Skip to main content
Erschienen in: BMC Surgery 1/2022

Open Access 01.12.2022 | Research

A prognostic nomogram for stage II/III rectal cancer patients treated with neoadjuvant chemoradiotherapy followed by surgical resection

verfasst von: Yanfei Lin

Erschienen in: BMC Surgery | Ausgabe 1/2022

Abstract

Background

The purpose of this study was to develop a large population-based nomogram incorporating the log odds of positive nodes (LODDS) for predicting the overall survival (OS) of stage II/III rectal cancer patients treated with neoadjuvant chemoradiotherapy (NCRT) followed by surgical resection.

Methods

The Surveillance, Epidemiology, and End Results database was used to collect information on patients diagnosed with stage II/III rectal cancer between 2010 and 2015 and treated with NCRT followed by surgical resection. The Cox regression analyses were performed to determine the independent prognostic factors. In this study, LODDS was employed instead of American Joint Committee on Cancer (AJCC) 7th N stage to determine lymph node status. Then a nomogram integrating independent prognostic factors was developed to predict the 24-, 36-, and 60-month overall survival. The receiver operating characteristic (ROC) curves and calibration curves were used to validate the nomogram. Furthermore, patients were stratified into three risk groups (high-, middle-, and low-risk) based on the total points obtained from the nomogram. And Kaplan–Meier curves were plotted to compare the OS of the three groups.

Results

A total of 3829 patients were included in the study. Race, sex, age, marital status, T stage, tumor grade, tumor size, LODDS, CEA level, and postoperative chemotherapy were identified as independent prognostic factors, based on which the prognostic nomogram was developed. The area under curve values of the nomogram for the 24-, 36-, and 60-month OS in the training cohort were 0.736, 0.720, and 0.688, respectively; and 0.691, 0.696, and 0.694 in the validation cohort, respectively. In both the validation and training cohorts, the calibration curves showed a high degree of consistency between actual and nomogram-predicted survival rates. The Kaplan–Meier curves showed that the three risk groups had significant differences in overall survival (P < 0.001).

Conclusion

A large population-based nomogram incorporating LODDS was developed to assist in evaluating the prognosis of stage II/III rectal cancer patients treated with NCRT followed by surgical resection. The nomogram showed a satisfactorily discriminative and stable ability to predict the OS for those patients.
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12893-022-01710-z.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
SEER
Surveillance, Epidemiology, and End Results
OS
Overall survival
NCRT
Neoadjuvant chemoradiotherapy
LODDS
Log odds of positive lymph nodes
PLN
The number of positive lymph nodes
NLN
Negative lymph nodes
HR
Hazard ratio
CEA
Carcinoembryonic antigen
AJCC
American Joint Committee on Cancer
AUC
Area under the curve
ROC
Receiver operating characteristic

Introduction

For patients with locally advanced rectal cancer (LARC), neoadjuvant chemoradiotherapy (NCRT) followed by surgical resection has become the standard therapy [1]. NCRT can help to downstage tumors, increase the rate of curative resection, and decrease the rate of local recurrence [2]. According to data from the Surveillance, Epidemiology, and End Results (SEER) database, about 35.7% of patients with rectal cancer in stage II/III received NCRT [3]. The reason could be that the survival benefit of NCRT has so far been controversial [4, 5], and radiotherapy can make surgical dissection more difficult and increase the risk of postoperative complications, such as anastomotic leakage, wound infection, and pelvic abscess [6]. Patients with stage II/III rectal cancer who were treated with NCRT followed by surgical resection form a distinct cohort with specific prognosis characteristics.
Nomograms have been routinely utilized to predict cancer outcomes In recent years [7]. A nomogram integrating multiple prognostic factors can be used to estimate the probability of a particular result. Useful in individualized medicine, it has been applied to a wide range of malignancies [8, 9], For patients with rectal cancer, a number of nomograms have been developed to date. However, nomograms for stage II/III rectal cancer patients treated with NCRT followed by surgical resection have rarely been reported. The aim of this study was to utilize the SEER database to develop a nomogram to predict these patients' prognosis.
The log odds of positive nodes (LODDS) was defined as the log of the ratio between the number of positive lymph nodes (PLN) and negative lymph nodes (NLN) [10]. In recent years, it has been proposed and confirmed as a reliable indicator of prognosis in a variety of cancers, such as pancreatic cancer [11], colorectal cancer [12], and gastric cancer [13], and has proven to be a superior predictive factor in patients with colorectal cancer when compared to the American Joint Committee on Cancer (AJCC) N stage [14, 15]. As a result, instead of AJCC N stage, I incorporated LODDS into this nomogram and expected this nomogram can assist in evaluating the prognosis of stage II/III rectal cancer patients treated with NCRT followed by surgical resection.

Methods

Patient selection

This population-based study was conducted using the SEER database. The SEER database collects statistical, oncological, diagnostic, treatment, and survival information from specific geographical regions representing roughly 28% of the US population. Database was obtained from the SEER*Stat software (version 8.3.6). Patients who were diagnosed after 2015 were not included in this study to ensure enough time for follow-up. In this study, only patients with stage II/III rectal cancer diagnosed between 2010 and 2015 were included. The following were the criteria for inclusion: (1) rectal cancer as the only primary tumor; (2) histologically confirmed as rectal adenocarcinoma; (3) stage II/III rectal cancer patients treated with NCRT followed by surgical resection; and (4) patients with complete survival information, demographic data, and clinicopathologic features. The data selection procedure is shown in Fig. 1. Finally, a total of 3829 patients were identified. At a 7:3 ratio, study patients were randomly assigned to the training cohort and validation cohort.

Statistical analysis

SPSS 26.0 was used for statistical analysis. The proportions between the training cohort and validation cohort were compared using Pearson’s Chi-square test. The best tumor size cutoff was calculated using X-tile software [16], and tumor size was grouped as < 4.6, 4.6–7.0, and ≥ 7.0 cm. LODDS was calculated using the following formula: LODDS = log [(0.5 + PLN)/(0.5 + NLN)] [17]. A P value of less than 0.05 was considered statistically significant. The univariate and multivariate Cox regression analyses were performed to determine the independent prognostic factors. The hazard ratio (HR, 95% confidence interval (CI)) was used to express the risk factors. A nomogram integrating independent prognostic factors was developed to predict the 24-, 36-, and 60-month overall survival of patients and conducted with R software (version 4.1.0). Receiver operating characteristic (ROC) curves were constructed and the area under curve values (AUCs) were determined to validate the discrimination of nomograms. To assess the consistency between actual and nomogram-predicted survival rates, calibration curves were plotted. Furthermore, X-tile software were used to stratify patients into three risk groups (high-, middle-, and low-risk) according to the total points obtained from the nomogram. And Kaplan–Meier curves were plotted to compare OS of the three groups.

Results

Clinicopathologic and demographic characteristics

3829 rectal cancer patients were included and randomly assigned in a 7:3 ratio to a training cohort (n = 2678) and validation cohort (n = 1151) (see Additional file 1 and Additional file 2). Table 1 showed the patients’ clinicopathologic and demographic characteristics and no statistically significant differences were found between the two cohorts. Overall, patients of white ethnicity (80.9%) made up the majority of the entire population, and men (62.9%) accounted for more than half of the patients. Tumor grade II was the most common (80.6%). The majority of patients were classified as T3 by the AJCC (7th edition) tumor-node-metastasis (TNM) system (83.3%). LODDS between − 1.5 and − 0.4 were found in roughly 62.5 percent of patients. More than half (56.9%) of the patients received postoperative chemotherapy and only a small percentage of patients (3.4%) underwent postoperative radiotherapy.
Table 1
Demographic and clinicopathologic characteristics of the included patients
Variables
Total number (n = 3829), n (%)
Training cohort (n = 2678), n (%)
Validation cohort (n = 1151), n (%)
P
Age
 < 60
2120 (55.4)
1493 (55.7)
627 (54.5)
0.466
 ≥ 60
1709 (44.6)
1185 (44.3)
524 (45.5)
Race
 White
3096 (80.9)
2176 (81.2)
920 (79.9)
0.624
 Black
289 (7.5)
199 (7.4)
90 (7.8)
 Other
444 (11.6)
303 (11.3)
141 (12.4)
Sex
 Female
1419 (37.1)
988 (36.9)
431 (37.4)
0.746
 Male
2410 (62.9)
1690 (63.1)
720 (62.6)
Marital status
 No
1540 (40.2)
1082 (40.4)
458 (39.8)
0.723
 Yes
2289 (59.8)
1596 (59.6)
693 (60.2)
Grade
 I
282 (7.4)
194 (7.2)
88 (76.5)
0.895
 II
3088 (80.6)
2157 (80.5)
931 (80.9)
 III
408 (10.6)
290 (10.8)
118 (10.3)
 IV
51 (1.3)
37 (1.4)
14 (1.2)
T stage
 T1
33 (0.9)
26 (1.0)
7 (0.6)
0.789
 T2
181 (4.7)
124 (4.6)
57 (5.0)
 T3
3190 (83.3)
2233 (83.4)
957 (83.1)
 T4a
108 (2.8)
77 (2.9)
31 (2.7)
 T4b
317 (8.3)
218 (8.1)
99 (8.6)
LODDS
 < − 1.5
1020 (26.6)
714 (26.7)
306 (26.6)
0.521
 − 1.5 ~ − 0.4
2394 (62.5)
1664 (62.1)
730 (63.4)
 ≥ − 0.4
415 (10.8)
300 (11.2)
115 (10.0)
Tumor size(mm)
 < 46
1942 (50.7)
1360 (50.8)
582 (50.6)
0.747
 46–70
1349 (35.2)
949 (35.4)
400 (34.7)
 ≥ 70
538 (14.1)
369 (13.8)
169 (14.7)
CEA level
 Negative
2144 (56.0)
1514 (56.5)
630 (54.7)
0.304
 Positive
1685 (44.0)
1164 (43.5)
521 (45.3)
Postoperative chemotherapy
 No
1651 (43.1)
1166 (43.5)
485 (42.1)
0.422
 Yes
2178 (56.9)
1512 (56.5)
666 (57.9)
Postoperative radiation
 No
3700 (96.6)
2593 (96.8)
1107 (96.2)
0.308
 Yes
129 (3.4)
85 (3.2)
44 (3.8)
Including American Indian/AK Native, Asian/Pacific Islander; Including Widowed, Divorced, Single and Unmarried or Domestic Partner, Separated; CEA carcinoembryonic antigen, LODDS log odds of positive lymph nodes

Prognostic factors associated with OS

To determine the prognostic factors, the univariate and multivariate analyses were conducted included the patients from the training cohort. As shown in Table 2 in the univariate analysis, Race, sex, age, marital status, T stage, tumor grade, tumor size, LODDS, CEA level, and postoperative chemotherapy were statistically associated with OS (P < 0.05). The effects of postoperative radiation were not statistically significant (P > 0.05). Finally, race, sex, age, marital status, T stage, tumor grade, tumor size, LODDS, CEA level, and postoperative chemotherapy were all revealed to be independent predictive variables in the multivariate analysis. Advanced age, male sex, unmarried status, higher tumor grade, elevated CEA levels, and tumor size greater than 70 mm was related to a higher risk of mortality. T4b and LODDS greater than − 0.4 were obviously detrimental to patient survival. Furthermore, as measured by a hazard ratio of 0.81 (95% CI: 0.693–0.947), patients who underwent postoperative chemotherapy showed a reduced mortality rate.
Table 2
Univariate and multivariate Cox analyses in II/III rectal cancer patients treated with NCRT followed by surgical resection
Variable
Univariate analysis
Multivariate analysis
HR
95% CI
P
HR
95% CI
P
Age
 < 60
Reference
  
Reference
  
 ≥ 60
1.282
1.094–1.502
0.002**
1.344
1.145–1.579
< 0.001***
Race
 Black
Reference
  
Reference
  
 White
0.682
0.531–0.877
0.003**
0.666
0.517–0.858
0.002**
 Other
0.719
0.522–0.900
0.044*
0.682
0.492–0.944
0.021*
Sex
 Female
Reference
  
Reference
  
 Male
1.282
1.094–1.502
0.002**
1.344
1.145–1.579
 < 0.001***
Marital status
 No
Reference
  
Reference
  
 Yes
0.790
0.680–0.916
0.002**
0.829
0.711–0.966
0.016*
Grade
 I
Reference
  
Reference
  
 II
1.081
0.797–1.465
0.618
1.129
0.831–1.534
0.438
 III
1.718
1.212–2.436
0.002**
1.567
1.098–2.235
0.013*
 IV
1.891
1.038–3.446
0.037
1.815
0.985–3.343
0.056
T stage
 T1
Reference
  
Reference
  
 T2
1.312
0.455–3.783
0.615
1.481
0.507–4.331
0.473
 T3
1.730
0.647–4.625
0.275
1.866
0.688–5.064
0.221
 T4a
2.360
0.821–6.783
0.111
2.252
0.774–6.550
0.136
 T4b
3.254
1.194–8.870
0.021*
3.141
1.136–8.681
0.027*
LODDS
 < − 1.5
Reference
  
Reference
  
 − 1.5 ~ − 0.4
1.660
1.355–2.034
< 0.001***
1.678
1.368–2.059
< 0.001***
 ≥ − 0.4
3.466
2.716–4.423
< 0.001***
3.616
2.820–4.637
< 0.001***
Tumor size (mm)
 < 46
Reference
  
Reference
  
 46–70
1.050
0.889–1.239
0.565
0.994
0.840–1.177
0.946
 ≥ 70
1.528
1.243–1.878
< 0.001***
1.309
1.056–1.623
0.014*
CEA level
 Negative
Reference
  
Reference
  
 Positive
1.567
1.351–1.817
 < 0.001***
1.384
1.189–1.612
 < 0.001***
Postoperative chemotherapy
 No
Reference
  
Reference
  
 Yes
0.797
0.685–0.928
0.003**
0.810
0.693–0.947
0.008**
Postoperative radiation
 No
Reference
     
 Yes
1.397
0.969–2.013
0.073
   
*P < 0.05; **P < 0.01; ***P < 0.001. NCRT neoadjuvant chemoradiotherapy, HR hazard ratio, CEA carcinoembryonic antigen, LODDS log odds of positive lymph nodes

Development and validation of prognostic nomogram

A prognostic nomogram integrating independent prognositc factors for OS was developed (Fig. 2). The predicted probability of 24-, 36-, and 60-month OS could be calculated by summing the points on the nomogram for each patient's matching factors. Figure 2 displayed the survival probability of a given patients was calculated using the nomogram.
In the validation of the nomogram, the AUCs of the nomogram for the 24-, 36-, and 60-month OS in the training cohort were 0.736, 0.720, and 0.688, respectively; and 0.691, 0.696, and 0.694 in the validation cohort, respectively. The AUCs demonstrated the satisfactory discriminative power of the model (Fig. 3). In both the validation and training cohorts, the calibration curves showed a high degree of consistency between actual and nomogram-predicted survival rates (Fig. 4).

Stratification of risk groups

All patients were stratified into three risk groups based on the total points obtained from the nomogram using X-tile software: high-risk (total points ≥ 368), middle-risk (339 ≤ total points < 368), and low-risk (total points < 339). As shown in Fig. 5, the Kaplan–Meier curves indicated that the three risk groups had significant differences in overall survival (P < 0.001). The 5-year OS in the training cohort for the high-, middle-, and low-risk were 49.0% (95% CI: 46.2–51.8%), 73.0% (95% CI: 71.6–74.4%), 86.4% (95% CI: 85.3–87.5%), respectively; and 48.5% (95% CI: 44.3–52.7%), 73.2% (95% CI: 71.0–75.4%), and 85.4% (95% CI: 83.6–87.2%) in the validation cohort, respectively. The mortality rates of patients in the high-risk group were significantly higher than those in the low-risk group.

Discussion

In this study, the data from 3829 patients in the SEER database were used to develop a prognostic nomogram. Currently, few prognostic nomograms for stage II/III rectal cancer patients treated with NCRT followed by surgical resection have been developed, especially based on a large population. The study by Zhifang et al. covering 785 cases [18], had certain limitations as it was a single-center study and their results lacked externally validation. The analysis conducted by Valentini et al. using data from five European randomized clinical trials was the only nomogram for those patients based on a large population [19], but it did not include other variables that may affect prognosis, such as race, marital status, tumor size, CEA level, and tumor grade. In addition to age, sex, T stage and postoperative chemotherapy, this investigation also identified race, marital status, tumor size, CEA level, tumor grade, and LODDS as independent prognostic factors through Cox regression analysis. All these risk factors were incorporated into the nomogram to improve its preciseness. Besides, to the best of my knowledge, this is the first nomogram that incorporates LODDS to predict the OS of stage II/III rectal cancer patients treated with NCRT followed by surgical resection. Through multivariable Cox regression analysis, black patients may have worse overall survival rates. The findings were consistent with earlier research showing that compared to white patients, black patients are diagnosed at a later stage, receive less benefit from adjuvant chemotherapy, and are more likely to suffer 5-FU toxicity than Whites, probably due to differences in dihydropyridine dehydrogenase status [20, 21]. This study found that patients who were married had better outcomes. According to previous studies, spouses may encourage patients to check their health state, and married cancer patients were diagnosed at an earlier stage than unmarried cancer patients [22]. Furthermore, married patients had better adherence to treatment than unmarried patients, such as receiving NCRT [23]. My results confirmed, for the first time, that tumor size greater than 70 mm was an independent prognostic factor for stage II/III rectal cancer patients treated with NCRT followed by surgical resection. However, recent research shows that tumor volume is superior to tumor size as a prognostic classifier in rectal cancer [24]. In addition, Yeo et al. discovered that the rate of tumor volume reduction in LARC patients receiving NCRT was a significant prognostic factor [25]. However, due to the lack of tumor volume data in the SEER database, this study cannot further confirm these observations.
As we all know, lymph node status plays a significant role in rectal cancer patients’ prognosis. In recent years, in addition to AJCC N stage, many scholars have proposed and analyzed other parameters to validate the status of lymph nodes, such as LODDS and the lymph node ratio (LNR). Although AJCC N stage is currently the most widely used method for lymph node classification, many researchers have pointed out its limitation since it only considers the number of positive lymph nodes and ignores the total number of lymph nodes (TLN) retrieved during surgery. In rectal cancer, TLN has been proven to be an independent prognosis-related factor [2628]. For accurate staging of colorectal cancer, removal of at least twelve lymph nodes was recommended by AJCC. LNR involves both TLN and PLN and has been claimed to be more accurate than AJCC N stage for rectal cancer [29, 30]. However, other scholars have noticed that when TLN are either all non-metastatic or all metastatic, patients with the same LNR values might be extremely varied. LODDS, as a novel lymph node classification, can overcome the drawbacks of LNR and increase the accuracy for prognostic validation, and studies have shown its superiority to LNR in rectal cancer [17, 31, 32]. For LARC, LODDS was confirmed to perform better than both AJCC N stage and LNR in terms of prognostic predictive value [14, 15, 33]. Therefore, the nomogram will be more convincing and effective if LODDS is incorporated into it. The nomogram clearly demonstrated that LODDS was the most influential factor in a patient’s poor prognosis.
In this study, 56.9% of patients who received postoperative chemotherapy, seemed to have a better outcome. On the other hand, several large randomized controlled trials concluded that postoperative chemotherapy could not improve the OS of rectal patients receiving surgery after NCRT [3436]. These trials, however, had significant limitations, such as poor adherence in the European Organization for Research and Treatment of Cancer trial 22921. Therefore, it remains uncertain if these patients will benefit from postoperative chemotherapy. According to current National Comprehensive Cancer Network (NCCN) recommendations, rectal patients with tumors staged as T3 or N1 and higher should consider postoperative chemotherapy after neoadjuvant chemotherapy [37]. However, experts convened by the European conference on rectal cancer concluded that there is currently insufficient evidence to demonstrate the benefits of receiving adjuvant chemotherapy after preoperative chemoradiotherapy; hence, postoperative chemotherapy cannot be recommended [38]. In this way, more comprehensive and conclusive researches will be conducted in the future.
In this study, a nomogram was developed to predict the prognosis of II/III rectal cancer patients with treated with NCRT followed by surgical resection. The probability of 24-, 36-, and 60-month OS can be simply calculated by summing the points on the nomogram for each patient's matching factors. The AUCs of the nomogram for the 24-, 36-, and 60-month OS In the training cohort were 0.736, 0.720, and 0.688, respectively. It revealed the discriminative capability of nomogram to predict OS of patients. Through calibration curves, the nomogram showed excellent consistency for predicting 24-, 36-, and 60-year OS. In additional, by employing risk group stratification, patients who are at high risk can be easily tracked down and should be taught to pay closer attention to their health status and have regular follow-up consultations with their doctors. To summarize, this nomogram provides a reliable and discriminative prognostic evaluation for patients with stage II/III rectal cancer treated with NCRT followed by surgical resection.
There are some limitations in this study, first, studies have demonstrated that tumor response to NCRT is one of the most important prognostic factors for LARC patients [39, 40] and that Mandard good responders have a significantly higher OS rate than Mandard bad responders [41]. In addition, Ann et al. concluded that all tumor-response gradings were related to survival and downstaging had an independent effect on OS [42]. However, the lack of a SEER database on tumor response to NCRT, response assessment, and waiting time between radiotherapy and surgery was the study's major limitation. Second, as this was a retrospective analysis based on the SEER database, there was bound to be some degree of selection bias. Third, the SEER database did not offer certain information that could have affected patient outcomes, such as surgical margins, lymph/vascular or perineural invasion, chemotherapy/radiation regimen, exact type of surgical resection, indications to receive postoperative chemotherapy, and complications of NCRT. A more advanced prognostic model is required to assist in evaluating the prognosis of stage II/III rectal cancer patients treated with NCRT followed by surgical resection.

Conclusion

A large population-based nomogram incorporating LODDS was developed to assist in evaluating the prognosis of stage II/III rectal cancer patients treated with NCRT followed by surgical resection. The nomogram showed a satisfactorily discriminative and stable ability to predict OS for those patients. A more advanced prognostic model is required to assist in evaluating the prognosis of those patients.

Acknowledgements

I would like to express my gratitude to the SEER program for providing free access to the database.

Declarations

The author is accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. The study was conducted in accordance with the Declaration of Helsinki (as revised in 2013). The SEER database is an open access database, and all patient information has been de-identified, so individual consent for this retrospective analysis was waived.
Not applicable.

Competing interests

The author declares that no competing interests exist.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Benson AB, Venook AP, Al-Hawary MM, Cederquist L, Chen YJ, Ciombor KK, et al. Rectal Cancer, Version 2.2018, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2018;16(7):874–901.CrossRef Benson AB, Venook AP, Al-Hawary MM, Cederquist L, Chen YJ, Ciombor KK, et al. Rectal Cancer, Version 2.2018, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2018;16(7):874–901.CrossRef
2.
Zurück zum Zitat Deidda S, Elmore U, Rosati R, De Nardi P, Vignali A, Puccetti F, et al. Association of delayed surgery with oncologic long-term outcomes in patients with locally advanced rectal cancer not responding to preoperative chemoradiation. JAMA Surg. 2021;156(12):1141–9.CrossRef Deidda S, Elmore U, Rosati R, De Nardi P, Vignali A, Puccetti F, et al. Association of delayed surgery with oncologic long-term outcomes in patients with locally advanced rectal cancer not responding to preoperative chemoradiation. JAMA Surg. 2021;156(12):1141–9.CrossRef
3.
Zurück zum Zitat Wang R, Zhao D, Liu YJ, Ye C, Qian JR, Dai JN, et al. Prognostic significance of preoperative radiotherapy in stage II and III rectal cancer patients: a Strobe-compliant study of SEER 18 registries database (1988–2011). Neoplasma. 2019;66(6):995–1001.CrossRef Wang R, Zhao D, Liu YJ, Ye C, Qian JR, Dai JN, et al. Prognostic significance of preoperative radiotherapy in stage II and III rectal cancer patients: a Strobe-compliant study of SEER 18 registries database (1988–2011). Neoplasma. 2019;66(6):995–1001.CrossRef
4.
Zurück zum Zitat van Gijn W, Marijnen CA, Nagtegaal ID, Kranenbarg EM, Putter H, Wiggers T, et al. Preoperative radiotherapy combined with total mesorectal excision for resectable rectal cancer: 12-year follow-up of the multicentre, randomised controlled TME trial. Lancet Oncol. 2011;12(6):575–82.CrossRef van Gijn W, Marijnen CA, Nagtegaal ID, Kranenbarg EM, Putter H, Wiggers T, et al. Preoperative radiotherapy combined with total mesorectal excision for resectable rectal cancer: 12-year follow-up of the multicentre, randomised controlled TME trial. Lancet Oncol. 2011;12(6):575–82.CrossRef
5.
Zurück zum Zitat Allegra CJ, Yothers G, O'Connell MJ, Beart RW, Wozniak TF, Pitot HC, et al. Neoadjuvant 5-FU or capecitabine plus radiation with or without oxaliplatin in rectal cancer patients: a phase III randomized clinical trial. J Natl Cancer Inst. 2015;107(11). Allegra CJ, Yothers G, O'Connell MJ, Beart RW, Wozniak TF, Pitot HC, et al. Neoadjuvant 5-FU or capecitabine plus radiation with or without oxaliplatin in rectal cancer patients: a phase III randomized clinical trial. J Natl Cancer Inst. 2015;107(11).
6.
Zurück zum Zitat Yang J, Luo Y, Tian T, Dong P, Fu Z. Effects of neoadjuvant radiotherapy on postoperative complications in rectal cancer: a meta-analysis. J Oncol. 2022;2022:8197701.PubMedPubMedCentral Yang J, Luo Y, Tian T, Dong P, Fu Z. Effects of neoadjuvant radiotherapy on postoperative complications in rectal cancer: a meta-analysis. J Oncol. 2022;2022:8197701.PubMedPubMedCentral
7.
Zurück zum Zitat Balachandran VP, Gonen M, Smith JJ, DeMatteo RP. Nomograms in oncology: more than meets the eye. Lancet Oncol. 2015;16(4):e173–80.CrossRef Balachandran VP, Gonen M, Smith JJ, DeMatteo RP. Nomograms in oncology: more than meets the eye. Lancet Oncol. 2015;16(4):e173–80.CrossRef
8.
Zurück zum Zitat Yang J, Pan Z, Zhou Q, Liu Q, Zhao F, Feng X, et al. Nomogram for predicting the survival of patients with malignant melanoma: a population analysis. Oncol Lett. 2019;18(4):3591–8.PubMedPubMedCentral Yang J, Pan Z, Zhou Q, Liu Q, Zhao F, Feng X, et al. Nomogram for predicting the survival of patients with malignant melanoma: a population analysis. Oncol Lett. 2019;18(4):3591–8.PubMedPubMedCentral
9.
Zurück zum Zitat Song K, Song J, Chen F, Lin K, Ma X, Jiang J. Prognostic nomograms for predicting overall and cancer-specific survival of high-grade osteosarcoma patients. J Bone Oncol. 2018;13:106–13.CrossRef Song K, Song J, Chen F, Lin K, Ma X, Jiang J. Prognostic nomograms for predicting overall and cancer-specific survival of high-grade osteosarcoma patients. J Bone Oncol. 2018;13:106–13.CrossRef
10.
Zurück zum Zitat Persiani R, Cananzi FC, Biondi A, Paliani G, Tufo A, Ferrara F, et al. Log odds of positive lymph nodes in colon cancer: a meaningful ratio-based lymph node classification system. World J Surg. 2012;36(3):667–74.CrossRef Persiani R, Cananzi FC, Biondi A, Paliani G, Tufo A, Ferrara F, et al. Log odds of positive lymph nodes in colon cancer: a meaningful ratio-based lymph node classification system. World J Surg. 2012;36(3):667–74.CrossRef
11.
Zurück zum Zitat Ramacciato G, Nigri G, Petrucciani N, Pinna AD, Ravaioli M, Jovine E, et al. Prognostic role of nodal ratio, LODDS, pN in patients with pancreatic cancer with venous involvement. BMC Surg. 2017;17(1):109.CrossRef Ramacciato G, Nigri G, Petrucciani N, Pinna AD, Ravaioli M, Jovine E, et al. Prognostic role of nodal ratio, LODDS, pN in patients with pancreatic cancer with venous involvement. BMC Surg. 2017;17(1):109.CrossRef
12.
Zurück zum Zitat Ozawa T, Ishihara S, Sunami E, Kitayama J, Watanabe T. Log odds of positive lymph nodes as a prognostic indicator in stage IV colorectal cancer patients undergoing curative resection. J Surg Oncol. 2015;111(4):465–71.CrossRef Ozawa T, Ishihara S, Sunami E, Kitayama J, Watanabe T. Log odds of positive lymph nodes as a prognostic indicator in stage IV colorectal cancer patients undergoing curative resection. J Surg Oncol. 2015;111(4):465–71.CrossRef
13.
Zurück zum Zitat Aurello P, Petrucciani N, Nigri GR, La Torre M, Magistri P, Tierno S, et al. Log odds of positive lymph nodes (LODDS): what are their role in the prognostic assessment of gastric adenocarcinoma? J Gastrointest Surg. 2014;18(7):1254–60.CrossRef Aurello P, Petrucciani N, Nigri GR, La Torre M, Magistri P, Tierno S, et al. Log odds of positive lymph nodes (LODDS): what are their role in the prognostic assessment of gastric adenocarcinoma? J Gastrointest Surg. 2014;18(7):1254–60.CrossRef
14.
Zurück zum Zitat Scarinci A, Di Cesare T, Cavaniglia D, Neri T, Colletti M, Cosenza G, et al. The impact of log odds of positive lymph nodes (LODDS) in colon and rectal cancer patient stratification: a single-center analysis of 323 patients. Updates Surg. 2018;70(1):23–31.CrossRef Scarinci A, Di Cesare T, Cavaniglia D, Neri T, Colletti M, Cosenza G, et al. The impact of log odds of positive lymph nodes (LODDS) in colon and rectal cancer patient stratification: a single-center analysis of 323 patients. Updates Surg. 2018;70(1):23–31.CrossRef
15.
Zurück zum Zitat Shen F, Cui J, Cai K, Pan H, Bu H, Yu F. Prognostic accuracy of different lymph node staging systems in rectal adenocarcinoma with or without preoperative radiation therapy. Jpn J Clin Oncol. 2018;48(7):625–32.CrossRef Shen F, Cui J, Cai K, Pan H, Bu H, Yu F. Prognostic accuracy of different lymph node staging systems in rectal adenocarcinoma with or without preoperative radiation therapy. Jpn J Clin Oncol. 2018;48(7):625–32.CrossRef
16.
Zurück zum Zitat Camp RL, Dolled-Filhart M, Rimm DL. X-tile: a new bio-informatics tool for biomarker assessment and outcome-based cut-point optimization. Clin Cancer Res. 2004;10(21):7252–9.CrossRef Camp RL, Dolled-Filhart M, Rimm DL. X-tile: a new bio-informatics tool for biomarker assessment and outcome-based cut-point optimization. Clin Cancer Res. 2004;10(21):7252–9.CrossRef
17.
Zurück zum Zitat Huang B, Ni M, Chen C, Cai G, Cai S. LODDS is superior to lymph node ratio for the prognosis of node-positive rectal cancer patients treated with preoperative radiotherapy. Tumori. 2017;103(1):87–92.CrossRef Huang B, Ni M, Chen C, Cai G, Cai S. LODDS is superior to lymph node ratio for the prognosis of node-positive rectal cancer patients treated with preoperative radiotherapy. Tumori. 2017;103(1):87–92.CrossRef
18.
Zurück zum Zitat Zheng Z, Wang X, Liu Z, Lu X, Huang Y, Chi P. Individualized conditional survival nomograms for patients with locally advanced rectal cancer treated with neoadjuvant chemoradiotherapy and radical surgery. Eur J Surg Oncol. 2021;47(12):3175–81.CrossRef Zheng Z, Wang X, Liu Z, Lu X, Huang Y, Chi P. Individualized conditional survival nomograms for patients with locally advanced rectal cancer treated with neoadjuvant chemoradiotherapy and radical surgery. Eur J Surg Oncol. 2021;47(12):3175–81.CrossRef
19.
Zurück zum Zitat Valentini V, van Stiphout RG, Lammering G, Gambacorta MA, Barba MC, Bebenek M, et al. Nomograms for predicting local recurrence, distant metastases, and overall survival for patients with locally advanced rectal cancer on the basis of European randomized clinical trials. J Clin Oncol. 2011;29(23):3163–72.CrossRef Valentini V, van Stiphout RG, Lammering G, Gambacorta MA, Barba MC, Bebenek M, et al. Nomograms for predicting local recurrence, distant metastases, and overall survival for patients with locally advanced rectal cancer on the basis of European randomized clinical trials. J Clin Oncol. 2011;29(23):3163–72.CrossRef
20.
Zurück zum Zitat Jessup JM, Stewart A, Greene FL, Minsky BD. Adjuvant chemotherapy for stage III colon cancer: implications of race/ethnicity, age, and differentiation. JAMA. 2005;294(21):2703–11.CrossRef Jessup JM, Stewart A, Greene FL, Minsky BD. Adjuvant chemotherapy for stage III colon cancer: implications of race/ethnicity, age, and differentiation. JAMA. 2005;294(21):2703–11.CrossRef
21.
Zurück zum Zitat Dimou A, Syrigos KN, Saif MW. Disparities in colorectal cancer in African-Americans vs Whites: before and after diagnosis. World J Gastroenterol. 2009;15(30):3734–43.CrossRef Dimou A, Syrigos KN, Saif MW. Disparities in colorectal cancer in African-Americans vs Whites: before and after diagnosis. World J Gastroenterol. 2009;15(30):3734–43.CrossRef
22.
Zurück zum Zitat Wang L, Wilson SE, Stewart DB, Hollenbeak CS. Marital status and colon cancer outcomes in US Surveillance, Epidemiology and End Results registries: does marriage affect cancer survival by gender and stage? Cancer Epidemiol. 2011;35(5):417–22.CrossRef Wang L, Wilson SE, Stewart DB, Hollenbeak CS. Marital status and colon cancer outcomes in US Surveillance, Epidemiology and End Results registries: does marriage affect cancer survival by gender and stage? Cancer Epidemiol. 2011;35(5):417–22.CrossRef
23.
Zurück zum Zitat DiMatteo MR. Social support and patient adherence to medical treatment: a meta-analysis. Health Psychol. 2004;23(2):207–18.CrossRef DiMatteo MR. Social support and patient adherence to medical treatment: a meta-analysis. Health Psychol. 2004;23(2):207–18.CrossRef
24.
Zurück zum Zitat Jiang Y, You K, Qiu X, Bi Z, Mo H, Li L, et al. Tumor volume predicts local recurrence in early rectal cancer treated with radical resection: a retrospective observational study of 270 patients. Int J Surg. 2018;49:68–73.CrossRef Jiang Y, You K, Qiu X, Bi Z, Mo H, Li L, et al. Tumor volume predicts local recurrence in early rectal cancer treated with radical resection: a retrospective observational study of 270 patients. Int J Surg. 2018;49:68–73.CrossRef
25.
Zurück zum Zitat Yeo SG, Kim DY, Park JW, Oh JH, Kim SY, Chang HJ, et al. Tumor volume reduction rate after preoperative chemoradiotherapy as a prognostic factor in locally advanced rectal cancer. Int J Radiat Oncol Biol Phys. 2012;82(2):e193–9.CrossRef Yeo SG, Kim DY, Park JW, Oh JH, Kim SY, Chang HJ, et al. Tumor volume reduction rate after preoperative chemoradiotherapy as a prognostic factor in locally advanced rectal cancer. Int J Radiat Oncol Biol Phys. 2012;82(2):e193–9.CrossRef
26.
Zurück zum Zitat Washington MK. Colorectal carcinoma: selected issues in pathologic examination and staging and determination of prognostic factors. Arch Pathol Lab Med. 2008;132(10):1600–7.CrossRef Washington MK. Colorectal carcinoma: selected issues in pathologic examination and staging and determination of prognostic factors. Arch Pathol Lab Med. 2008;132(10):1600–7.CrossRef
27.
Zurück zum Zitat Tan L, Liu ZL, Ma Z, He Z, Tang LH, Liu YL, et al. Prognostic impact of at least 12 lymph nodes after neoadjuvant therapy in rectal cancer: a meta-analysis. World J Gastrointest Oncol. 2020;12(12):1443–55.CrossRef Tan L, Liu ZL, Ma Z, He Z, Tang LH, Liu YL, et al. Prognostic impact of at least 12 lymph nodes after neoadjuvant therapy in rectal cancer: a meta-analysis. World J Gastrointest Oncol. 2020;12(12):1443–55.CrossRef
28.
Zurück zum Zitat Xu Z, Berho ME, Becerra AZ, Aquina CT, Hensley BJ, Arsalanizadeh R, et al. Lymph node yield is an independent predictor of survival in rectal cancer regardless of receipt of neoadjuvant therapy. J Clin Pathol. 2017;70(7):584–92.CrossRef Xu Z, Berho ME, Becerra AZ, Aquina CT, Hensley BJ, Arsalanizadeh R, et al. Lymph node yield is an independent predictor of survival in rectal cancer regardless of receipt of neoadjuvant therapy. J Clin Pathol. 2017;70(7):584–92.CrossRef
29.
Zurück zum Zitat Zhou D, Ye M, Bai Y, Rong L, Hou Y. Prognostic value of lymph node ratio in survival of patients with locally advanced rectal cancer. Can J Surg Journal canadien de chirurgie. 2015;58(4):237–44.CrossRef Zhou D, Ye M, Bai Y, Rong L, Hou Y. Prognostic value of lymph node ratio in survival of patients with locally advanced rectal cancer. Can J Surg Journal canadien de chirurgie. 2015;58(4):237–44.CrossRef
30.
Zurück zum Zitat Kim JY, Chung SM, Choi BO, Lee IK, An CH, Won JM, et al. Prognostic significance of the lymph node ratio regarding recurrence and survival in rectal cancer patients treated with postoperative chemoradiotherapy. Gut Liver. 2012;6(2):203–9.CrossRef Kim JY, Chung SM, Choi BO, Lee IK, An CH, Won JM, et al. Prognostic significance of the lymph node ratio regarding recurrence and survival in rectal cancer patients treated with postoperative chemoradiotherapy. Gut Liver. 2012;6(2):203–9.CrossRef
31.
Zurück zum Zitat Huang B, Chen C, Ni M, Mo S, Cai G, Cai S. Log odds of positive lymph nodes is a superior prognostic indicator in stage III rectal cancer patients: a retrospective analysis of 17,632 patients in the SEER database. Int J Surg. 2016;32:24–30.CrossRef Huang B, Chen C, Ni M, Mo S, Cai G, Cai S. Log odds of positive lymph nodes is a superior prognostic indicator in stage III rectal cancer patients: a retrospective analysis of 17,632 patients in the SEER database. Int J Surg. 2016;32:24–30.CrossRef
32.
Zurück zum Zitat Lee CW, Wilkinson KH, Sheka AC, Leverson GE, Kennedy GD. The log odds of positive lymph nodes stratifies and predicts survival of high-risk individuals among stage III rectal cancer patients. Oncologist. 2016;21(4):425–32.CrossRef Lee CW, Wilkinson KH, Sheka AC, Leverson GE, Kennedy GD. The log odds of positive lymph nodes stratifies and predicts survival of high-risk individuals among stage III rectal cancer patients. Oncologist. 2016;21(4):425–32.CrossRef
33.
Zurück zum Zitat Petrucciani N, Carra MC, Martinez-Perez A, Vitali GC, Landi F, Genova P, et al. Comparison of different nodal staging in patients with locally advanced mid-low rectal cancer after long-term neoadjuvant chemoradiation therapy. Anticancer Res. 2019;39(4):2113–20.CrossRef Petrucciani N, Carra MC, Martinez-Perez A, Vitali GC, Landi F, Genova P, et al. Comparison of different nodal staging in patients with locally advanced mid-low rectal cancer after long-term neoadjuvant chemoradiation therapy. Anticancer Res. 2019;39(4):2113–20.CrossRef
34.
Zurück zum Zitat Glynne-Jones R, Counsell N, Quirke P, Mortensen N, Maraveyas A, Meadows HM, et al. Chronicle: results of a randomised phase III trial in locally advanced rectal cancer after neoadjuvant chemoradiation randomising postoperative adjuvant capecitabine plus oxaliplatin (XELOX) versus control. Ann Oncol. 2014;25(7):1356–62.CrossRef Glynne-Jones R, Counsell N, Quirke P, Mortensen N, Maraveyas A, Meadows HM, et al. Chronicle: results of a randomised phase III trial in locally advanced rectal cancer after neoadjuvant chemoradiation randomising postoperative adjuvant capecitabine plus oxaliplatin (XELOX) versus control. Ann Oncol. 2014;25(7):1356–62.CrossRef
35.
Zurück zum Zitat Breugom AJ, van Gijn W, Muller EW, Berglund Å, van den Broek CBM, Fokstuen T, et al. Adjuvant chemotherapy for rectal cancer patients treated with preoperative (chemo)radiotherapy and total mesorectal excision: a Dutch Colorectal Cancer Group (DCCG) randomized phase III trial. Ann Oncol. 2015;26(4):696–701.CrossRef Breugom AJ, van Gijn W, Muller EW, Berglund Å, van den Broek CBM, Fokstuen T, et al. Adjuvant chemotherapy for rectal cancer patients treated with preoperative (chemo)radiotherapy and total mesorectal excision: a Dutch Colorectal Cancer Group (DCCG) randomized phase III trial. Ann Oncol. 2015;26(4):696–701.CrossRef
36.
Zurück zum Zitat Ahn DH, Wu C, Wei L, Williams TM, Wuthrick E, Abdel-Misih S, et al. The efficacy of adjuvant chemotherapy in patients with stage II/III resected rectal cancer treated with neoadjuvant chemoradiation therapy. Am J Clin Oncol. 2017;40(6):531–4.CrossRef Ahn DH, Wu C, Wei L, Williams TM, Wuthrick E, Abdel-Misih S, et al. The efficacy of adjuvant chemotherapy in patients with stage II/III resected rectal cancer treated with neoadjuvant chemoradiation therapy. Am J Clin Oncol. 2017;40(6):531–4.CrossRef
38.
Zurück zum Zitat Valentini V, Aristei C, Glimelius B, Minsky BD, Beets-Tan R, Borras JM, et al. Multidisciplinary Rectal Cancer Management: 2nd European Rectal Cancer Consensus Conference (EURECA-CC2). Radiother Oncol. 2009;92(2):148–63.CrossRef Valentini V, Aristei C, Glimelius B, Minsky BD, Beets-Tan R, Borras JM, et al. Multidisciplinary Rectal Cancer Management: 2nd European Rectal Cancer Consensus Conference (EURECA-CC2). Radiother Oncol. 2009;92(2):148–63.CrossRef
39.
Zurück zum Zitat Zhang C, Xu L, Qin Q, Liu J, Tang X, Jiang N, et al. Good response to neoadjuvant chemoradiotherapy predicts good oncological outcome in locally advanced rectal cancer. Transl Cancer Res. 2019;8(1):150–9.CrossRef Zhang C, Xu L, Qin Q, Liu J, Tang X, Jiang N, et al. Good response to neoadjuvant chemoradiotherapy predicts good oncological outcome in locally advanced rectal cancer. Transl Cancer Res. 2019;8(1):150–9.CrossRef
40.
Zurück zum Zitat Xu L, Cai S, Xiao T, Chen Y, Qiu H, Wu B, et al. Prognostic significance of tumour regression grade after neoadjuvant chemoradiotherapy for a cohort of patients with locally advanced rectal cancer: an 8-year retrospective single-institutional study. Colorectal Dis. 2017;19(7):O263–71.CrossRef Xu L, Cai S, Xiao T, Chen Y, Qiu H, Wu B, et al. Prognostic significance of tumour regression grade after neoadjuvant chemoradiotherapy for a cohort of patients with locally advanced rectal cancer: an 8-year retrospective single-institutional study. Colorectal Dis. 2017;19(7):O263–71.CrossRef
41.
Zurück zum Zitat Santos MD, Silva C, Rocha A, Matos E, Nogueira C, Lopes C. Tumor regression grades: can they influence rectal cancer therapy decision tree? Int J Surg Oncol. 2013;2013: 572149.PubMedPubMedCentral Santos MD, Silva C, Rocha A, Matos E, Nogueira C, Lopes C. Tumor regression grades: can they influence rectal cancer therapy decision tree? Int J Surg Oncol. 2013;2013: 572149.PubMedPubMedCentral
42.
Zurück zum Zitat Rullier A, Laurent C, Capdepont M, Vendrely V, Bioulac-Sage P, Rullier E. Impact of tumor response on survival after radiochemotherapy in locally advanced rectal carcinoma. Am J Surg Pathol. 2010;34(4):562–8.CrossRef Rullier A, Laurent C, Capdepont M, Vendrely V, Bioulac-Sage P, Rullier E. Impact of tumor response on survival after radiochemotherapy in locally advanced rectal carcinoma. Am J Surg Pathol. 2010;34(4):562–8.CrossRef
Metadaten
Titel
A prognostic nomogram for stage II/III rectal cancer patients treated with neoadjuvant chemoradiotherapy followed by surgical resection
verfasst von
Yanfei Lin
Publikationsdatum
01.12.2022
Verlag
BioMed Central
Erschienen in
BMC Surgery / Ausgabe 1/2022
Elektronische ISSN: 1471-2482
DOI
https://doi.org/10.1186/s12893-022-01710-z

Weitere Artikel der Ausgabe 1/2022

BMC Surgery 1/2022 Zur Ausgabe

Mehr Frauen im OP – weniger postoperative Komplikationen

21.05.2024 Allgemeine Chirurgie Nachrichten

Ein Frauenanteil von mindestens einem Drittel im ärztlichen Op.-Team war in einer großen retrospektiven Studie aus Kanada mit einer signifikanten Reduktion der postoperativen Morbidität assoziiert.

„Übersichtlicher Wegweiser“: Lauterbachs umstrittener Klinik-Atlas ist online

17.05.2024 Klinik aktuell Nachrichten

Sie sei „ethisch geboten“, meint Gesundheitsminister Karl Lauterbach: mehr Transparenz über die Qualität von Klinikbehandlungen. Um sie abzubilden, lässt er gegen den Widerstand vieler Länder einen virtuellen Klinik-Atlas freischalten.

Was nützt die Kraniektomie bei schwerer tiefer Hirnblutung?

17.05.2024 Hirnblutung Nachrichten

Eine Studie zum Nutzen der druckentlastenden Kraniektomie nach schwerer tiefer supratentorieller Hirnblutung deutet einen Nutzen der Operation an. Für überlebende Patienten ist das dennoch nur eine bedingt gute Nachricht.

Klinikreform soll zehntausende Menschenleben retten

15.05.2024 Klinik aktuell Nachrichten

Gesundheitsminister Lauterbach hat die vom Bundeskabinett beschlossene Klinikreform verteidigt. Kritik an den Plänen kommt vom Marburger Bund. Und in den Ländern wird über den Gang zum Vermittlungsausschuss spekuliert.

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

Karpaltunnelsyndrom BDC Leitlinien Webinare
CME: 2 Punkte

Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

Radiusfraktur BDC Leitlinien Webinare
CME: 2 Punkte

Das Webinar beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

Appendizitis BDC Leitlinien Webinare
CME: 2 Punkte

Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.