for patients with non-small cell lung cancer using positron emission tomography (PET). Radiother Oncol 2002;62:51–60.PubMedCrossRef
43.
Zurück zum Zitat Nehmeh SA, Erdi YE, Ling CC, Rosenzweig KE, Squire OD, Braban LE, et al. Effect of respiratory gating on reducing lung motion artifacts in PET imaging of lung cancer. Med Phys 2002;29:366–71.PubMedCrossRef Nehmeh SA, Erdi YE, Ling CC, Rosenzweig KE, Squire OD, Braban LE, et al. Effect of respiratory gating on reducing lung motion artifacts in PET imaging of lung cancer. Med Phys 2002;29:366–71.PubMedCrossRef
44.
Zurück zum Zitat Jin JY, Ajlouni M, Chen Q, Yin FF, Movsas B. A technique of using gated-CT images to determine internal target volume (ITV) for fractionated stereotactic lung radiotherapy. Radiother Oncol 2006;78:177–84.PubMedCrossRef Jin JY, Ajlouni M, Chen Q, Yin FF, Movsas B. A technique of using gated-CT images to determine internal target volume (ITV) for fractionated stereotactic lung radiotherapy. Radiother Oncol 2006;78:177–84.PubMedCrossRef
45.
Zurück zum Zitat Nehmeh SA, Erdi YE, Pan T, Pevsner A, Rosenzweig KE, Yorke E, et al. Four-dimensional (4D) PET/CT imaging of the thorax. Med Phys 2004;31:3179–86.PubMedCrossRef Nehmeh SA, Erdi YE, Pan T, Pevsner A, Rosenzweig KE, Yorke E, et al. Four-dimensional (4D) PET/CT imaging of the thorax. Med Phys 2004;31:3179–86.PubMedCrossRef
46.
Zurück zum Zitat Grgic A, Nestle U, Schaefer-Schuler A, Kremp S, Kirsch C-M, Hellwig D. FDG-PET-based radiotherapy planning in lung cancer: optimum breathing protocol and patient positioning—an intraindividual comparison. Int J Radiat Oncol Biol Phys. 2008; doi:10.1016/j.ijrobp.2008.03.063. Grgic A, Nestle U, Schaefer-Schuler A, Kremp S, Kirsch C-M, Hellwig D. FDG-PET-based radiotherapy planning in lung cancer: optimum breathing protocol and patient positioning—an intraindividual comparison. Int J Radiat Oncol Biol Phys. 2008; doi:10.​1016/​j.​ijrobp.​2008.​03.​063.
Metadaten
Titel
A contrast-oriented algorithm for FDG-PET-based delineation of tumour volumes for the radiotherapy of lung cancer: derivation from phantom measurements and validation in patient data
verfasst von
Andrea Schaefer
Stephanie Kremp
Dirk Hellwig
Christian Rübe
Carl-Martin Kirsch
Ursula Nestle
Publikationsdatum
01.11.2008
Verlag
Springer-Verlag
Erschienen in
European Journal of Nuclear Medicine and Molecular Imaging / Ausgabe 11/2008
Print ISSN: 1619-7070
Elektronische ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-008-0875-1

Weitere Artikel der Ausgabe 11/2008

European Journal of Nuclear Medicine and Molecular Imaging 11/2008 Zur Ausgabe