Skip to main content
Erschienen in: Virology Journal 1/2018

Open Access 01.12.2018 | Short report

A new hepatitis E virus genotype 2 strain identified from an outbreak in Nigeria, 2017

verfasst von: Bo Wang, Olusola Anuoluwapo Akanbi, Dominik Harms, Olufisayo Adesina, Folakemi Abiodun Osundare, Dhamari Naidoo, Isabel Deveaux, Opeayo Ogundiran, Uzoma Ugochukwu, Nwando Mba, Chikwe Ihekweazu, C.-Thomas Bock

Erschienen in: Virology Journal | Ausgabe 1/2018

Abstract

Background

In 2017 the Nigerian Ministry of Health notified the World Health Organization (WHO) of an outbreak of hepatitis E located in the north-east region of the country with 146 cases with 2 deaths. The analysis of the hepatitis E virus (HEV) genotypes responsible for the outbreak revealed the predominance of HEV genotypes 1 (HEV-1) and 2 (HEV-2). Molecular data of HEV-2 genomes are limited; therefore we characterized a HEV-2 strain of the outbreak in more detail.

Finding

The full-length genome sequence of an HEV-2 strain (NG/17–0500) from the outbreak was amplified using newly designed consensus primers. Comparison with other HEV complete genome sequences, including the only HEV-2 strain (Mex-14) with available complete genome sequences and the availability of data of partial HEV-2 sequences from Sub-Saharan Africa, suggests that NG/17–0500 belongs to HEV subtype 2b (HEV-2b).

Conclusions

We identified a novel HEV-2b strain from Sub-Saharan Africa, which is the second complete HEV-2 sequence to date, whose natural history and epidemiology merit further investigation.
Hinweise
Bo Wang and Olusola Anuoluwapo Akanbi contributed equally to this work.
Chikwe Ihekweazu and C.-Thomas Bock contributed equally and thus shared last authorship.
Abkürzungen
aa
Amino acid
HEV
Hepatitis E virus
HEV-1 to HEV-8
Hepatitis E virus genotype 1 to hepatitis E virus genotype 8
HEV-2a and HEV-2b
Hepatitis E virus subtype 2a and 2b
ICTV
International Committee on Taxonomy of Viruses
NCDC
Nigerian center of disease control
nt
Nucleotide
ORF
Open reading frame
PEI
Paul Ehrlich Institute
RKI
Robert Koch Institute
WHO
World Health Organization

Main text

Hepatitis E virus (HEV) is the prototype of the family Hepeviridae and a common causative agent of acute viral hepatitis. HEV is a small, (non)enveloped spherical particle of about 34 nm in diameter harboring a single stranded, positive sense RNA genome of approximately 7.5 kb [1]. Eight HEV genotypes are recognized within the species Orthohepevirus A based on the pairwise distances of entire viral genomes (HEV-1 to HEV-8). The different HEV genotypes have various reservoirs, distinct distribution, and transmission patterns. Four major HEV genotypes (HEV-1 to HEV-4) are well recognized as human pathogens while HEV-5 and HEV-6 have been detected only in wild boars so far. HEV-7 from dromedary camels has been reported to infect humans and cause chronic hepatitis E. HEV-8 is identified in Bactrian camels with an unknown zoonotic potential [24]. HEV-1 and HEV-2 are transmitted through the waterborne/fecal-oral route and responsible for large HEV outbreaks and epidemics in endemic areas like the Indian subcontinent and Africa, whereas HEV-3 and HEV-4 are linked to zoonotic transmission causing sporadic infections mainly in industrialized countries [5]. HEV-2 was firstly identified during a hepatitis E outbreak in Mexico in 1986 while the complete genome sequence (HPENSSP, GenBank accession No. M74506) was subsequently characterized [6]. Recently, additional HEV-2 full-length genome sequences were obtained from an individual patient of same Hepatitis E outbreak in Mexico (Mex-14, KX578717) showing 99.5% nucleotide identity to M74506 [7]. However, the sequences for M74506 and KX578717 are from the same isolate. Since M74506 has been referred to as Mexico [8], Mexico-14 [9], and Telixtac-14 [10], the stool sample was re-analysed at the Paul Ehrlich Institute (PEI), Germany, with the isolate designation Mex-14, and the sequences were submitted to GenBank receiving the accession number KX578717. Additionally, several studies have reported that HEV-2 is distributed in Africa. However, only partial ORF2 gene sequences were amplified [1114]. According to the report of Lu et al. and the International Committee on Taxonomy of Viruses (ICTV) Hepeviridae Study Group, Mex-14 is the proposed HEV subtype 2a (HEV-2a) reference sequence, and HEV subtype 2b (HEV-2b) was assigned to the partial sequences AF173231 and AF173232 from Nigeria and AY903950 from Chad [15, 16].
In June 2017, the Nigerian Ministry of Health reported to the World Health Organization (WHO) an HEV outbreak in north-east Nigeria, with 146 laboratory confirmed cases and two outbreak-associated cases of death in pregnant [17]. In order to identify the corresponding viral pathogens of this hepatitis E outbreak, we determined HEV genotypes from outbreak samples. The genotyping results showed mainly HEV-1 and HEV-2 strains being predominant within the outbreak, the genotype distribution of isolates from this outbreak as determined by the Nigerian center of disease control (NCDC) and Robert Koch Institute (RKI) was 40% HEV-1 and 60% HEV-2. However, a number of HEV-positive outbreak samples could not genotyped. Since full-length genome sequences of HEV-2 strains are rare, we here report the full-length genome sequence of the HEV-2 strain (NG/17–0500) from an isolate of the Nigerian outbreak. The virus was detected from an individual from Borno state, Nigeria, and initially tested serologically positive for HEV using Wantai HEV-IgM Rapid Test and Wantai HEV-IgM ELISA (Sanbio, Uden, Netherland).
Viral RNA from an anonymized serum sample (NG/17–0500) was extracted using High Pure Viral Nucleic Acid Kit (Roche, Mannheim, Germany) following cDNA synthesis using SuperScript™ III First-Strand Synthesis System (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s instructions. Molecular approaches with sensitive real-time PCR and consensus nested PCR assays were conducted as described recently [18]. To amplify the entire genome sequence of NG/17–0500 and to verify the geno/subtyping results, universal primers were designed based on 38 complete HEV-1 and HEV-2 sequences from the GenBank database. Using genome walking method, gene-specific primers were designed to amplify the gaps. Primers and probe used are listed in Table 1. The complete viral genome of NG/17–0500 was amplified using KAPA HiFi HotStart ReadyMix PCR kit (Roche, Mannheim, Germany). 5′ and 3′ sequences were determined using 5′ and 3′ rapid amplification of cDNA ends (Roche, Mannheim, Germany). Sense and antisense strands of PCR amplicons were sequenced with BigDye Terminator version 3.1 cycle sequencing kit (Thermo Fisher Scientific, USA). Whole genome sequence was assembled and analyzed using Geneious software version 10.0.5. (Biomatters Limited, Auckland, New Zealand) [19].
Table 1
Primers used for HEV quantification, genotyping, and complete genome sequencing
Primera
Sequence (5′-3′)
Locationb
Use
Reference
HEV-07_f
GGTGGTTTCTGGGGTGAC
5261–5278
HEV-1 to HEV-4 quantification
[18]
HEV-TM3_f
FAM-TGATTCTCAGCCCTTCGC-MGB
5284–5301
HEV-08_r
AGGGGTTGGTTGGATGAA
5330–5313
HEV-38_f
GARGCYATGGTBGAGAARG
4084–4102
HEV-1 to HEV-4 genotyping in ORF1
[18]
HEV-39_r
GCCATRTTCCARACRGTRTTCC
4622–4601
HEV-37_f
GGTTYCGYGCYATTGARAARG
4277–4297
HEV-27_r
TCRCCRGARTGYTTCTTCC
4583–4565
HEV-30_f
CCGACAGAATTRATTTCGTCGG
6296–6317
HEV-1 to HEV-4 genotyping in ORF2
HEV-32_f
GTCTCRGCCAATGGCGAGCCRRC
6350–6372
HEV-31_r
GTYTTRGARTACTGCTGR
6750–6733
HEV-266_f
GCARGCTGCTCTRGCWGCGGC
78–98
HEV-2 complete genome sequencing
This study
HEV-274_f
TGGTGGTTAGGCCTTTTCTCTC
122–143
HEV-275_f
CCGATCCAGCGTGTCATACATA
223–244
HEV-267_r
GGRGCWGWRTACCARCGCTG
392–373
HEV-268_f
AYCTYCGYGGYATTAGCTAYAAGG
1055–1078
HEV-276_r
CGTTGATGGCAAATTGTGAGGT
1178–1157
HEV-277_f
ATCTCTCGTCTCTACAGCTGGT
1246–1267
HEV-278_f
GGGCCGTCAGTTGCAATTTTAT
1299–1320
HEV-283_f
GTAGCTGCCGGACTATTGCT
1397–1416
HEV-270_r
ARCCACYKCATAAARCARC
1457–1439
HEV-284_f
ACCAGGGCCATGACAATGAG
1508–1527
HEV-285_r
GAGGCCTGGTCAGCAACTAG
2186–2164
HEV-271_f
AACCCMAAGAGGCUYGAGGC
2620–2639
HEV-272_f
GCCTGGGARCGKAAYCAYCG
2734–2753
HEV-279_f
TGTTCAACGTAGGATGATCCGG
2833–2812
HEV-280_f
TTTGAGCATACTGGTCTGGTCC
3220–3241
HEV-273_r
CARCGRUGKGURACAUGCCACC
3296–3275
HEV-235_r
CYGCCTGGGTGAACACTAG
3421–3403
HEV-265_f
ATGGGGACGCCTATGATGAATC
4337–4358
HEV-282_r
TTCTGGGTCGAGTCAAACTCAG
4439–4418
HEV-281_r
CACTCCTCCATAATAGCGCACT
4481–4460
HEV-286_f
TTCTGCTGTTGCTCCTCCTG
5169–5188
HEV-301_f
AGACGTCTGGTGTTGCTGAG
5937–5956
HEV-288_r
TTTACTGTCGGCTCGGCATT
6384–6365
HEV-287_r
GCTGGGCATTCTCCACAGAT
6413–6394
HEV-233_f
GCCTSTTTTGTGATGCGCG
6755–6773
aForward primer designations end with _f; reverse primer designations end with _r
bNumbering is according the HEV prototype strain Burma (GenBank accession No. M73218)
Real-time PCR assay targeting the HEV ORF2 and ORF3 overlapping region (ORF2/3) demonstrated viremic HEV infection with a viral load of 1.2 × 10E + 7 IU/mL. Sequence analysis of partial ORF1 and ORF2 genes indicated that NG/17–0500 preliminary belongs to HEV-2. After de novo assembly of the amplicons, the NG/17–0500 full-length sequence showed 7198 nucleotides, excluding the 3′-poly (A) tail, with a G + C content of 57.5% harboring the typical 3 HEV ORFs. Phylogenetic analysis of the complete genome sequence revealed that NG/17–0500 grouped with HEV-2 Mex-14 strain (Fig. 1a), and this was all true for phylogenetic analysis of individual ORFs (data not shown). These relationships were also observed for sequence identities between NG/17–500 and other HEV complete genome or nucleotide or amino acid sequence identities of individual ORFs (Table 2).
Table 2
Nucleotide and amino acid sequence identities between NG/17–0500 and reference HEV strains within the family Hepeviridaea
Hepeviridae
Degree of identity (%)
Complete genome
ORF1
ORF2
ORF3
ntb
nt
aa
nt
aa
nt
aa
HEV-1
75.0
72.3
83.5
81.0
94.8
90.9
87.8
HEV-2
83.5
82.3
92.7
86.8
98.2
94.1
91.1
HEV-3
73.1
71.2
81.5
78.7
91.2
83.9
76.4
HEV-4
73.5
71.1
80.6
80.7
91.1
80.6
78.9
HEV-5
72.6
70.1
80.1
78.6
89.1
75.0
74.1
HEV-6
72.8
70.9
79.4
78.0
88.5
75.5
70.5
HEV-7
72.3
69.8
80.6
78.8
89.8
79.0
79.8
HEV-8
72.2
70.0
79.9
77.9
89.4
78.5
81.6
Avian HEV
46.3
44.9
41.3
46.2
43.3
25.6
21.1
Rat HEV
52.1
50.1
48.0
55.1
54.8
38.1
27.1
Bat HEV
47.2
45.8
41.6
55.1
48.1
30.6
15.9
aThe sequences were aligned using MAFFT software version 7.222. The evolutionary analyses were conducted using MEGA 7 software version 7.0.26. The GenBank accession numbers are for HEV-1 (M73218), HEV-2 (KX578717), HEV-3 (AF082843), HEV-4 (AJ272108), HEV-5 (AB573435), HEV-6 (AB602441), HEV-7 (KJ496143), HEV-8 (KX387865), Avian HEV (AY535004), Rat HEV (GU345042), and Bat HEV (JQ001749)
bnt and aa represent nucleotide and amino acid, respectively
Due to inadequate sanitation and lack of clean drinking water, hepatitis E is a severe public health issue in several regions of Africa [20]. Partial HEV-2 sequences have been reported from Sub-Sahara African countries mainly during HEV outbreaks including Namibia in 1995 [12], Sudan in 2004 [13], and the Central African Republic in 2002 [14]. In addition, a single study reported of the analysis of HEV isolates from ten sporadic cases in Port-Harcourt city, southern Nigeria in 1997. Phylogenetic analysis of partial ORF2 fragments indicated that the Nigerian isolates from 1997 are most closely related to the HEV-2a reference Mex-14 strain and have been proposed as HEV-2b [11, 15, 16]. In this regard, comparison of NG/17–0500 sequence to the previously characterized Nigerian HEV-2b isolates displayed a 91.2% to 92.2% nt identity. Phylogenetic analysis of the availability of data of partial HEV-2 sequences from Sub-Saharan Africa showed that NG/17–0500 clustered with proposed HEV-2b sequences, indicating NG/17–0500 belongs to HEV-2b (Fig. 1b). Comparison of partial ORF2 sequences of NG/17–0500 to Chad (AY903950) and Central African Republic (DQ151640) HEV-2b isolates shared 90.3% and 88.4% identity, respectively. No evidence of recombination in NG/17–500 was detected by either Identity Plot or Bootscan analysis (Fig. 2). The complete genome sequence of NG/17–0500 has been deposited in GenBank under the accession number MH809516.
In conclusion, to the best of our knowledge the novel HEV-2b strain NG/17–0500 from Nigerian hepatitis E outbreak 2017 represents the first complete HEV-2 genomic sequence from Sub-Sahara Africa and the second complete HEV-2 sequence worldwide, which contributes to our knowledge of the diversity of HEV-2. Nevertheless, the natural history of NG/17–0500 requires further comprehensive genetic and epidemiological analyses.

Acknowledgments

We are grateful for the excellent technical assistance of Marcel Schulze and Steffen Zander (RKI).

Funding

This research was supported by the Global Outbreak Alert and Response Network (GOARN) Program of the World Health Organisation (WHO). B.W. was funded by the China Scholarship Council (CSC), Beijing, China. O.A.A. is funded by the German Academic Exchange Service (DAAD), Bonn, Germany. D.H. is funded by the Claussen-Simon-Stiftung (Claussen-Simon Foundation) “Dissertation Plus” program, Germany. F.A.O and O.A. are funded by a sub-project of the Global Health Protection Programme supported by the Federal Ministry of Health on the basis of a decision by the German Bundestag, the Partnership in Postgraduate Education (PPE), Robert Koch Institute, Berlin, Germany. The content is the responsibility only of the authors and does not represent the views of the CSC, the DAAD, the Claussen-Simon Foundation, and PPE.

Availability of data and materials

All data generated or analysed during this study are included in this published article.
Not applicable. German public health institute (RKI) is authorized to receive blood residuals from diagnostics for surveillance purposes (Infection Protection Act IfSG §13). All samples analysed were anonymised.
Not applicable.

Competing interests

The authors declare that they have no competing interests. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision to publish the results.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Yin X, Ying D, Lhomme S, Tang Z, Walker CM, Xia N, Zheng Z, Feng Z. Origin, antigenicity, and function of a secreted form of ORF2 in hepatitis E virus infection. Proc Natl Acad Sci U S A. 2018;115(18):4773–8.PubMed Yin X, Ying D, Lhomme S, Tang Z, Walker CM, Xia N, Zheng Z, Feng Z. Origin, antigenicity, and function of a secreted form of ORF2 in hepatitis E virus infection. Proc Natl Acad Sci U S A. 2018;115(18):4773–8.PubMed
2.
Zurück zum Zitat Purdy MA, Harrison TJ, Jameel S, Meng XJ, Okamoto H, Van der Poel WHM, Smith DB, Ictv Report C. ICTV virus taxonomy profile: Hepeviridae. J Gen Virol. 2017;98(11):2645–6.CrossRef Purdy MA, Harrison TJ, Jameel S, Meng XJ, Okamoto H, Van der Poel WHM, Smith DB, Ictv Report C. ICTV virus taxonomy profile: Hepeviridae. J Gen Virol. 2017;98(11):2645–6.CrossRef
3.
Zurück zum Zitat Woo PC, Lau SK, Teng JL, Tsang AK, Joseph M, Wong EY, Tang Y, Sivakumar S, Xie J, Bai R, et al. New hepatitis E virus genotype in camels, the Middle East. Emerg Infect Dis. 2014;20(6):1044–8.CrossRef Woo PC, Lau SK, Teng JL, Tsang AK, Joseph M, Wong EY, Tang Y, Sivakumar S, Xie J, Bai R, et al. New hepatitis E virus genotype in camels, the Middle East. Emerg Infect Dis. 2014;20(6):1044–8.CrossRef
4.
Zurück zum Zitat Lee GH, Tan BH, Teo EC, Lim SG, Dan YY, Wee A, Aw PP, Zhu Y, Hibberd ML, Tan CK, et al. Chronic infection with camelid hepatitis E virus in a liver transplant recipient who regularly consumes camel meat and milk. Gastroenterology. 2016;150(2):355–7.CrossRef Lee GH, Tan BH, Teo EC, Lim SG, Dan YY, Wee A, Aw PP, Zhu Y, Hibberd ML, Tan CK, et al. Chronic infection with camelid hepatitis E virus in a liver transplant recipient who regularly consumes camel meat and milk. Gastroenterology. 2016;150(2):355–7.CrossRef
5.
Zurück zum Zitat Wedemeyer H, Pischke S, Manns MP. Pathogenesis and treatment of hepatitis E virus infection. Gastroenterology. 2012;142(6):1388–97.CrossRef Wedemeyer H, Pischke S, Manns MP. Pathogenesis and treatment of hepatitis E virus infection. Gastroenterology. 2012;142(6):1388–97.CrossRef
6.
Zurück zum Zitat Huang CC, Nguyen D, Fernandez J, Yun KY, Fry KE, Bradley DW, Tam AW, Reyes GR. Molecular cloning and sequencing of the Mexico isolate of hepatitis E virus (HEV). Virology. 1992;191(2):550–8.CrossRef Huang CC, Nguyen D, Fernandez J, Yun KY, Fry KE, Bradley DW, Tam AW, Reyes GR. Molecular cloning and sequencing of the Mexico isolate of hepatitis E virus (HEV). Virology. 1992;191(2):550–8.CrossRef
7.
Zurück zum Zitat Kaiser M, Kamili S, Hayden T, Blumel J, Baylis SA. Genome sequence of a genotype 2 hepatitis E virus World Health Organization reference strain. Genome Announc. 2017;5:e01664–16.CrossRef Kaiser M, Kamili S, Hayden T, Blumel J, Baylis SA. Genome sequence of a genotype 2 hepatitis E virus World Health Organization reference strain. Genome Announc. 2017;5:e01664–16.CrossRef
8.
Zurück zum Zitat Purdy MA, Smith DB, Simmonds P, Emerson SU, Harrison T, Meng XJ, Okamoto H, Van der Poel WH, Jameel S. New classification scheme for Hepeviridae. ICTV taxonomic proposal 2014.008a-hV.A.v6.Hepeviridae (approved); 2014. p. 1–15. https://talk.ictvonline.org//taxonomy/. Purdy MA, Smith DB, Simmonds P, Emerson SU, Harrison T, Meng XJ, Okamoto H, Van der Poel WH, Jameel S. New classification scheme for Hepeviridae. ICTV taxonomic proposal 2014.008a-hV.A.v6.Hepeviridae (approved); 2014. p. 1–15. https://​talk.​ictvonline.​org/​/​taxonomy/​.
9.
Zurück zum Zitat Bradley DW, Balayan MS. Enterically transmitted non-A, non-B hepatitis: etiology of disease and laboratory studies in nonhuman primates. In: Zuckerman AJ, editor. Viral hepatitis and liver disease. New York: Alan R. Liss, Inc.; 1988. p. 138–47. Bradley DW, Balayan MS. Enterically transmitted non-A, non-B hepatitis: etiology of disease and laboratory studies in nonhuman primates. In: Zuckerman AJ, editor. Viral hepatitis and liver disease. New York: Alan R. Liss, Inc.; 1988. p. 138–47.
10.
Zurück zum Zitat Ticehurst J. Identification and characterization of hepatitis E virus. In: Hollinger FB, Lemon SM, Margolis H, editors. Viral hepatitis and liver disease. Baltimore: Williams and Wilkins; 1991. p. 501–3. Ticehurst J. Identification and characterization of hepatitis E virus. In: Hollinger FB, Lemon SM, Margolis H, editors. Viral hepatitis and liver disease. Baltimore: Williams and Wilkins; 1991. p. 501–3.
11.
Zurück zum Zitat Buisson Y, Grandadam M, Nicand E, Cheval P, Van Cuyck-gandre H, Innis B, Rehel P, Coursaget P, Teyssou R, Tsarev S. Identification of a novel hepatitis E virus in Nigeria. J Gen Virol. 2000;81:903–9.CrossRef Buisson Y, Grandadam M, Nicand E, Cheval P, Van Cuyck-gandre H, Innis B, Rehel P, Coursaget P, Teyssou R, Tsarev S. Identification of a novel hepatitis E virus in Nigeria. J Gen Virol. 2000;81:903–9.CrossRef
12.
Zurück zum Zitat Maila HT, Bowyer SM, Swanepoel R. Identification of a new strain of hepatitis E virus from an outbreak in Namibia in 1995. J Gen Virol. 2004;85:89–95.CrossRef Maila HT, Bowyer SM, Swanepoel R. Identification of a new strain of hepatitis E virus from an outbreak in Namibia in 1995. J Gen Virol. 2004;85:89–95.CrossRef
13.
Zurück zum Zitat Nicand E, Armstrong GL, Enouf V, Guthmann JP, Guerin JP, Caron M, Nizou JY, Andraghetti R. Genetic heterogeneity of hepatitis E virus in Darfur, Sudan, and neighboring Chad. J Med Virol. 2005;77:519–21.CrossRef Nicand E, Armstrong GL, Enouf V, Guthmann JP, Guerin JP, Caron M, Nizou JY, Andraghetti R. Genetic heterogeneity of hepatitis E virus in Darfur, Sudan, and neighboring Chad. J Med Virol. 2005;77:519–21.CrossRef
14.
Zurück zum Zitat Escriba JM, Nakoune E, Recio C, Massamba PM, Matsika-Claquin MD, Goumba C, Rose AM, Nicand E, Garcia E, Leklegban C, Koffi B, Hepatitis E. Central African Republic. Emerg Infect Dis. 2008;14(4):681–3.CrossRef Escriba JM, Nakoune E, Recio C, Massamba PM, Matsika-Claquin MD, Goumba C, Rose AM, Nicand E, Garcia E, Leklegban C, Koffi B, Hepatitis E. Central African Republic. Emerg Infect Dis. 2008;14(4):681–3.CrossRef
15.
Zurück zum Zitat Smith DB, Simmonds P, Izopet J, Oliveira-Filho EF, Ulrich RG, Johne R, Koenig M, Jameel S, Harrison TJ, Meng XJ, et al. Proposed reference sequences for hepatitis E virus subtypes. J Gen Virol. 2016;97(3):537–42.CrossRef Smith DB, Simmonds P, Izopet J, Oliveira-Filho EF, Ulrich RG, Johne R, Koenig M, Jameel S, Harrison TJ, Meng XJ, et al. Proposed reference sequences for hepatitis E virus subtypes. J Gen Virol. 2016;97(3):537–42.CrossRef
16.
Zurück zum Zitat Lu L, Li CH, Hagedorn CH. Phylogenetic analysis of global hepatitis E virus sequences: genetic diversity, subtypes and zoonosis. Rev Med Virol. 2006;16:5–36.CrossRef Lu L, Li CH, Hagedorn CH. Phylogenetic analysis of global hepatitis E virus sequences: genetic diversity, subtypes and zoonosis. Rev Med Virol. 2006;16:5–36.CrossRef
18.
Zurück zum Zitat Wang B, Harms D, Papp CP, Niendorf S, Jacobsen S, Lutgehetmann M, Pischke S, Wedermeyer H, Hofmann J, Bock CT. Comprehensive molecular approach for characterization of hepatitis E virus genotype 3 variants. J Clin Microbiol. 2018;56:e01686–17.PubMed Wang B, Harms D, Papp CP, Niendorf S, Jacobsen S, Lutgehetmann M, Pischke S, Wedermeyer H, Hofmann J, Bock CT. Comprehensive molecular approach for characterization of hepatitis E virus genotype 3 variants. J Clin Microbiol. 2018;56:e01686–17.PubMed
20.
Zurück zum Zitat Elduma AH, Zein MMA, Karlsson M, Elkhidir IME, Norder H. A single lineage of hepatitis E virus causes both outbreaks and sporadic hepatitis in Sudan. Viruses-Basel. 2016;8(10):E273.CrossRef Elduma AH, Zein MMA, Karlsson M, Elkhidir IME, Norder H. A single lineage of hepatitis E virus causes both outbreaks and sporadic hepatitis in Sudan. Viruses-Basel. 2016;8(10):E273.CrossRef
Metadaten
Titel
A new hepatitis E virus genotype 2 strain identified from an outbreak in Nigeria, 2017
verfasst von
Bo Wang
Olusola Anuoluwapo Akanbi
Dominik Harms
Olufisayo Adesina
Folakemi Abiodun Osundare
Dhamari Naidoo
Isabel Deveaux
Opeayo Ogundiran
Uzoma Ugochukwu
Nwando Mba
Chikwe Ihekweazu
C.-Thomas Bock
Publikationsdatum
01.12.2018
Verlag
BioMed Central
Erschienen in
Virology Journal / Ausgabe 1/2018
Elektronische ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-018-1082-8

Weitere Artikel der Ausgabe 1/2018

Virology Journal 1/2018 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.