Skip to main content
Erschienen in: BMC Gastroenterology 1/2022

Open Access 01.12.2022 | Research

A novel missense mutation of the STK11 gene in a Chinese family with Peutz-Jeghers syndrome

verfasst von: Zhen Yu, Lin Liu, Fang Jiang, Yimin Ji, Xiao Wang, Lili Liu

Erschienen in: BMC Gastroenterology | Ausgabe 1/2022

Abstract

Background

Peutz-Jeghers syndrome (PJS) is a rare autosomal dominant inherited disease caused by mutations in the Serine-Threonine Kinase 11 (STK11) gene. This study aimed to diagnose a Chinese pedigree with PJS and to expand the spectrum of STK11 variants.

Methods

We performed an inductive analysis of clinical features, gastrointestinal endoscopy, radiologic imaging, and pathological findings in a Chinese family with PJS. Whole-exome sequencing (WES), Sanger sequencing, and STK11 protein 3D structure prediction were performed for establishing a molecular diagnosis.

Results

The proband, her mother, and grandfather presented with pigmentation spots on lips, oral mucosa, and fingers. Her mother and grandfather also had pigmentation spots on face and feet, while her brother had pigmentation spots only on the lower lip. On endoscopy, polyps were discovered in the proband, her mother, and grandfather. A novel heterozygous mutation (c.521A > C) in exon 4 of STK11 was identified in all four patients, leading to a change from histidine to proline in amino acid 174. The variable site p.H174 was highly conserved in different species on multiple sequence alignment analysis.

Conclusions

We diagnosed a Chinese pedigree with PJS based on clinical features, gastrointestinal endoscopy, and genetic testing results. Our results expanded the spectrum of STK11 variants, which will be helpful for genetic counseling.
Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
STK11
Serine-Threonine Kinase 11
PJS
Peutz-Jeghers syndrome
WES
Whole-exome sequencing
WHO
The World Health Organization
LKB1
Liver Kinase B1
hg19
Human genome
ACMG
The American College of Medical Genetics and Genomics
CT
Computed tomography
MRI
Magnetic resonance imaging
MRCP
Magnetic resonance cholangiopancreatography
MPR
Multiplanar reconstruction
DWI
Diffusion-weighted imaging
HGMD
The Human Gene Mutation Database

Background

Peutz-Jeghers syndrome (PJS) is a rare autosomal dominant inherited disease caused by mutations in the Serine-Threonine Kinase 11 (STK11) gene. The diagnosis of PJS is based on the clinical manifestations and the World Health Organization (WHO) criteria for the syndrome [1]. The clinical features of PJS include mucocutaneous pigmentation, gastrointestinal hamartomatous polyps, and an increased risk of predisposition toward developing malignancy [2, 3]. The disorder is discovered in various ethnic groups; it shows no differences between genders, and it has an unknown incidence estimated to range from 1:50,000 to 1:200,000 [4, 5]. Unfortunately, large-scale epidemiological studies on PJS have not been performed in Chinese. Li Meng et al. collected peripheral blood of 64 PJS patients from January 2016 to August 2018 for an STK11 gene mutation test, revealing 39 types of mutations consisting of missense, nonsense, insertional, deletional, and splice mutations [6]. Frameshift, synonymous, and intronic mutations were also identified in Chinese [7]. The polyps can lead to complications, including abdominal pain, intussusception, intestinal obstruction, prolapse, and gastrointestinal bleeding [3].
Germline mutations in the STK11 gene at chromosome 19p13.3 have been identified as a major cause of PJS [8, 9]. STK11 was previously known as Liver Kinase B1 (LKB1) [8]. It consists of nine coding exons and one non-coding exon, encoding a 433 amino acid serine-threonine protein kinase [8, 9]. STK11 is a tumor suppressor that acts as an early gatekeeper [10]. STK11 forms a heterotrimeric complex with STRAD and MO25 in the cytoplasm and undergoes conformational changes to result in autophosphorylation [11]. It regulates cell polarity [12], and it controls cell cycle arrest, cell proliferation, and apoptosis [13].

Methods

Ethical approval

The study was approved by the Ethics Committee of Qilu Hospital of Shandong University. The methods were carried out in accordance with the approved guidelines.

Patients and sample collection

Kindred subjects were diagnosed with PJS based on the WHO criteria, and they received polyp surgery in Qilu Hospital of Shandong University. The subject family with PJS participated in this study after providing their informed consent in October 2021. Peripheral blood samples were obtained from all individuals, and comprehensive clinical data, such as medical history, pedigree, physical examination, and endoscopic and pathological findings, were collected. Intestinal polyp specimens were obtained from the proband, her mother, and her grandfather.

Exome sequencing and variant detection

Genomic DNA was isolated from peripheral blood of the proband, her brother, and her parents. WES was performed by MyGenostics (Beijing, China) using the Illumina HiSeq X Ten system. The FASTQ files were mapped to the reference human genome (hg19) and then assessed for variant calling using the HaplotypeCaller tool of GATK software.

Bioinformatics analysis

The potential deleterious effects of the missense mutation in STK11 were predicted using in silico algorithms provided by the online software PolyPhen-2 score (http://​genetics.​bwh.​harvard.​edu/​cgi-bin/​pph2), SIFT (http://​sift.​bii.​a-star.​edu.​sg/​sift-bin/​), MutationTaster (http://​www.​mutationtaster.​org/​cgi-bin/​), and GERP++ (http://​mendel.​stanford.​edu/​SidowLab/​downloads/​gerp/​index.​html). Diagnostic variants were defined as pathogenic or likely pathogenic according to the guidelines of the American College of Medical Genetics and Genomics (ACMG) [14]. Evidence for disease causality was assessed using ClinVar (https://​www.​ncbi.​nlm.​nih.​gov/​clinvar/​). To confirm the conservation of amino acid substitutions in the process of species evolution, the typical protein sequences of multiple different species were aligned using UGENE software to compare mutated positions with conserved domains. Structure prediction was performed by the Swiss-Model online software (https://​swissmodel.​expasy.​org/​). Identified variants were confirmed by Sanger sequencing. The primers used to target human STK11 included forward: 5′-TGCCTGGACTTCTGTGACTTC-3′ and reverse: 5′-CCAGATGTCCACCTTGAAGC-3′.

Results

Clinical manifestations

Four patients distributed across three generations exhibited an autosomal dominant mode of inheritance (Fig. 1A). The age of onset of mucocutaneous pigmentation was as early as one year in II1, and two years in III1 and III2 (Table 1; Fig. 1B, C and D).
Table 1
Clinical characteristics of the affected family members
ID
II1
III1
III2
I1
Gender
Female
Female
Male
Male
Age (years)
31
6
3
57
Age at onset of mucocutaneous pigmentation (years)
Earlier than 1 year
Earlier than 2 years
Earlier than 2 years
Unknown
Order of onset of mucocutaneous pigmentation
Lip, followed by fingers, feet, oral mucosa, and face
Lip, followed by fingers and oral mucosa
Lower lip
Unknown
Age at the first occurrence of intestinal intussusception/obstruction
21
No
No
15
Age at the first diagnosis and resection of polyps
21
6
No
15
Location of polyps
Duodenum, ileocecal region, ascending colon, transverse colon, descending colon, sigmoid colon, and rectum
Ascending colon and rectum
No
Stomach, duodenum, ileocecal region, ascending colon, transverse colon, descending colon, sigmoid colon, and rectum
I1 had mucocutaneous pigmentation on the lips, face, fingers, toes, and oral mucosa since early childhood. At the age of 15, the patient suffered from intestinal polyps and obstruction and received intestinal surgery at a local hospital. At the age of 50, he presented with a 6-year-history of hematochezia and underwent endoscopy, during which multiple polyps of the colon and rectum were discovered (Fig. 1B). The patient was diagnosed with PJS after pathological examination of the polyps (Fig. 1B) and received surgery for nasopharyngeal cancer in the same year. All resected polyps showed hamartomatous histopathology with peculiar proliferation of smooth muscle cells, growing in a branching-tree pattern and extending into the lamina propria with displacement of the surface epithelium into the submucosa and muscularis propria (Fig. 1B). At the age of 55, he underwent ileocecal resection and ileostomy because of intussusception from polyps. At the age of 57, 19 polyps were resected from the stomach and duodenum. An enhanced computed tomography (CT) examination was performed before surgery, which demonstrated an irregular enhanced mass in the common bile duct with dilation of the bile ducts. A diagnosis of biliary tumors was considered. Magnetic resonance imaging (MRI), magnetic resonance cholangiopancreatography (MRCP), and multiplanar reconstruction (MPR) performed after surgery revealed multiple lamellar long T1 and slightly longer T2 signals in the liver, and a low signal filling defect area in the common bile duct of the liver hilus with a dilated intrahepatic bile duct. A peripheral rim of nodular enhancement was observed in the arterial phase, followed by progressive filling enhancement during the portal venous phase and delayed phase. The upper segment of the common bile duct was thick. The bile ducts were obviously dilated. The walls of the bile duct in the hilar region were thickened, with high signal intensity on diffusion-weighted imaging, and obvious enhancement and delayed enhancement on an enhanced scan (Fig. 1B). He underwent an operation for advanced cholangiocarcinoma (Fig. 1B) later, and died 5 months after surgery.
II1 was a 31-year-old female patient who had been known to have PJS since 2010. The diagnosis was based on familial history of PJS, the presence of characteristic mucocutaneous pigmentation (Table 1), and PJ polyps. She suffered from diffuse abdominal pain and was diagnosed with intussusception by abdominal ultrasonography and CT in 2010. Emergency resection with anastomosis was performed. After that, she underwent endoscopic polypectomy four times from 2012 to 2019, and during this period, she experienced a recurrence of intussusception in December 2019 (Fig. 1C). Resected pedunculated polyps, ranging from 0.3 to 3 cm in diameter, were found in the duodenum, ileocecal region, colon, and rectum (Fig. 1C; Table 1). Postoperative pathology showed characteristics of typical PJ polyps, which was the same as that in her father (Fig. 1C).
III1 was diagnosed with PJS because of familial history of PJS and mucocutaneous pigmentations on the lips, fingers, and oral mucosa, but not on the toes (Table 1). Two polyps were resected from the cavity of the ascending colon and rectum during endoscopic examination. The smaller polyp measured 0.3 × 0.4 cm, and it was covered by red smooth mucosa on the surface; the larger polyp measured 0.5 × 0.6 cm, and it appeared as polypoid hyperplasia with a sessile, rough, and loculated surface. Pathology showed a hamartomatous polyp with normal epithelium and an inflammatory infiltrate with dilated, mucus-filled cystic glands in the lamina propria, consistent with a juvenile polyp (Fig. 1D).
III2 had mucocutaneous pigmentation on the lower lip, but not on the fingers or toes; meanwhile, polyps were not detected in his gastrointestinal tract (Fig. 1D; Table 1).
The proband’s grandmother and aunt were healthy, and they did not have mucocutaneous pigmentation.

Mutation detection

To further confirm the diagnosis, we subsequently applied WES in the proband and her family members. A heterozygous missense variant c.521A > C of STK11 was identified in patients III1, III2, II1, and I1 (Fig. 2A). The variant led to the replacement of histidine to proline in codon 174 (p.H174P, Fig. 2B).
Bioinformatic prediction was performed for the mutation, and it yielded a PolyPhen-2 (http://​genetics.​bwh.​harvard.​edu/​pph2/​) score of 1.000, indicating that it was possibly damaging (Fig. 2C), and it also yielded a SIFT (http://​sift-dna.​org/​sift4g) score of 0, indicating that it affected protein function. The amino acid in this residue was evolutionarily conserved (Fig. 2D), which indicated an important functional role. The 3D structures of the mutated protein constructed using the Swiss-model (http://​swissmodel.​expasy.​org) showed loss of the hydrogen bond in the local structure (Fig. 2E) [15]. In addition, we confirmed that this novel mutation was likely pathogenic in these patients with PJS according to the guidelines of the American College of Medical Genetics and Genomics (ACMG) [14], and it broadened the spectrum of STK11 variants associated with PJS. This mutation has not been reported in literatures or recorded in the Human Genome Mutation Database (HGMD, http://​www.​hgmd.​cf.​ac.​uk/​), suggesting that it was a novel variation. The variable site was confirmed and was also identified in her brother, her mother, and her grandfather by Sanger sequencing (Fig. 2A).

Discussion

Peutz-Jeghers Syndrome, an autosomal dominant hereditary polyposis syndrome, has various manifestations associated with gastrointestinal polyps, such as abdominal pain, hematochezia, chronic anemia, prolapsed rectal polyp, intussusception, and bowel obstruction [1618]. Patients with PJS have an inherited predisposition to gastrointestinal malignancies [19] and other cancers, such as gynecological, testicular, breast, pancreatic, lung, and thyroid papillary cancers [20, 21]. In our study, older patients were often prone to develop serious outcomes, leading to inevitable open surgery or even cancer. Patient I1 presented with the classic PJS-phenotype with pigmentation and intestinal obstruction. However, only at the age of 50, he was diagnosed with PJS based on mucocutaneous pigmentation and findings of endoscopy and histopathology. Then he underwent ileocecal resection and ileostomy because of intussusception from polyps and he underwent an operation for nasopharyngeal cancer and cholangiocarcinoma. At the age of 57, he died due to advanced cholangiocarcinoma, 5 months after surgery. Patient II1 also had typical manifestations of PJS and received emergency resection and anastomosis because of intussusception in 2010. After that, she underwent endoscopic polypectomy four times. Fortunately, the tragedy increased the awareness about the disease condition and allowed timely diagnosis and treatment of the children (III1 and III2). We identified a likely pathogenic mutation in STK11, providing molecular diagnostic evidence for PJS.
As a tumor suppressor gene, STK11 located on chromosome 19p 13.3, and variants of STK11 were confirmed as the key determinants of PJS [22]. Hundreds of mutations in the STK11 gene have been reported to be related to PJS [23]. Resta et al. reported that truncating variants trended towards early-onset cancer than missense variants in STK11 [24]. However, other researchers reported that there was no statistically significant difference in the phenotype between patients who had PJS with truncating and missense variant types [2528]. STK11 variant locations were found to show a non-random distribution and missense variants were overexpressed in exons 4 and 7 [29]. In this study, we employed WES to detect mutations in a Chinese family with PJS. A novel missense mutation (c.521A > C, p.H174) in exon 4 of STK11 was identified in patients I1, II2, III1, and III2, which was predicted to cause damaging consequences, analyzed by SIFT, PolyPhen2, and Mutation Taster. The variation was verified by Sanger sequencing. The mutation was not present in healthy family members. Co-segregation of the mutation and disease indicated that this was a pathogenic mutation. Analysis with UGENE software revealed that histidine at position 174 was highly conserved in different species, suggesting that it is structurally and functionally important. To study the functional affection of the mutation, we investigated the three-dimensional structure of STK11 c.521A > C (p.H174P) by the Swiss-Model online software (https://​swissmodel.​expasy.​org/​), and it showed that the hydrogen bonds formed by amino acid 174 and amino acid 193, 194, 176, and 237 had disappeared and the strength was lower.
In general, mucocutaneous pigmentation is usually the earliest clinical manifestation in patients with PJS. However, it is easily overlooked or misdiagnosed as nevi, and it tends to fade after puberty or at an older age, which should be taken into consideration when registering a family history [30]. Sometimes, PJS is not diagnosed until severe symptoms develop and emergency surgery is required. Genetic testing is an effective way for early diagnosis and genetic counseling of individuals whose family has a positive history. If they conceive, prenatal genetic testing could help them prevent the birth of an affected baby based on the identified pathogenic mutation. In fact, prenatal diagnosis of PJS by genetic testing of STK11 has been successfully performed in India [31] and China [32].
According to the current recommendations, patients with PJS should receive endoscopy every 3 years until the age of 50 [3]. Well-timed polypectomy is necessary to avoid possible gastrointestinal complications and high cancer risk throughout the patient’s lifetime.

Conclusions

In this study, we diagnosed a Chinese pedigree with PJS based on the clinical data, radiographic features, and genetic testing results. We provided the information necessary to improve the early diagnosis of PJS and further broaden the genetic mutation spectrum of STK11.

Acknowledgements

The authors thank all the patients and their families for their participation. We thank Medjaden Inc. for providing scientific editing service for this manuscript.

Declarations

The study was approved by the Ethics Committee of Qilu Hospital of Shandong University. The methods were carried out in accordance with the approved guidelines. Written informed consent to participate in this study was provided by all participants and by the legal guardian/next of kin of dead patients.
Written informed consent was obtained from all subjects and/or their legal guardian(s) for publication of identifying images.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Provenzale D, Gupta S, Ahnen DJ, Bray T, Cannon JA, Cooper G, et al. Genetic/familial high-risk assessment: colorectal version 1.2016, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw. 2016;14:1010–30.CrossRef Provenzale D, Gupta S, Ahnen DJ, Bray T, Cannon JA, Cooper G, et al. Genetic/familial high-risk assessment: colorectal version 1.2016, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw. 2016;14:1010–30.CrossRef
2.
Zurück zum Zitat Boardman LA, Thibodeau SN, Schaid DJ, Lindor NM, McDonnell SK, Burgart LJ, et al. Increased risk for cancer in patients with the Peutz-Jeghers syndrome. Ann Intern Med. 1998;128:896–9.CrossRef Boardman LA, Thibodeau SN, Schaid DJ, Lindor NM, McDonnell SK, Burgart LJ, et al. Increased risk for cancer in patients with the Peutz-Jeghers syndrome. Ann Intern Med. 1998;128:896–9.CrossRef
3.
Zurück zum Zitat Beggs AD, Latchford AR, Vasen HF, Moslein G, Alonso A, Aretz S, et al. Peutz-Jeghers syndrome: a systematic review and recommendations for management. Gut. 2010;59:975–86.CrossRef Beggs AD, Latchford AR, Vasen HF, Moslein G, Alonso A, Aretz S, et al. Peutz-Jeghers syndrome: a systematic review and recommendations for management. Gut. 2010;59:975–86.CrossRef
4.
Zurück zum Zitat Giardiello FM, Trimbath JD. Peutz-Jeghers syndrome and management recommendations. Clin Gastroenterol Hepatol. 2006;4:408–15.CrossRef Giardiello FM, Trimbath JD. Peutz-Jeghers syndrome and management recommendations. Clin Gastroenterol Hepatol. 2006;4:408–15.CrossRef
5.
Zurück zum Zitat Jelsig AM, Qvist N, Sunde L, Brusgaard K, Hansen T, Wikman FP, et al. Disease pattern in Danish patients with Peutz-Jeghers syndrome. Int J Colorectal Dis. 2016;31:997–1004.CrossRef Jelsig AM, Qvist N, Sunde L, Brusgaard K, Hansen T, Wikman FP, et al. Disease pattern in Danish patients with Peutz-Jeghers syndrome. Int J Colorectal Dis. 2016;31:997–1004.CrossRef
6.
Zurück zum Zitat Li M, Sun T, Jiang Y, Li J, Ning S, Zhou P. Analysis of STK11 gene variants among 64 patients with Peutz-Jeghers syndrome. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2019;36:862–5. Li M, Sun T, Jiang Y, Li J, Ning S, Zhou P. Analysis of STK11 gene variants among 64 patients with Peutz-Jeghers syndrome. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2019;36:862–5.
7.
Zurück zum Zitat Zhang T, Xiao N, Sun T, Ning S. STK11 mutation in Peutz-Jeghers syndrome and its relationship with cumulative risk of intussusception. Chin J Dig. 2020;40:692–6. Zhang T, Xiao N, Sun T, Ning S. STK11 mutation in Peutz-Jeghers syndrome and its relationship with cumulative risk of intussusception. Chin J Dig. 2020;40:692–6.
8.
Zurück zum Zitat Hemminki A, Markie D, Tomlinson I, Avizienyte E, Roth S, Loukola A, et al. A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature. 1998;391:184–7.CrossRef Hemminki A, Markie D, Tomlinson I, Avizienyte E, Roth S, Loukola A, et al. A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature. 1998;391:184–7.CrossRef
9.
Zurück zum Zitat Jenne DE, Reimann H, Nezu J, Friedel W, Loff S, Jeschke R, et al. Peutz-Jeghers syndrome is caused by mutations in a novel serine threonine kinase. Nat Genet. 1998;18:38–43.CrossRef Jenne DE, Reimann H, Nezu J, Friedel W, Loff S, Jeschke R, et al. Peutz-Jeghers syndrome is caused by mutations in a novel serine threonine kinase. Nat Genet. 1998;18:38–43.CrossRef
10.
Zurück zum Zitat Gruber SB, Entius MM, Petersen GM, Laken SJ, Longo PA, Boyer R, et al. Pathogenesis of adenocarcinoma in Peutz-Jeghers syndrome. Cancer Res. 1998;58:5267–70. Gruber SB, Entius MM, Petersen GM, Laken SJ, Longo PA, Boyer R, et al. Pathogenesis of adenocarcinoma in Peutz-Jeghers syndrome. Cancer Res. 1998;58:5267–70.
11.
Zurück zum Zitat Zeqiraj E, Filippi BM, Deak M, Alessi DR, van Aalten DM. Structure of the LKB1-STRAD-MO25 complex reveals an allosteric mechanism of kinase activation. Science. 2009;326:1707–11.CrossRef Zeqiraj E, Filippi BM, Deak M, Alessi DR, van Aalten DM. Structure of the LKB1-STRAD-MO25 complex reveals an allosteric mechanism of kinase activation. Science. 2009;326:1707–11.CrossRef
12.
Zurück zum Zitat Baas AF, Kuipers J, van der Wel NN, Batlle E, Koerten HK, Peters PJ, et al. Complete polarization of single intestinal epithelial cells upon activation of LKB1 by STRAD. Cell. 2004;116:457–66.CrossRef Baas AF, Kuipers J, van der Wel NN, Batlle E, Koerten HK, Peters PJ, et al. Complete polarization of single intestinal epithelial cells upon activation of LKB1 by STRAD. Cell. 2004;116:457–66.CrossRef
13.
Zurück zum Zitat Fan D, Ma C, Zhang H. The molecular mechanisms that underlie the tumor suppressor function of LKB1. Acta Biochim Biophys Sin (Shanghai). 2009;41:97–107.CrossRef Fan D, Ma C, Zhang H. The molecular mechanisms that underlie the tumor suppressor function of LKB1. Acta Biochim Biophys Sin (Shanghai). 2009;41:97–107.CrossRef
14.
Zurück zum Zitat Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–24.CrossRef Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–24.CrossRef
15.
Zurück zum Zitat Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, et al. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 2014;42:W252–8.CrossRef Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, et al. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 2014;42:W252–8.CrossRef
16.
Zurück zum Zitat Rufener SL, Koujok K, McKenna BJ, Walsh M. Small bowel intussusception secondary to Peutz-Jeghers polyp. Radiographics. 2008;28:284–8.CrossRef Rufener SL, Koujok K, McKenna BJ, Walsh M. Small bowel intussusception secondary to Peutz-Jeghers polyp. Radiographics. 2008;28:284–8.CrossRef
17.
Zurück zum Zitat Harned RK, Buck JL, Sobin LH. The hamartomatous polyposis syndromes: clinical and radiologic features. AJR Am J Roentgenol. 1995;164:565–71.CrossRef Harned RK, Buck JL, Sobin LH. The hamartomatous polyposis syndromes: clinical and radiologic features. AJR Am J Roentgenol. 1995;164:565–71.CrossRef
18.
Zurück zum Zitat Latchford A, Greenhalf W, Vitone LJ, Neoptolemos JP, Lancaster GA, Phillips RK. Peutz-Jeghers syndrome and screening for pancreatic cancer. Br J Surg. 2006;93:1446–55.CrossRef Latchford A, Greenhalf W, Vitone LJ, Neoptolemos JP, Lancaster GA, Phillips RK. Peutz-Jeghers syndrome and screening for pancreatic cancer. Br J Surg. 2006;93:1446–55.CrossRef
19.
Zurück zum Zitat Hearle N, Schumacher V, Menko FH, Olschwang S, Boardman LA, Gille JJ, et al. Frequency and spectrum of cancers in the Peutz-Jeghers syndrome. Clin Cancer Res. 2006;12:3209–15.CrossRef Hearle N, Schumacher V, Menko FH, Olschwang S, Boardman LA, Gille JJ, et al. Frequency and spectrum of cancers in the Peutz-Jeghers syndrome. Clin Cancer Res. 2006;12:3209–15.CrossRef
20.
Zurück zum Zitat Daniell J, Plazzer JP, Perera A, Macrae F. An exploration of genotype-phenotype link between Peutz-Jeghers syndrome and STK11: a review. Fam Cancer. 2018;17:421–7.CrossRef Daniell J, Plazzer JP, Perera A, Macrae F. An exploration of genotype-phenotype link between Peutz-Jeghers syndrome and STK11: a review. Fam Cancer. 2018;17:421–7.CrossRef
21.
Zurück zum Zitat van Lier MG, Wagner A, Mathus-Vliegen EM, Kuipers EJ, Steyerberg EW, van Leerdam ME. High cancer risk in Peutz-Jeghers syndrome: a systematic review and surveillance recommendations. Am J Gastroenterol. 2010;105:1258–64 (author reply 65).CrossRef van Lier MG, Wagner A, Mathus-Vliegen EM, Kuipers EJ, Steyerberg EW, van Leerdam ME. High cancer risk in Peutz-Jeghers syndrome: a systematic review and surveillance recommendations. Am J Gastroenterol. 2010;105:1258–64 (author reply 65).CrossRef
22.
Zurück zum Zitat Boardman LA, Couch FJ, Burgart LJ, Schwartz D, Berry R, McDonnell SK, et al. Genetic heterogeneity in Peutz-Jeghers syndrome. Hum Mutat. 2000;16:23–30.CrossRef Boardman LA, Couch FJ, Burgart LJ, Schwartz D, Berry R, McDonnell SK, et al. Genetic heterogeneity in Peutz-Jeghers syndrome. Hum Mutat. 2000;16:23–30.CrossRef
23.
Zurück zum Zitat Chen JH, Zheng JJ, Guo Q, Liu C, Luo B, Tang SB, et al. A novel mutation in the STK11 gene causes heritable Peutz-Jeghers syndrome—a case report. BMC Med Genet. 2017;18:19.CrossRef Chen JH, Zheng JJ, Guo Q, Liu C, Luo B, Tang SB, et al. A novel mutation in the STK11 gene causes heritable Peutz-Jeghers syndrome—a case report. BMC Med Genet. 2017;18:19.CrossRef
24.
Zurück zum Zitat Resta N, Pierannunzio D, Lenato GM, Stella A, Capocaccia R, Bagnulo R, et al. Cancer risk associated with STK11/LKB1 germline mutations in Peutz-Jeghers syndrome patients: results of an Italian multicenter study. Dig Liver Dis. 2013;45:606–11.CrossRef Resta N, Pierannunzio D, Lenato GM, Stella A, Capocaccia R, Bagnulo R, et al. Cancer risk associated with STK11/LKB1 germline mutations in Peutz-Jeghers syndrome patients: results of an Italian multicenter study. Dig Liver Dis. 2013;45:606–11.CrossRef
25.
Zurück zum Zitat Hearle N, Schumacher V, Menko FH, Olschwang S, Boardman LA, Gille JJ, et al. STK11 status and intussusception risk in Peutz-Jeghers syndrome. J Med Genet. 2006;43: e41.CrossRef Hearle N, Schumacher V, Menko FH, Olschwang S, Boardman LA, Gille JJ, et al. STK11 status and intussusception risk in Peutz-Jeghers syndrome. J Med Genet. 2006;43: e41.CrossRef
26.
Zurück zum Zitat Chow E, Meldrum CJ, Crooks R, Macrae F, Spigelman AD, Scott RJ. An updated mutation spectrum in an Australian series of PJS patients provides further evidence for only one gene locus. Clin Genet. 2006;70:409–14.CrossRef Chow E, Meldrum CJ, Crooks R, Macrae F, Spigelman AD, Scott RJ. An updated mutation spectrum in an Australian series of PJS patients provides further evidence for only one gene locus. Clin Genet. 2006;70:409–14.CrossRef
27.
Zurück zum Zitat Aretz S, Stienen D, Uhlhaas S, Loff S, Back W, Pagenstecher C, et al. High proportion of large genomic STK11 deletions in Peutz-Jeghers syndrome. Hum Mutat. 2005;26:513–9.CrossRef Aretz S, Stienen D, Uhlhaas S, Loff S, Back W, Pagenstecher C, et al. High proportion of large genomic STK11 deletions in Peutz-Jeghers syndrome. Hum Mutat. 2005;26:513–9.CrossRef
28.
Zurück zum Zitat Volikos E, Robinson J, Aittomäki K, Mecklin JP, Järvinen H, Westerman AM, et al. LKB1 exonic and whole gene deletions are a common cause of Peutz-Jeghers syndrome. J Med Genet. 2006;43: e18.CrossRef Volikos E, Robinson J, Aittomäki K, Mecklin JP, Järvinen H, Westerman AM, et al. LKB1 exonic and whole gene deletions are a common cause of Peutz-Jeghers syndrome. J Med Genet. 2006;43: e18.CrossRef
29.
Zurück zum Zitat Lim W, Hearle N, Shah B, Murday V, Hodgson SV, Lucassen A, et al. Further observations on LKB1/STK11 status and cancer risk in Peutz-Jeghers syndrome. Br J Cancer. 2003;89:308–13.CrossRef Lim W, Hearle N, Shah B, Murday V, Hodgson SV, Lucassen A, et al. Further observations on LKB1/STK11 status and cancer risk in Peutz-Jeghers syndrome. Br J Cancer. 2003;89:308–13.CrossRef
30.
Zurück zum Zitat Bauer AJ, Stratakis CA. The lentiginoses: cutaneous markers of systemic disease and a window to new aspects of tumourigenesis. J Med Genet. 2005;42:801–10.CrossRef Bauer AJ, Stratakis CA. The lentiginoses: cutaneous markers of systemic disease and a window to new aspects of tumourigenesis. J Med Genet. 2005;42:801–10.CrossRef
31.
Zurück zum Zitat Thakur N, Reddy DN, Rao GV, Mohankrishna P, Singh L, Chandak GR. A novel mutation in STK11 gene is associated with Peutz-Jeghers syndrome in Indian patients. BMC Med Genet. 2006;7:73.CrossRef Thakur N, Reddy DN, Rao GV, Mohankrishna P, Singh L, Chandak GR. A novel mutation in STK11 gene is associated with Peutz-Jeghers syndrome in Indian patients. BMC Med Genet. 2006;7:73.CrossRef
32.
Zurück zum Zitat Wang Z, Liu S, Liu S, Wang Y, Chen J, Wu B. Prenatal diagnosis in a hereditary Peutz-Jeghers syndrome family with high cancer risk. BMC Med Genet. 2018;19:66.CrossRef Wang Z, Liu S, Liu S, Wang Y, Chen J, Wu B. Prenatal diagnosis in a hereditary Peutz-Jeghers syndrome family with high cancer risk. BMC Med Genet. 2018;19:66.CrossRef
Metadaten
Titel
A novel missense mutation of the STK11 gene in a Chinese family with Peutz-Jeghers syndrome
verfasst von
Zhen Yu
Lin Liu
Fang Jiang
Yimin Ji
Xiao Wang
Lili Liu
Publikationsdatum
01.12.2022
Verlag
BioMed Central
Erschienen in
BMC Gastroenterology / Ausgabe 1/2022
Elektronische ISSN: 1471-230X
DOI
https://doi.org/10.1186/s12876-022-02617-y

Weitere Artikel der Ausgabe 1/2022

BMC Gastroenterology 1/2022 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

„Jeder Fall von plötzlichem Tod muss obduziert werden!“

17.05.2024 Plötzlicher Herztod Nachrichten

Ein signifikanter Anteil der Fälle von plötzlichem Herztod ist genetisch bedingt. Um ihre Verwandten vor diesem Schicksal zu bewahren, sollten jüngere Personen, die plötzlich unerwartet versterben, ausnahmslos einer Autopsie unterzogen werden.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Schlechtere Vorhofflimmern-Prognose bei kleinem linken Ventrikel

17.05.2024 Vorhofflimmern Nachrichten

Nicht nur ein vergrößerter, sondern auch ein kleiner linker Ventrikel ist bei Vorhofflimmern mit einer erhöhten Komplikationsrate assoziiert. Der Zusammenhang besteht nach Daten aus China unabhängig von anderen Risikofaktoren.

Semaglutid bei Herzinsuffizienz: Wie erklärt sich die Wirksamkeit?

17.05.2024 Herzinsuffizienz Nachrichten

Bei adipösen Patienten mit Herzinsuffizienz des HFpEF-Phänotyps ist Semaglutid von symptomatischem Nutzen. Resultiert dieser Benefit allein aus der Gewichtsreduktion oder auch aus spezifischen Effekten auf die Herzinsuffizienz-Pathogenese? Eine neue Analyse gibt Aufschluss.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.