Skip to main content
Erschienen in: Techniques in Coloproctology 7/2019

Open Access 03.07.2019 | Original Article

A prospective pilot study on MRI visibility of iron oxide-impregnated polyvinylidene fluoride mesh after ventral rectopexy

verfasst von: K. E. Laitakari, J. K. Mäkelä-Kaikkonen, E. Pääkkö, P. Ohtonen, T. T. Rautio

Erschienen in: Techniques in Coloproctology | Ausgabe 7/2019

Abstract

Background

Magnetic resonance imaging (MRI) provides excellent information about pelvic anatomy after ventral rectopexy, but the position of the conventional mesh is not seen constantly. Iron oxide-impregnated polyvinylidene fluoride (PVDF) meshes are proven to have MRI visibility in hernia or vaginal reconstructive surgery. This prospective pilot study was designed to assess the visualization, position, and shape of the magnetic resonance (MR)–visible synthetic pelvic mesh used in minimally invasive ventral rectopexy.

Methods

Eight patients with pelvic organ prolapse were recruited for laparoscopic (LVMR) or robotic-assisted ventral mesh rectopexy (RVMR) with a synthetic MR–visible PVDF mesh. A follow-up visit was scheduled at 3 months after surgery. MR imaging was performed to evaluate the position and dimensions of the mesh and anatomical result. The visibility of the mesh in each sequence was assessed subjectively.

Results

The visibility of the mesh was best on T1-weighted flash images. The mesh was also well visualized on T2-weighted sagittal images. T2-weighted images, in general, provided best visualization of the surrounding anatomical structures and enabled assessment of the mesh fixation.

Conclusions

T2 sagittal and T1-weighted flash images provide the best information about the position and integrity of the iron oxide-impregnated PVDF mesh after LVMR or RVMR with a short examination time.
Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

Laparoscopic ventral mesh rectopexy (LVMR) introduced by Andre D’Hoore has become commonly used treatment for rectal prolapse [14]. This minimally invasive procedure, also feasible with a robotic approach [5], offers the advantages of decreased risk of damaging autonomic nerves, recurrence, and new-onset post-operative symptoms. Anatomical and functional changes in the pelvic floor after anterior rectopexy have been described [68], but there are no studies that have investigated the position and dimensions of the mesh.
The risk of mesh-related complications like erosions, mesh infection, dyspareunia or fistula formation is quite low [810]. However, post-operative de-novo symptoms such as urinary retention, fecal incontinence, constipation or pelvic/abdominal pain are not so infrequent [4, 8, 9, 11]. The overall recurrence rate of rectal prolapse after laparoscopic or robotic-assisted ventral mesh rectopexy (RVMR) is up to 15.4% [46, 8, 11]. MR-contrasting implants have been suggested to be helpful in diagnosing post-operative problems non-invasively.
The aim of this prospective pilot study was to assess the visualization, position, and dimensions of the MR–visible synthetic mesh after LVRM or RVMR. The primary outcomes were the quantificational characterization of mesh position and anatomical changes.

Materials and methods

Study population and data collection

From February to April 2018, eight unselected consecutive patients with pelvic organ prolapse were recruited for laparoscopic or RVMR with a synthetic MR–visible polyvinylidene fluoride (PVDF) mesh in Oulu University Hospital, Finland. Written informed consent was obtained from all patients. All data about patient characteristics and post-operative recovery were collected prospectively. The study was approved by the local Ethics Committee.

Surgical technique

The surgical procedures were primarily carried out as described by D’Hoore and Penninckx [2] with minor modifications. The da Vinci Surgical System (Intuitive Surgical Inc., Sunnyvale, CA, USA) with five trocar placements and side docking was used to perform RVMR. The mesh was positioned as far distally as possible and sutured to the levator muscles and on the anterior rectal wall with multiple interrupted seromuscular non-absorbable sutures (2-0 Ethibond, Ethicon Endosurgery). In laparoscopic procedures, only four to five sutures were used to fix the mesh on the proximal rectal wall, and the distal part of the mesh was fixed with glue. For the sacral promontory fixation, spiral attachments (Pro-Tack TM Fixation Device, Medtronic) were used. The peritoneum was closed over the mesh with continuous suture with absorbable V-Loc™ 90 (Medtronic). Peri-operative care was conducted according to the enhanced recovery after surgery protocol.

Mesh information

MR–visible polyvinylidene fluoride (PVDF) 4 × 23 cm meshes (Dynamesh® IPOM, FEG Textiltechnik, Aachen, Germany) containing paramagnetic iron oxide microparticles (Fe3O4 with iron load of 10 mg/g polymer) were used. This macroporous (> 1 mm) mesh consists of 88% visceral-sided PDVF monofilament and 12% parietal-sided polypropylene monofilament.

Follow-up

A follow-up visit was scheduled at 3 months after surgery. Patients were evaluated for their pelvic clinical status and the functional results assessed with questionnaires reflecting quality of life and possible post-operative symptoms. MR imaging was performed for radiological evaluation of position and dimensions of the mesh and anatomical result.

Magnetic resonance imaging

Magnetic resonance imaging (MRI) was performed by a 3 T magnet (Siemens, Vida, Erlangen, Germany). The patients were asked to empty the bladder before imaging. No other patient preparation was used. Patients were lying supine in the magnet. A body matrix surface coil was used in addition to the posterior spine coil.
T2-weighted sagittal, coronal, and transverse images were obtained (TR 3720–6100, TE 81–90, sagittal and coronal FOV 230, transverse FOV 200, 3 mm slice, 0.6 mm gap, sagittal and coronal matrix 256 × 320, transverse matrix 544 × 640). Breath-hold transverse T1-weighted vibe Dixon (TR 4, TE 1.3 and 2.5, FOV 309 × 380, 3 mm slice, 195 × 320 matrix) and T1-weighted (TR 129, TE 2.5, FOV 333 × 380, 3 mm slice, 210 × 320 matrix) flash images were also obtained. Total time of the examination was 30–35 min.
The visibility of the mesh in each sequence was assessed subjectively. Scores from 1 to 4 were used. Score 1 was given to image series if the mesh was visible in all slices. In score 2, 3, and 4, the visibility was ≥ 3/4, ≥ 1/2 or < 1/2 of the slices.
The position of the lower insertion point according to anorectal junction was assessed, as well as the insertion point to the levator muscle on each side. The length of insertion to the anterior rectal wall was measured. The width of the mesh was measured at the lower insertion point, at the highest insertion point in the rectum, and at the higher insertion point in the promontorium. Also, the narrowest part of the mesh was measured, as well as its distance from the highest rectal insertion point.

Results

Eight female patients were included in this analysis, and their baseline clinical characteristics and used surgical technique are given in Table 1. All operations were primary except one robotic re-rectopexy for patient D (Table 1) with recurrent enterocele after previous ventral rectopexy. Mean operative time was 131 min (SD 44.4) and blood loss was 68 ml (SD 138.5). One laparoscopic operation was converted to open, and patient G (Table 1) had mild post-operative acute myocardial infarction. There were no peri-operative or any post-operative surgical complications. Mean hospital stay was 1.5 days (SD 0.76).
Table 1
Baseline characteristics and peri-operative outcome
Patient
Age (years)
ASA
BMI (kg/m2)
Diagnosis
Indication
Surgical technique
Operation time (min)
Blood loss (ml)
A
63
3
24
Enterocele
Incontinence
RVMR
86
20
B
56
2
22
Enterocele
ODS
RVMR
90
400
C
88
3
22
Prolapse
Prolapse
RVMR
121
0
D
53
2
23
Enterocele
Incontinence
RVMRa
174
0
E
77
3
27
Prolapse
Prolapse
RVMR
214
100
F
49
2
24
Enterocele
Incontinence
LVMR
148
0
G
77
3
25
Invagination
Incontinence
LVMRb
118
20
H
41
2
22
Invagination
Incontinence
LVMR
106
0
ASA American Society of Anesthesiologists, BMI body mass index, ODS obstructed defecation syndrome, RVMR robotic ventral rectopexy, LVMR laparoscopic ventral rectopexy
aRe-rectopexy
bConversion
All patients had a 3-month follow-up with MRI imaging. The results of mesh position and dimensions are summarized in Table 2. The anatomical correction of the pelvic floor was excellent in all cases and there were no significant differences in any proportions of the meshes. Fixation of the meshes to the levator muscles and to promontorium was also seen (Fig. 1b; Table 2).
Table 2
Pelvic floor area measurements on MRI
Patient
Parameter
Anorectal junctiona
Right levator muscleb
Left levator musclec
Anterior rectal walld
Lower insertion pointe
Highest insertion pointf
Narrowest partg
Distance from the insertion pointh
Promontoriumi
A
0
Yes
Yes
93
36
28
16
6
22
B
0
Yes
Yes
86
31
23
15
5
20
C
0
Yes
Yes
87
40
33
17
20
26
D
0
Yes
No
105
40
45
19
15
34
E
20
Yes
Yes
43
34
22
10
42
22
F
0
Yes
Yes
79
45
29
28
14
26
G
0
Yes
Yes
96
38
30
15
32
38
H
7
Yes
Yes
58
43
29
11
26
33
MRI magnetic resonance imaging
aDistance of the lower insertion point from the anorectal junction (mm)
bThe position of the insertion point to the right levator muscle
cThe position of the insertion point to the left levator muscle
dLength of insertion to the anterior rectal wall (mm)
eWidth of the mesh at the lower insertion point (mm)
fWidth of the mesh at the highest insertion point in the rectum (mm)
gNarrowest part of the mesh (mm)
hThe distance of the narrowest part of the mesh from the highest rectal insertion point (mm)
iWidth of the mesh at the higher insertion point in the promontorium (mm)
The visibility of the mesh was best on T1-weighted flash images (scoring 1 in all cases) as shown in Table 3. The mesh was also well visualized on T2-weighted sagittal images (scoring 1 in six cases, 3 in one case, and 4 in one case with severe movement artifacts). T2-weighted images, in general, provided best visualization of the surrounding anatomical structures (Fig. 1).
Table 3
The visibility of the mesh in MRI sequences
Patient
MRI sequence
T2 sagittal
T2 transverse
T2 coronal
T1 flash
Dixon in phase
Dixon out of phase
A
1
4
4
1
2
4
B
3
4
4
1
2
4
C
1
3
4
1
1
4
D
4
4
4
1
2
4
E
1
3
3
1
1
4
F
1
4
4
1
2
4
G
1
2
3
1
2
4
H
1
3
3
1
2
4
1, mesh was visible in all slices; 2, visibility was ≥ 3/4 of the slices; 3, visibility was ≥ 1/2 of the slices; 4, visibility was < 1/2 of the slices
MRI magnetic resonance imaging

Discussion

This pilot study was designed to find the best way to visualize the iron oxide-impregnated PVDF meshes implanted for rectal prolapse. Our results showed that position and dimensions of this new mesh are seen sufficiently to make measuring using post-operative MRI. This would be useful in cases of post-operative mesh-related complications and recurrent symptoms; particularly, when planning reoperation to check if the mesh has gotten detached from the pelvic floor or promontory attachments.
There are few previous results showing the feasibility of iron oxide-impregnated PVDF meshes in hernia and vaginal reconstructive surgery [1215]. However, this is the first study to demonstrate how the MR–visible synthetic mesh is seen after LVMR or RVMR in post-operative MRI. Therefore, it is impossible to compare our results to any previous data. We hope that other study groups will get interested in doing further research on iron oxide-impregnated PVDF meshes.
If the position and integrity of the mesh are in question, T2 sagittal and T1-weighted flash images would provide sufficient information with a short examination time. However, if there are other post-operative concerns, such as infection, a wider selection of sequences should be used together with intravenous contrast agent. Acquired information helps the design of future studies comparing different ventral rectopexy techniques, and especially mesh fixation alternatives.

Conclusions

T2 sagittal and T1-weighted flash images provide the best information about the position and integrity of the iron oxide-impregnated PVDF mesh after LVMR or RVMR with a short examination time.

Acknowledgements

Open access funding provided by University of Oulu including Oulu University Hospital.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study has been approved by the Ethical Committtee of the Oulu University Hospital.
Written informed consent was obtained from all patients.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

Die Chirurgie

Print-Titel

Das Abo mit mehr Tiefe

Mit der Zeitschrift Die Chirurgie erhalten Sie zusätzlich Online-Zugriff auf weitere 43 chirurgische Fachzeitschriften, CME-Fortbildungen, Webinare, Vorbereitungskursen zur Facharztprüfung und die digitale Enzyklopädie e.Medpedia.

Bis 30. April 2024 bestellen und im ersten Jahr nur 199 € zahlen!

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Literatur
1.
Zurück zum Zitat D’Hoore A, Cadoni R, Penninckx F (2004) Long-term outcome of laparoscopic ventral rectopexy for total rectal prolapse. Br J Surg 91:1500–1505CrossRefPubMed D’Hoore A, Cadoni R, Penninckx F (2004) Long-term outcome of laparoscopic ventral rectopexy for total rectal prolapse. Br J Surg 91:1500–1505CrossRefPubMed
2.
Zurück zum Zitat D’Hoore A, Penninckx F (2006) Laparoscopic ventral recto(colpo)pexy for rectal prolapse: surgical technique and outcome for 109 patients. Surg Endosc 20:1919–1923CrossRefPubMed D’Hoore A, Penninckx F (2006) Laparoscopic ventral recto(colpo)pexy for rectal prolapse: surgical technique and outcome for 109 patients. Surg Endosc 20:1919–1923CrossRefPubMed
3.
Zurück zum Zitat Faucheron JL, Trilling B, Girard E, Sage PY, Barbois S, Reche F (2015) Anterior rectopexy for full-thickness rectal prolapse. Technical and functional results. World J Gastroenterol 21:5049–5055CrossRefPubMedPubMedCentral Faucheron JL, Trilling B, Girard E, Sage PY, Barbois S, Reche F (2015) Anterior rectopexy for full-thickness rectal prolapse. Technical and functional results. World J Gastroenterol 21:5049–5055CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Van Iersel JJ, Paulides TJ, Verheijen PM, Lumley JW, Broeders IA, Consten EC (2016) Current status of laparoscopic and robotic ventral mesh rectopexy for external and internal rectal prolapse. World J Gastroenterol 22:4977–4987CrossRefPubMedPubMedCentral Van Iersel JJ, Paulides TJ, Verheijen PM, Lumley JW, Broeders IA, Consten EC (2016) Current status of laparoscopic and robotic ventral mesh rectopexy for external and internal rectal prolapse. World J Gastroenterol 22:4977–4987CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Van Iersel JJ, Formijne Jonkers HA, Paulides TJC, Verheijen PM, Draaisma WA, Consten ECJ, Broeders IAMJ (2017) Robot-assisted ventral mesh rectopexy for rectal prolapse: a 5-year experience at a tertiary referral center. Dis Colon Rectum 60:1215–1223CrossRefPubMed Van Iersel JJ, Formijne Jonkers HA, Paulides TJC, Verheijen PM, Draaisma WA, Consten ECJ, Broeders IAMJ (2017) Robot-assisted ventral mesh rectopexy for rectal prolapse: a 5-year experience at a tertiary referral center. Dis Colon Rectum 60:1215–1223CrossRefPubMed
6.
Zurück zum Zitat Mäkelä-Kaikkonen J, Rautio T, Kairaluoma M, Carpelan-Holmström M, Kössi J, Rautio A, Ohtonen P, Mäkelä J (2018) Does ventral rectopexy improve pelvic floor function in the long term? Dis Colon Rectum 61:230–238CrossRefPubMed Mäkelä-Kaikkonen J, Rautio T, Kairaluoma M, Carpelan-Holmström M, Kössi J, Rautio A, Ohtonen P, Mäkelä J (2018) Does ventral rectopexy improve pelvic floor function in the long term? Dis Colon Rectum 61:230–238CrossRefPubMed
7.
Zurück zum Zitat Tsunoda A, Takahashi T, Hayashi K, Yagi Y, Kusanagi H (2018) Laparoscopic ventral rectopexy in patients with fecal incontinence associated with rectoanal intussusception: prospective evaluation of clinical, physiological and morphological changes. Tech Coloproctol 22:425–431CrossRefPubMed Tsunoda A, Takahashi T, Hayashi K, Yagi Y, Kusanagi H (2018) Laparoscopic ventral rectopexy in patients with fecal incontinence associated with rectoanal intussusception: prospective evaluation of clinical, physiological and morphological changes. Tech Coloproctol 22:425–431CrossRefPubMed
8.
Zurück zum Zitat Consten EC, van Iersel JJ, Verheijen PM, Broeders IA, Wolthuis AM, D’Hoore A (2015) Long-term outcome after laparoscopic ventral mesh rectopexy: an observational study of 919 consecutive patients. Ann Surg 262:742–747CrossRefPubMed Consten EC, van Iersel JJ, Verheijen PM, Broeders IA, Wolthuis AM, D’Hoore A (2015) Long-term outcome after laparoscopic ventral mesh rectopexy: an observational study of 919 consecutive patients. Ann Surg 262:742–747CrossRefPubMed
9.
Zurück zum Zitat Evans C, Stevenson AR, Sileri P, Mercer-Jones MA, Dixon AR, Cunningham C, Jones OM, Lindsey I (2015) A multicenter collaboration to assess the safety of laparoscopic ventral rectopexy. Dis Colon Rectum 58:799–807CrossRefPubMed Evans C, Stevenson AR, Sileri P, Mercer-Jones MA, Dixon AR, Cunningham C, Jones OM, Lindsey I (2015) A multicenter collaboration to assess the safety of laparoscopic ventral rectopexy. Dis Colon Rectum 58:799–807CrossRefPubMed
10.
Zurück zum Zitat Smart NJ, Pathak S, Boorman P, Daniels IR (2013) Synthetic or biological mesh use in laparoscopic ventral mesh rectopexy–a systematic review. Colorectal Dis 15:650–654CrossRefPubMed Smart NJ, Pathak S, Boorman P, Daniels IR (2013) Synthetic or biological mesh use in laparoscopic ventral mesh rectopexy–a systematic review. Colorectal Dis 15:650–654CrossRefPubMed
11.
Zurück zum Zitat McLean R, Kipling M, Musgrave E, Mercer-Jones M (2018) Short- and long-term clinical and patient-reported outcomes following laparoscopic ventral mesh rectopexy using biological mesh for pelvic organ prolapse: a prospective cohort study of 224 consecutive patients. Colorectal Dis 20:424–436CrossRefPubMed McLean R, Kipling M, Musgrave E, Mercer-Jones M (2018) Short- and long-term clinical and patient-reported outcomes following laparoscopic ventral mesh rectopexy using biological mesh for pelvic organ prolapse: a prospective cohort study of 224 consecutive patients. Colorectal Dis 20:424–436CrossRefPubMed
12.
Zurück zum Zitat Sindhwani N, Callewaert G, Deprest T, Housmans S, Van Beckevoort D, Deprest J (2018) Short term post-operative morphing of sacrocolpopexy mesh measured by magnetic resonance imaging. J Mech Behav Biomed Mater 80:269–276CrossRefPubMed Sindhwani N, Callewaert G, Deprest T, Housmans S, Van Beckevoort D, Deprest J (2018) Short term post-operative morphing of sacrocolpopexy mesh measured by magnetic resonance imaging. J Mech Behav Biomed Mater 80:269–276CrossRefPubMed
13.
Zurück zum Zitat Chen L, Lenz F, Alt CD, Sohn C, De Lancey JO, Brocker KA (2017) MRI visible Fe3O4 polypropylene mesh: 3D reconstruction of spatial relation to bony pelvis and neurovascular structures. Int Urogynecol J 28:1131–1138CrossRefPubMedPubMedCentral Chen L, Lenz F, Alt CD, Sohn C, De Lancey JO, Brocker KA (2017) MRI visible Fe3O4 polypropylene mesh: 3D reconstruction of spatial relation to bony pelvis and neurovascular structures. Int Urogynecol J 28:1131–1138CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Joukhadar R, Meyberg-Solomayer G, Hamza A, Radosa J, Bader W, Barski D, Ismaeel F, Schneider G, Solomayer E, Baum S (2015) A novel operative procedure for pelvic organ prolapse utilizing a MRI-visible mesh implant: safety and outcome of modified laparoscopic bilateral sacropexy. Biomed Res Int 2015:860784CrossRefPubMedPubMedCentral Joukhadar R, Meyberg-Solomayer G, Hamza A, Radosa J, Bader W, Barski D, Ismaeel F, Schneider G, Solomayer E, Baum S (2015) A novel operative procedure for pelvic organ prolapse utilizing a MRI-visible mesh implant: safety and outcome of modified laparoscopic bilateral sacropexy. Biomed Res Int 2015:860784CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Muysoms F, Beckers R, Kyle-Leinhase I (2018) Prospective cohort study on mesh shrinkage measured with MRI after laparoscopic ventral hernia repair with an intraperitoneal iron oxide-loaded PVDF mesh. Surg Endosc 32:2822–2830CrossRefPubMed Muysoms F, Beckers R, Kyle-Leinhase I (2018) Prospective cohort study on mesh shrinkage measured with MRI after laparoscopic ventral hernia repair with an intraperitoneal iron oxide-loaded PVDF mesh. Surg Endosc 32:2822–2830CrossRefPubMed
Metadaten
Titel
A prospective pilot study on MRI visibility of iron oxide-impregnated polyvinylidene fluoride mesh after ventral rectopexy
verfasst von
K. E. Laitakari
J. K. Mäkelä-Kaikkonen
E. Pääkkö
P. Ohtonen
T. T. Rautio
Publikationsdatum
03.07.2019
Verlag
Springer International Publishing
Erschienen in
Techniques in Coloproctology / Ausgabe 7/2019
Print ISSN: 1123-6337
Elektronische ISSN: 1128-045X
DOI
https://doi.org/10.1007/s10151-019-02022-w

Weitere Artikel der Ausgabe 7/2019

Techniques in Coloproctology 7/2019 Zur Ausgabe

Echinokokkose medikamentös behandeln oder operieren?

06.05.2024 DCK 2024 Kongressbericht

Die Therapie von Echinokokkosen sollte immer in spezialisierten Zentren erfolgen. Eine symptomlose Echinokokkose kann – egal ob von Hunde- oder Fuchsbandwurm ausgelöst – konservativ erfolgen. Wenn eine Op. nötig ist, kann es sinnvoll sein, vorher Zysten zu leeren und zu desinfizieren. 

Recycling im OP – möglich, aber teuer

05.05.2024 DCK 2024 Kongressbericht

Auch wenn sich Krankenhäuser nachhaltig und grün geben – sie tragen aktuell erheblich zu den CO2-Emissionen bei und produzieren jede Menge Müll. Ein Pilotprojekt aus Bonn zeigt, dass viele Op.-Abfälle wiederverwertet werden können.

Im OP der Zukunft läuft nichts mehr ohne Kollege Roboter

04.05.2024 DCK 2024 Kongressbericht

Der OP in der Zukunft wird mit weniger Personal auskommen – nicht, weil die Technik das medizinische Fachpersonal verdrängt, sondern weil der Personalmangel es nötig macht.

Nur selten Nachblutungen nach Abszesstonsillektomie

03.05.2024 Tonsillektomie Nachrichten

In einer Metaanalyse von 18 Studien war die Rate von Nachblutungen nach einer Abszesstonsillektomie mit weniger als 7% recht niedrig. Nur rund 2% der Behandelten mussten nachoperiert werden. Die Therapie scheint damit recht sicher zu sein.

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

Karpaltunnelsyndrom BDC Leitlinien Webinare
CME: 2 Punkte

Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

Radiusfraktur BDC Leitlinien Webinare
CME: 2 Punkte

Das Webinar beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

Appendizitis BDC Leitlinien Webinare
CME: 2 Punkte

Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.