Skip to main content
Erschienen in: Virology Journal 1/2009

Open Access 01.12.2009 | Research

A potentially novel overlapping gene in the genomes of Israeli acute paralysis virus and its relatives

verfasst von: Niv Sabath, Nicholas Price, Dan Graur

Erschienen in: Virology Journal | Ausgabe 1/2009

Abstract

The Israeli acute paralysis virus (IAPV) is a honeybee-infecting virus that was found to be associated with colony collapse disorder. The IAPV genome contains two genes encoding a structural and a nonstructural polyprotein. We applied a recently developed method for the estimation of selection in overlapping genes to detect purifying selection and, hence, functionality. We provide evolutionary evidence for the existence of a functional overlapping gene, which is translated in the +1 reading frame of the structural polyprotein gene. Conserved orthologs of this putative gene, which we provisionally call pog (p redicted o verlapping g ene), were also found in the genomes of a monophyletic clade of dicistroviruses that includes IAPV, acute bee paralysis virus, Kashmir bee virus, and Solenopsis invicta (red imported fire ant) virus 1.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1743-422X-6-144) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

NS carried out the analysis and wrote the draft manuscript. NP performed the motif search. DG and NP contributed to the interpretation of the results and the final version.
All authors have read and approved the manuscript.

Background

Colony collapse disorder (CCD) is a syndrome characterized by the mass disappearance of honeybees from hives [1]. CCD imperils a global resource estimated at approximately $200 billion [2]. For example, it has been estimated that up to 35% of hives in the US may have been affected [3]. Many culprits have been suggested as causal factors of CCD, among them fungal, bacterial, and protozoan diseases, external and internal parasites, in-hive chemicals, agricultural insecticides, genetically modified crops, climatic factors, changed cultural practices, and the spread of cellular phones [1]. The Israeli acute paralysis virus (IAPV), a positive-strand RNA virus belonging to the family Dicistroviridae, was found to be strongly correlated with CCD [4]. It was first isolated in Israel [5], but was later found to have a worldwide distribution [4, 6, 7].
The genome of IAPV contains two long open reading frames (ORFs) separated by an intergenic region. The 5' ORF encodes a structural polyprotein; the 3' ORF encodes a non-structural polyprotein [5]. The non-structural polyprotein contains several signature sequences for helicase, protease, and RNA-dependent RNA polymerase [5]. The structural polyprotein, which is located downstream of the non-structural polyprotein, encodes two (and possibly more) capsid proteins.
Overlapping genes are easily missed by annotation programs [8], as evidenced by the fact that several overlapping genes were only detected by using the signatures of purifying selection [913]. Here, we apply a recently developed method for the detection of selection in overlapping reading frames [14] to the genome of IAPV and its relatives.

Results and Discussion

In the fourteen completely sequenced dicistroviral genomes (Table 1), we identified 43 same-strand overlapping ORFs of lengths equal or greater than 60 codons on the positive strand. Ten overlapping ORFs were found in concordant genomic locations in two or more genomes. The concordant overlapping ORFs were assigned to three orthologous clusters (Table 2). The overlapping ORFs in all three clusters are phase-1 overlaps, i.e., shifted by one nucleotide relative to the reading-frames of the known polyprotein genes. Two of the orthologous clusters overlap the gene encoding the nonstructural polyprotein and one overlaps the reading frame of the structural polyprotein. (In appendix 1, we present the results concerning the overlapping ORFs on the negative strand. We note, however, that dicistroviruses are not known to be ambisense [15].)
Table 1
A list of completely sequenced dicistroviruses used in this study
Name
Accession number
Israel acute paralysis virus (IAPV)
GenBank:NC_009025
Acute bee paralysis virus (ABPV)
GenBank:NC_002548
Kashmir bee virus (KBV)
GenBank:NC_004807
Solenopsis invicta virus (SINV-1)
GenBank:NC_006559
Black queen cell virus (BQCV)
GenBank:NC_003784
Cricket paralysis virus (CrPV)
GenBank:NC_003924
Homalodisca coagulata virus-1 (HoCV-1)
GenBank:NC_008029
Drosophila C virus (DCV)
GenBank:NC_001834
Aphid lethal paralysis virus (ALPV)
GenBank:NC_004365
Himetobi P virus (HiPV)
GenBank:NC_003782
Taura syndrome virus (TSV)
GenBank:NC_003005
Plautia stali intestine virus (PSIV)
GenBank:NC_003779
Triatoma virus (TrV)
GenBank:NC_003783
Rhopalosiphum padi virus (RhPV)
GenBank:NC_001874
Table 2
Clusters of orthologous overlapping ORFs on the positive strand
Cluster
Virus
Start of ORF
End of ORF
Length
(nucleotides)
A
IAPV
6589
6900
312
 
ABPV
6513
6815
303
 
KBV
6601
6909
309
 
SINV-1
4382
4798
417
B
ABPV
5958
6227
270
 
KBV
5974
6243
270
C
CrPV
2396
2614
219
 
DCV
2216
2602
387
 
HoCV-1
2377
2574
198
 
PSIV
2333
2527
195
We identified a strong signature of purifying selection in cluster A that contains overlapping ORFs from four genomes: IAPV, Acute bee paralysis virus (ABPV), Kashmir bee virus (KBV), and Solenopsis invicta virus 1 (SINV-1) [1618]. This ORF overlaps the 5' end of the structural polyprotein gene (Figure 1A). The detection of purifying selection is based on a method for the simultaneous estimation of selection intensities in overlapping genes [14]. To ascertain that each overlapping ORF is indeed subject to selection, we used the likelihood ratio test for two hierarchical models. In model 1, we assume no selection on the overlapping ORF. In model 2, the overlapping ORF is assumed to be under selection. If model 2 fits the data significantly better than model 1 (p < 0.05), then the overlapping ORF is predicted to be under selection and is most probably functional. The signature of selection was identified for the ORFs in the three bee viruses (IAPV, ABPV, and KBV). The protein product of the orthologous ORF in SINV-1 could not be tested for selection because the amino acid sequence identity between the ORF from SINV-1 and the ORFs from the three bee viruses (Table 3) is lower than the range of sequence identities for which the method can be applied (65-95%).
Table 3
Sequence conservation in comparisons of known orthologous proteins and orthologous products of overlapping ORFs.
Cluster
Genome pair
Identity of known proteins (%)
Identity of hypothetical product of overlapping ORFs (%)
A
IAPV
ABPV
80.2
74.8
 
ABPV
KBV
79.3
75.6
 
IAPV
KBV
77.4
72.5
 
IAPV
SINV-1
42.7
30.3
 
ABPV
SINV-1
41.6
32.6
 
KBV
SINV-1
36.3
29.4
B
KBV
ABPV
87.7
52.3
C
CrPV
DCV
80.3
36.1
 
HoCV-1
PSIV
64.3
40.0
 
DCV
HoCV-1
56.4
28.8
 
CrPV
HoCV-1
48.0
31.7
 
DCV
PSIV
44.2
36.4
 
CrPV
PSIV
35.7
25.0
An additional indication for selection on these ORFs was obtained by comparing the degrees of conservation of the hypothetical protein sequences of the overlapping ORFs against the protein sequences of the known genes (structural and nonstructural polyproteins, Table 3). The degree of amino-acid conservation and, hence, sequence identity between orthologous protein-coding genes is influenced ceteris paribus by the intensity of purifying selection. If both overlapping genes are under similar strengths of selection, the amino-acid sequence identity of one pair of homologous genes would be similar to that of the overlapping pair. On the other hand, if a functional gene overlaps a non-functional ORF, the amino-acid identity between the hypothetical protein sequences of the non-functional ORFs would be much lower than that between the two homologous overlapping functional genes. We found that the degree of amino-acid conservation of the overlapping sequence identity between pairs of overlapping ORFs in cluster A is only slightly lower than that of the known gene (maximum of 12% difference between IAPV and SINV-1 in cluster A, Table 3). In contrast, the amino-acid sequence identity between ORF pairs in clusters B and C is much lower than that between the pairs of known genes (maximum of 44% difference between CrPV and DCV in cluster C, Table 3).
The signature of purifying selection on the ORFs in cluster A suggests that they may encode functional proteins. We provisionally term this gene pog (p redicted o verlapping g ene). In Figure 1, we show that pog is found in the genomes of four viruses that constitute a monophyletic clade, but not in any other dicistrovirid genome (Figure 1A). Its phylogenetic distribution suggests that pog originated before the divergence of SINV-1 from the three bee viruses. The phylogenetic distributions of the ORFs in clusters B and C (Figure 1B) are patchy. This patchiness is an additional indication that the overlapping ORFs in clusters B and C are spurious, i.e., non-functional.
An examination of the DNA alignment of pog (Figures 2) reveals a conservation of the first potential start codon (ATG or CTG) in the +1 reading frame in three out of the four viral genomes (IAPV, ABPV, and SINV-1). As seen in Figure 3, this conservation cannot be explained by constraints on the overlapping polyprotein, in which the corresponding site is variable and encodes different amino acids (His, Asn, and Pro, in IAPV, ABPV, and SINV-1, respectively). We note, however, that we did not find a conserved Kozak consensus sequence [19] upstream of the potential initiation site. This situation is similar to that described in [13].
A protein motif search resulted in several matches, all with a weak score. Two patterns were found in all four proteins: (1) a signature of rhodopsin-like GPCRs (G protein-coupled receptors), and (2) a protein kinase C phosphorylation site (Figure 3). Prediction of the secondary structures [20] suggests that the proteins contain two conserved helix domains, separated by 3-5 residues (except for SINV-1, in which one long domain is predicted), at the C-terminus (Figure 3). A search for transmembrane topology [21] indicates that the longer helix may be a transmembranal segment (Figure 3). Although viruses often use GPCRs to exploit the host immune system through molecular mimicry [2225], the lengths of the proteins encoded by pog are shorter than the average virus-encoded GPCR. Therefore, these proteins may have a different function.

Conclusion

In this note, we provide evolutionary evidence (purifying selection) for the existence of a functional overlapping gene, pog, in the genomes of IAPV, ABPV, KBV, and SINV-1. To our knowledge, this putative gene, whose coding region overlaps the structural polyprotein, has not been described in the literature before.

Methods

Sequence Data, Processing, and Analysis

Fourteen completely sequenced dicistrovirid genomes were obtained from NCBI (Table 1). Each genome was scanned for the presence of overlapping ORFs. We used BLASTP [26] with the protein sequences of the known genes to identify matches of orthologous overlapping ORFs (E value < 10-6). Matching overlapping ORFs were assigned into clusters. Within each cluster, we aligned the amino-acid orthologs by using the sequences of the known genes as references. If alignment length of the overlapping sequence exceeded 60 amino-acids, and if the amino-acid sequence identity among the hypothetical genes within a cluster was higher than 65%, we tested for selection on the hypothetical gene (see below).
We aligned the protein sequences of the two polyproteins with CLUSTAW [27] as implemented in the MEGA package [28]. Alignment quality was confirmed using HoT [29]. We reconstructed two phylogenetic trees (one for each polyprotein) by applying the neighbor joining method [30], as implemented in the MEGA package [28]. Trees were rooted by the mid-point rooting method [31] and confidence of each branch was estimated by bootstrap with 1000 replications.

Detection of Selection in Overlapping Genes

We used the method of Sabath et al. [14] for the simultaneous estimation of selection intensities in overlapping genes. This method uses a maximum-likelihood framework to fit a Markov model of codon substitution to data from two aligned homologous overlapping sequences. To predict functionality of an ORF that overlaps a known gene, we modified an existing approach for predicting functionality in non-overlapping genes [32]. Given two aligned orthologous overlapping sequences, we estimate the likelihood of two hierarchical models. In model 1, there is no selection on the ORF. In model 2, the ORF is assumed to be under selection. The likelihood-ratio test is used to test whether model 2 fits the data significantly better than model 1, in which case, the ORF is predicted to be under selection and most probably functional.

Motifs

We looked for motifs within the inferred protein sequences encoded by the overlapping ORF by using the motif search server http://​motif.​genome.​jp/​ and the My-Hits server http://​hits.​isb-sib.​ch/​cgi-bin/​PFSCAN with the following motif databases: PRINTS [33], PROSITE [34], and Pfam [35]. We used PSIPRED [20] to predict secondary structure, and MEMSAT [21] to predict transmembrane protein topology.

Appendix 1

Overlapping ORFs on the negative strand

In the fourteen completely sequenced dicistroviruse genomes (Table 1), we identified 240 overlapping ORFs of length equal or greater than 60 codons on the negative strand. Of the 240 ORFs, 113 were found in concordant genomic locations in two or more genomes. The concordant overlapping ORFs were assigned into 29 clusters (Additional file 1). There are 9, 1, and 19 clusters in phase 0, 1, and 2, respectively. The cluster size ranges from 2 to 9. In two clusters, 5 and 10, both in phase 2, there is a weak signature of selection. However, this signature seems to be a false positive, which was driven by the unique structure of opposite-strand phase-2 overlap (Additional file 2). In this structure, codon positions one and two of one gene match codon positions two and one of the overlapping gene. This structure leads to a situation where most changes are either synonymous or nonsynonymous in both overlapping genes and occasionally, to false signal of purifying selection on the overlapping ORF. In addition, one of the clusters (cluster 10) does not constitute a monophyletic clade, and is, therefore, unlikely to be functional. We therefore conclude that dicistroviruses most probably do not encode proteins on the negative strand.

Acknowledgements

We thank Dr. Ilan Sela and an anonymous reviewer for their comments. This work was supported in part by US National Library of Medicine Grant LM010009-01 to Dan Graur and Giddy Landan and by the Small Grants Program of the University of Houston.
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

NS carried out the analysis and wrote the draft manuscript. NP performed the motif search. DG and NP contributed to the interpretation of the results and the final version.
All authors have read and approved the manuscript.
Literatur
2.
Zurück zum Zitat Gallai N, Salles J-M, Settele J, Vaissière BE: Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecological Economics 2009, 68: 810-821. 10.1016/j.ecolecon.2008.06.014CrossRef Gallai N, Salles J-M, Settele J, Vaissière BE: Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecological Economics 2009, 68: 810-821. 10.1016/j.ecolecon.2008.06.014CrossRef
3.
Zurück zum Zitat van Engelsdorp D, Hayes J Jr, Underwood RM, Pettis J: A survey of honey bee colony losses in the U.S., fall 2007 to spring 2008. PLoS ONE 2008, 3: e4071. 10.1371/journal.pone.0004071CrossRefPubMed van Engelsdorp D, Hayes J Jr, Underwood RM, Pettis J: A survey of honey bee colony losses in the U.S., fall 2007 to spring 2008. PLoS ONE 2008, 3: e4071. 10.1371/journal.pone.0004071CrossRefPubMed
4.
Zurück zum Zitat Cox-Foster DL, Conlan S, Holmes EC, Palacios G, Evans JD, Moran NA, Quan PL, Briese T, Hornig M, Geiser DM, et al.: A metagenomic survey of microbes in honey bee colony collapse disorder. Science 2007, 318: 283-287. 10.1126/science.1146498CrossRefPubMed Cox-Foster DL, Conlan S, Holmes EC, Palacios G, Evans JD, Moran NA, Quan PL, Briese T, Hornig M, Geiser DM, et al.: A metagenomic survey of microbes in honey bee colony collapse disorder. Science 2007, 318: 283-287. 10.1126/science.1146498CrossRefPubMed
5.
Zurück zum Zitat Maori E, Lavi S, Mozes-Koch R, Gantman Y, Peretz Y, Edelbaum O, Tanne E, Sela I: Isolation and characterization of Israeli acute paralysis virus, a dicistrovirus affecting honeybees in Israel: evidence for diversity due to intra- and inter-species recombination. J Gen Virol 2007, 88: 3428-3438. 10.1099/vir.0.83284-0CrossRefPubMed Maori E, Lavi S, Mozes-Koch R, Gantman Y, Peretz Y, Edelbaum O, Tanne E, Sela I: Isolation and characterization of Israeli acute paralysis virus, a dicistrovirus affecting honeybees in Israel: evidence for diversity due to intra- and inter-species recombination. J Gen Virol 2007, 88: 3428-3438. 10.1099/vir.0.83284-0CrossRefPubMed
6.
Zurück zum Zitat Blanchard P, Schurr F, Celle O, Cougoule N, Drajnudel P, Thiery R, Faucon JP, Ribiere M: First detection of Israeli acute paralysis virus (IAPV) in France, a dicistrovirus affecting honeybees ( Apis mellifera ). J Invertebr Pathol 2008, 99: 348-350. 10.1016/j.jip.2008.07.006CrossRefPubMed Blanchard P, Schurr F, Celle O, Cougoule N, Drajnudel P, Thiery R, Faucon JP, Ribiere M: First detection of Israeli acute paralysis virus (IAPV) in France, a dicistrovirus affecting honeybees ( Apis mellifera ). J Invertebr Pathol 2008, 99: 348-350. 10.1016/j.jip.2008.07.006CrossRefPubMed
7.
Zurück zum Zitat Palacios G, Hui J, Quan PL, Kalkstein A, Honkavuori KS, Bussetti AV, Conlan S, Evans J, Chen YP, vanEngelsdorp D, et al.: Genetic analysis of Israel acute paralysis virus: distinct clusters are circulating in the United States. J Virol 2008, 82: 6209-6217. 10.1128/JVI.00251-08PubMedCentralCrossRefPubMed Palacios G, Hui J, Quan PL, Kalkstein A, Honkavuori KS, Bussetti AV, Conlan S, Evans J, Chen YP, vanEngelsdorp D, et al.: Genetic analysis of Israel acute paralysis virus: distinct clusters are circulating in the United States. J Virol 2008, 82: 6209-6217. 10.1128/JVI.00251-08PubMedCentralCrossRefPubMed
8.
Zurück zum Zitat Chen W, Calvo PA, Malide D, Gibbs J, Schubert U, Bacik I, Basta S, O'Neill R, Schickli J, Palese P, et al.: A novel influenza A virus mitochondrial protein that induces cell death. Nat Med 2001, 7: 1306-1312. 10.1038/nm1201-1306CrossRefPubMed Chen W, Calvo PA, Malide D, Gibbs J, Schubert U, Bacik I, Basta S, O'Neill R, Schickli J, Palese P, et al.: A novel influenza A virus mitochondrial protein that induces cell death. Nat Med 2001, 7: 1306-1312. 10.1038/nm1201-1306CrossRefPubMed
9.
Zurück zum Zitat Chung BY, Miller WA, Atkins JF, Firth AE: An overlapping essential gene in the Potyviridae. Proc Natl Acad Sci USA 2008, 105: 5897-5902. 10.1073/pnas.0800468105PubMedCentralCrossRefPubMed Chung BY, Miller WA, Atkins JF, Firth AE: An overlapping essential gene in the Potyviridae. Proc Natl Acad Sci USA 2008, 105: 5897-5902. 10.1073/pnas.0800468105PubMedCentralCrossRefPubMed
10.
Zurück zum Zitat Firth AE: Bioinformatic analysis suggests that the Orbivirus VP6 cistron encodes an overlapping gene. Virol J 2008, 5: 48. 10.1186/1743-422X-5-48PubMedCentralCrossRefPubMed Firth AE: Bioinformatic analysis suggests that the Orbivirus VP6 cistron encodes an overlapping gene. Virol J 2008, 5: 48. 10.1186/1743-422X-5-48PubMedCentralCrossRefPubMed
11.
Zurück zum Zitat Firth AE, Atkins JF: Bioinformatic analysis suggests that the Cypovirus 1 major core protein cistron harbours an overlapping gene. Virol J 2008, 5: 62. 10.1186/1743-422X-5-62PubMedCentralCrossRefPubMed Firth AE, Atkins JF: Bioinformatic analysis suggests that the Cypovirus 1 major core protein cistron harbours an overlapping gene. Virol J 2008, 5: 62. 10.1186/1743-422X-5-62PubMedCentralCrossRefPubMed
12.
Zurück zum Zitat Firth AE, Atkins JF: Bioinformatic analysis suggests that a conserved ORF in the waikaviruses encodes an overlapping gene. Arch Virol 2008, 153: 1379-1383. 10.1007/s00705-008-0119-5CrossRefPubMed Firth AE, Atkins JF: Bioinformatic analysis suggests that a conserved ORF in the waikaviruses encodes an overlapping gene. Arch Virol 2008, 153: 1379-1383. 10.1007/s00705-008-0119-5CrossRefPubMed
13.
Zurück zum Zitat Firth AE, Atkins JF: Analysis of the coding potential of the partially overlapping 3' ORF in segment 5 of the plant fijiviruses. Virol J 2009, 6: 32. 10.1186/1743-422X-6-32PubMedCentralCrossRefPubMed Firth AE, Atkins JF: Analysis of the coding potential of the partially overlapping 3' ORF in segment 5 of the plant fijiviruses. Virol J 2009, 6: 32. 10.1186/1743-422X-6-32PubMedCentralCrossRefPubMed
14.
Zurück zum Zitat Sabath N, Landan G, Graur D: A method for the simultaneous estimation of selection intensities in overlapping genes. PLoS ONE 2008, 3: e3996. 10.1371/journal.pone.0003996PubMedCentralCrossRefPubMed Sabath N, Landan G, Graur D: A method for the simultaneous estimation of selection intensities in overlapping genes. PLoS ONE 2008, 3: e3996. 10.1371/journal.pone.0003996PubMedCentralCrossRefPubMed
15.
Zurück zum Zitat Nguyen M, Haenni AL: Expression strategies of ambisense viruses. Virus Res 2003, 93: 141-150. 10.1016/S0168-1702(03)00094-7CrossRefPubMed Nguyen M, Haenni AL: Expression strategies of ambisense viruses. Virus Res 2003, 93: 141-150. 10.1016/S0168-1702(03)00094-7CrossRefPubMed
16.
Zurück zum Zitat de Miranda JR, Drebot M, Tyler S, Shen M, Cameron CE, Stoltz DB, Camazine SM: Complete nucleotide sequence of Kashmir bee virus and comparison with acute bee paralysis virus. J Gen Virol 2004, 85: 2263-2270. 10.1099/vir.0.79990-0CrossRefPubMed de Miranda JR, Drebot M, Tyler S, Shen M, Cameron CE, Stoltz DB, Camazine SM: Complete nucleotide sequence of Kashmir bee virus and comparison with acute bee paralysis virus. J Gen Virol 2004, 85: 2263-2270. 10.1099/vir.0.79990-0CrossRefPubMed
17.
Zurück zum Zitat Govan VA, Leat N, Allsopp M, Davison S: Analysis of the complete genome sequence of acute bee paralysis virus shows that it belongs to the novel group of insect-infecting RNA viruses. Virology 2000, 277: 457-463. 10.1006/viro.2000.0616CrossRefPubMed Govan VA, Leat N, Allsopp M, Davison S: Analysis of the complete genome sequence of acute bee paralysis virus shows that it belongs to the novel group of insect-infecting RNA viruses. Virology 2000, 277: 457-463. 10.1006/viro.2000.0616CrossRefPubMed
18.
Zurück zum Zitat Valles SM, Strong CA, Dang PM, Hunter WB, Pereira RM, Oi DH, Shapiro AM, Williams DF: A picorna-like virus from the red imported fire ant, Solenopsis invicta : initial discovery, genome sequence, and characterization. Virology 2004, 328: 151-157. 10.1016/j.virol.2004.07.016CrossRefPubMed Valles SM, Strong CA, Dang PM, Hunter WB, Pereira RM, Oi DH, Shapiro AM, Williams DF: A picorna-like virus from the red imported fire ant, Solenopsis invicta : initial discovery, genome sequence, and characterization. Virology 2004, 328: 151-157. 10.1016/j.virol.2004.07.016CrossRefPubMed
19.
Zurück zum Zitat Kozak M: Comparison of initiation of protein synthesis in procaryotes, eucaryotes, and organelles. Microbiol Rev 1983, 47: 1-45.PubMedCentralPubMed Kozak M: Comparison of initiation of protein synthesis in procaryotes, eucaryotes, and organelles. Microbiol Rev 1983, 47: 1-45.PubMedCentralPubMed
20.
Zurück zum Zitat McGuffin LJ, Bryson K, Jones DT: The PSIPRED protein structure prediction server. Bioinformatics 2000, 16: 404-405. 10.1093/bioinformatics/16.4.404CrossRefPubMed McGuffin LJ, Bryson K, Jones DT: The PSIPRED protein structure prediction server. Bioinformatics 2000, 16: 404-405. 10.1093/bioinformatics/16.4.404CrossRefPubMed
21.
Zurück zum Zitat Jones DT: Improving the accuracy of transmembrane protein topology prediction using evolutionary information. Bioinformatics 2007, 23: 538-544. 10.1093/bioinformatics/btl677CrossRefPubMed Jones DT: Improving the accuracy of transmembrane protein topology prediction using evolutionary information. Bioinformatics 2007, 23: 538-544. 10.1093/bioinformatics/btl677CrossRefPubMed
22.
Zurück zum Zitat Murphy PM: Viral exploitation and subversion of the immune system through chemokine mimicry. Nat Immunol 2001, 2: 116-122. 10.1038/84214CrossRefPubMed Murphy PM: Viral exploitation and subversion of the immune system through chemokine mimicry. Nat Immunol 2001, 2: 116-122. 10.1038/84214CrossRefPubMed
23.
Zurück zum Zitat Lalani AS, McFadden G: Evasion and exploitation of chemokines by viruses. Cytokine Growth Factor Rev 1999, 10: 219-233. 10.1016/S1359-6101(99)00018-0CrossRefPubMed Lalani AS, McFadden G: Evasion and exploitation of chemokines by viruses. Cytokine Growth Factor Rev 1999, 10: 219-233. 10.1016/S1359-6101(99)00018-0CrossRefPubMed
24.
Zurück zum Zitat McLysaght A, Baldi PF, Gaut BS: Extensive gene gain associated with adaptive evolution of poxviruses. Proc Natl Acad Sci USA 2003, 100: 15655-15660. 10.1073/pnas.2136653100PubMedCentralCrossRefPubMed McLysaght A, Baldi PF, Gaut BS: Extensive gene gain associated with adaptive evolution of poxviruses. Proc Natl Acad Sci USA 2003, 100: 15655-15660. 10.1073/pnas.2136653100PubMedCentralCrossRefPubMed
25.
Zurück zum Zitat Hughes AL, Friedman R: Genome-wide survey for genes horizontally transferred from cellular organisms to baculoviruses. Mol Biol Evol 2003, 20: 979-987. 10.1093/molbev/msg107CrossRefPubMed Hughes AL, Friedman R: Genome-wide survey for genes horizontally transferred from cellular organisms to baculoviruses. Mol Biol Evol 2003, 20: 979-987. 10.1093/molbev/msg107CrossRefPubMed
26.
Zurück zum Zitat Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215: 403-410.CrossRefPubMed Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215: 403-410.CrossRefPubMed
27.
Zurück zum Zitat Thompson JD, Gibson TJ, Higgins DG: Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinformatics 2002,Chapter 2(Unit 2):3.PubMed Thompson JD, Gibson TJ, Higgins DG: Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinformatics 2002,Chapter 2(Unit 2):3.PubMed
28.
Zurück zum Zitat Kumar S, Nei M, Dudley J, Tamura K: MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 2008, 9: 299-306. 10.1093/bib/bbn017PubMedCentralCrossRefPubMed Kumar S, Nei M, Dudley J, Tamura K: MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 2008, 9: 299-306. 10.1093/bib/bbn017PubMedCentralCrossRefPubMed
29.
Zurück zum Zitat Landan G, Graur D: Heads or tails: a simple reliability check for multiple sequence alignments. Mol Biol Evol 2007, 24: 1380-1383. 10.1093/molbev/msm060CrossRefPubMed Landan G, Graur D: Heads or tails: a simple reliability check for multiple sequence alignments. Mol Biol Evol 2007, 24: 1380-1383. 10.1093/molbev/msm060CrossRefPubMed
30.
Zurück zum Zitat Saitou N, Nei M: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987, 4: 406-425.PubMed Saitou N, Nei M: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987, 4: 406-425.PubMed
31.
Zurück zum Zitat Farris JS: Estimating phylogenetic trees from distance matrices. Am Nat 1972, 106: 645-668. 10.1086/282802CrossRef Farris JS: Estimating phylogenetic trees from distance matrices. Am Nat 1972, 106: 645-668. 10.1086/282802CrossRef
32.
Zurück zum Zitat Nekrutenko A, Makova KD, Li WH: The K(A)/K(S) ratio test for assessing the protein-coding potential of genomic regions: an empirical and simulation study. Genome Res 2002, 12: 198-202. 10.1101/gr.200901PubMedCentralCrossRefPubMed Nekrutenko A, Makova KD, Li WH: The K(A)/K(S) ratio test for assessing the protein-coding potential of genomic regions: an empirical and simulation study. Genome Res 2002, 12: 198-202. 10.1101/gr.200901PubMedCentralCrossRefPubMed
33.
Zurück zum Zitat Attwood TK, Blythe MJ, Flower DR, Gaulton A, Mabey JE, Maudling N, McGregor L, Mitchell AL, Moulton G, Paine K, Scordis P: PRINTS and PRINTS-S shed light on protein ancestry. Nucleic Acids Res 2002, 30: 239-241. 10.1093/nar/30.1.239PubMedCentralCrossRefPubMed Attwood TK, Blythe MJ, Flower DR, Gaulton A, Mabey JE, Maudling N, McGregor L, Mitchell AL, Moulton G, Paine K, Scordis P: PRINTS and PRINTS-S shed light on protein ancestry. Nucleic Acids Res 2002, 30: 239-241. 10.1093/nar/30.1.239PubMedCentralCrossRefPubMed
34.
Zurück zum Zitat Hulo N, Bairoch A, Bulliard V, Cerutti L, De Castro E, Langendijk-Genevaux PS, Pagni M, Sigrist CJ: The PROSITE database. Nucleic Acids Res 2006, 34: D227-230. 10.1093/nar/gkj063PubMedCentralCrossRefPubMed Hulo N, Bairoch A, Bulliard V, Cerutti L, De Castro E, Langendijk-Genevaux PS, Pagni M, Sigrist CJ: The PROSITE database. Nucleic Acids Res 2006, 34: D227-230. 10.1093/nar/gkj063PubMedCentralCrossRefPubMed
35.
Zurück zum Zitat Finn RD, Tate J, Mistry J, Coggill PC, Sammut SJ, Hotz HR, Ceric G, Forslund K, Eddy SR, Sonnhammer EL, Bateman A: The Pfam protein families database. Nucleic Acids Res 2008, 36: D281-288. 10.1093/nar/gkm960PubMedCentralCrossRefPubMed Finn RD, Tate J, Mistry J, Coggill PC, Sammut SJ, Hotz HR, Ceric G, Forslund K, Eddy SR, Sonnhammer EL, Bateman A: The Pfam protein families database. Nucleic Acids Res 2008, 36: D281-288. 10.1093/nar/gkm960PubMedCentralCrossRefPubMed
Metadaten
Titel
A potentially novel overlapping gene in the genomes of Israeli acute paralysis virus and its relatives
verfasst von
Niv Sabath
Nicholas Price
Dan Graur
Publikationsdatum
01.12.2009
Verlag
BioMed Central
Erschienen in
Virology Journal / Ausgabe 1/2009
Elektronische ISSN: 1743-422X
DOI
https://doi.org/10.1186/1743-422X-6-144

Weitere Artikel der Ausgabe 1/2009

Virology Journal 1/2009 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

„Jeder Fall von plötzlichem Tod muss obduziert werden!“

17.05.2024 Plötzlicher Herztod Nachrichten

Ein signifikanter Anteil der Fälle von plötzlichem Herztod ist genetisch bedingt. Um ihre Verwandten vor diesem Schicksal zu bewahren, sollten jüngere Personen, die plötzlich unerwartet versterben, ausnahmslos einer Autopsie unterzogen werden.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Schlechtere Vorhofflimmern-Prognose bei kleinem linken Ventrikel

17.05.2024 Vorhofflimmern Nachrichten

Nicht nur ein vergrößerter, sondern auch ein kleiner linker Ventrikel ist bei Vorhofflimmern mit einer erhöhten Komplikationsrate assoziiert. Der Zusammenhang besteht nach Daten aus China unabhängig von anderen Risikofaktoren.

Semaglutid bei Herzinsuffizienz: Wie erklärt sich die Wirksamkeit?

17.05.2024 Herzinsuffizienz Nachrichten

Bei adipösen Patienten mit Herzinsuffizienz des HFpEF-Phänotyps ist Semaglutid von symptomatischem Nutzen. Resultiert dieser Benefit allein aus der Gewichtsreduktion oder auch aus spezifischen Effekten auf die Herzinsuffizienz-Pathogenese? Eine neue Analyse gibt Aufschluss.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.