Skip to main content
Erschienen in: Nutrition Journal 1/2003

Open Access 01.12.2003 | Research

A randomised controlled trial investigating the effect of nutritional supplementation on visual function in normal, and age-related macular disease affected eyes: design and methodology [ISRCTN78467674]

verfasst von: Hannah Bartlett, Frank Eperjesi

Erschienen in: Nutrition Journal | Ausgabe 1/2003

Abstract

Background

Age-related macular disease is the leading cause of blind registration in the developed world. One aetiological hypothesis involves oxidation, and the intrinsic vulnerability of the retina to damage via this process. This has prompted interest in the role of antioxidants, particularly the carotenoids lutein and zeaxanthin, in the prevention and treatment of this eye disease.

Methods

The aim of this randomised controlled trial is to determine the effect of a nutritional supplement containing lutein, vitamins A, C and E, zinc, and copper on measures of visual function in people with and without age-related macular disease. Outcome measures are distance and near visual acuity, contrast sensitivity, colour vision, macular visual field, glare recovery, and fundus photography. Randomisation is achieved via a random number generator, and masking achieved by third party coding of the active and placebo containers. Data collection will take place at nine and 18 months, and statistical analysis will employ Student's t test.

Discussion

A paucity of treatment modalities for age-related macular disease has prompted research into the development of prevention strategies. A positive effect on normals may be indicative of a role of nutritional supplementation in preventing or delaying onset of the condition. An observed benefit in the age-related macular disease group may indicate a potential role of supplementation in prevention of progression, or even a degree reversal of the visual effects caused by this condition.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1475-2891-2-12) contains supplementary material, which is available to authorized users.

Competing interests

None declared.

Background

Age-related macular degeneration is the leading cause of registrable blindness in the developed world [13], and its prevalence is expected to increase with the anticipated demographic right-shift [4]. In order to standardise terminology a classification system for age-related macular degeneration has been developed [5]. Early and late stages of the condition are termed age-related maculopathy (ARM) and age-related macular degeneration (AMD) respectively. The term age-related macular disease will be used to encompass ARM and AMD.
ARM is most often clinically apparent over the age of 50 years. The main symptom is increasing difficulty with fine detail discrimination. AMD is categorised further in to 'non-neovascular AMD' (also known as dry AMD or geographic atrophy), and 'neovascular AMD' (also known as wet, exudative, or disciform) [5]. Neovascular AMD refers to the growth of new, weak blood vessels and their subsequent leakage in the macular region of the retina. Non-neovascular AMD is the most common form, and is estimated to be present in 15% of eyes by 80 years of age [69]. Progression is slow and legal blindness has been estimated to occur between 5 and 10 years [10]. Neovascular AMD is less common, occurring in 5.2% of the population over 75 years [2], but accounts for 90% of blind registrations [11]. Sufferers experience rapid, significant loss of central vision. Neovascular AMD is generally preceded by the non-neovascular form.

Clinicopathogenesis of age-related macular disease

The macula is around 5 mm in diameter and is located centrally in the retina. It has a central depressed area, of approximately 1.5 mm diameter, called the fovea. The fovea is located approximately 4 mm temporal from the optic disc. The central floor of the fovea is called the foveola, which has a diameter of 0.35 mm and is the thinnest part of the retina. It contains only cone photoreceptors and their nuclei [12] (see figure 1).

Aetiology of AMD

The exact aetiology of AMD is not known, but several hypotheses have been proposed:
The RPE lies between Bruch's membrane and the sensory retina. It forms the blood-retina barrier and is involved with vitamin A metabolism, transport of metabolites from the choroid to the retina, manufacture of mucopolysaccharides, and breakdown of damaged photoreceptor outer segments. Bruch's membrane separates the RPE from the choriocapillaris, which serves as the main blood supply to the outer retina [12].
Increasing age promotes an increased lipid content of Bruch's membrane, and the macula is affected by this process to a greater extent than the periphery [13]. Consequential changes to the diffusion characteristics of Bruch's membrane may precipitate AMD [14].
Senescence of RPE cells occurs earlier than in other cell types, such as fibroblasts [15]. Foveal RPE cells decrease in density and selectively lose their hexagonal shape with age [16, 17]. These changes may contribute to the onset of AMD.

Vascular insufficiency

Changes to the choroidal and scleral vasculature, and the resulting increase in haemodynamic resistance have been proposed to cause damage to the RPE [18, 19]. Foveal choriocapillaris blood flow is reduced with age, but has been shown to be further degraded in AMD patients [20, 21]. Laser Doppler flowmetry has been used to establish that choroidal blood volume is reduced via decreased density and diameter of the choriocapillaris [21].

Genetics

An increased risk of AMD has been demonstrated with a positive family history [22, 23], and this supports the proposed genetic component to development of AMD. It is likely that those with an inherited predisposition for the condition will develop it following exposure to certain risk factors [24].

Free radical/ oxidative stress hypothesis

Reactive oxygen intermediates is an inclusive term used to describe both oxidants and free radical species [25]. A free radical can be described as 'any atom or molecule that has one or more unpaired electrons' [26]. Examples include the superoxide anion (O2-•) and the hydroxyl free radical (OH•). Oxidants such as singlet oxygen (102) and hydrogen peroxide (H202) contain paired electrons, but in a reactive state [27]. It is proposed that many degenerative diseases result from uncontrolled ROI reactions within the body [28]. A free radical will attempt to achieve stability by gaining electrons from other molecules. These molecules become 'reducing agents' by donating electrons and are damaged by this process. In the retina this damage may lead to the development of age-related macular disease. The retina is particularly susceptible to oxidative stress for several reasons:
• The retina is subject to high levels of radiation, particularly blue light.
• Oxygen consumption by the retina is greater than that of other tissues [29].
• Photoreceptor outer segments contain a high proportion of polyunsaturated fatty acids, whose double bonds are a rich source of electrons [30, 31].
• The retina contains photosensitisers, which make cells and tissues sensitive to the influence of irradiation [3234]
• Phagocytosis by the RPE generates ROI [35].
The body has several defence mechanisms against free radical damage, including antioxidant enzymes such as superoxide dismutase and catalase, antioxidant vitamins such as vitamins C, E and some carotenoids, and other antioxidant compounds such as metallationein, melanin, and glutathione. For a detailed account of the role of oxidation in the pathogenesis of AMD, see Beatty et al. (2000) [36].

Antioxidants and AMD

The lack of treatment options for AMD has prompted a search for possible preventative strategies. The main risk factors for AMD are increasing age [3741], smoking [4244], and family history [22, 4547]. Proposed risk factors include female gender [2, 48], white ethnicity [4951], sunlight exposure [52, 53], high dietary fat intake [54, 55], hypertension [38, 5658], and low antioxidant levels [55, 59]. It follows that the risk of developing ARM and AMD may be reduced by lifestyle changes such as cessation of smoking, minimising sunlight exposure, reducing dietary fat intake, and maintaining antioxidant levels. For a review of randomised controlled trials investigating the role of nutritional supplementation in age-related macular disease, see Bartlett and Eperjesi (2003) [60].

The role of lutein and zeaxanthin in prevention and treatment of age-related macular disease

The isometric carotenoids lutein, zeaxanthin, and meso-zeaxanthin make up the macular pigment (MP) [6163], which appears clinically as a yellow colouration to the macular area. Humans are unable to produce carotenoids but use them in a variety of functions [64]. Carotenoids are synthesised in plants, algae and bacteria [65], and the normal Western diet contains 1.3–3 mg/day of lutein and zeaxanthin combined [66, 67].
Ocular tissues contain several carotenoids, but the retina contains lutein and zeaxanthin exclusively [68]. Lutein and zeaxanthin are present in rod outer segments, where they would be most needed, and concentrations have been shown to be higher in the macular region than the peripheral retina [69]. This evidence supports the selective uptake of lutein in the retina and suggests that it plays important role in maintenance of ocular health.
A 70% reduced risk of AMD has been demonstrated with high (>0.67 μmol/L) versus low (0.25 μmol/L) lutein/zeaxanthin plasma levels [70]. A study of retinal levels of lutein and zeaxanthin in donor eyes found an 82% lower risk of AMD in retinae among the 25% with highest lutein and zeaxanthin levels compared to the 25% with the lowest levels [71]. Measurement of macular pigment optical density (MPOD) in healthy eyes showed an age-related decline, and healthy eyes considered to be at risk for AMD had significantly less MP than healthy eyes not at risk [72]. This evidence suggests that lower plasma and retinal levels of lutein and zeaxanthin present an increased risk of developing AMD.
Daily supplementation for 140 days with 30 mg of lutein esters produced a seven fold increase in lutein serum levels and a 20–40% increase in MPOD [73]. A 35% increase in lutein serum levels and a 20% increase in MPOD was demonstrated in a study supplementing 11 subjects daily with 11 mg of lutein from 60 g of spinach and 150 g or corn/maize [74]. Supplementation with 10 mg/day of lutein esters for 12 weeks was shown to increase serum lutein levels by five times and MPOD by approximately 20% [75]. These studies show that lutein supplementation does increase plasma and retinal lutein levels.
Lutein and zeaxanthin are believed to protect the retina in two ways. Firstly, they act as blue-light filters. Action spectrum for blue-light induced damage shows a maximum at 400 nm and 450 nm, and this is consistent with the absorption spectrum of macular pigment [76]. Secondly, they are able to quench free radicals. Energy transfer to them quenches singlet oxygen, and they are also believed to react with peroxy radicals that are involved with lipid peroxidation [77].

Objectives

To determine the effect of 18 months of daily lutein and antioxidant supplementation on measures of visual function in subjects with and without age-related macular disease.

Materials and Methods

Recruitment

The study requires recruitment of people with and without age-related macular disease. Recruitment methods employed include sending information to Birmingham optometrists, ophthalmologists, and a specialist centre for rehabilitation of people with sight loss, an editorial in the Birmingham Evening Mail, recruitment e-mails sent to the Royal National Institute for the Blind (RNIB) and all staff and students at Aston University and Aston Science Park. A project website has also been developed at http://​www.​aston.​ac.​uk/​lhs/​research/​nri/​opo/​amd. Data collection takes place in a standard consulting room at Aston University. Enrolment, randomisation, and data collection are carried out by HB. HB and FE are masked to group assignment. HB is a research optometrist and FE is an optometrist and lecturer at Aston University, Birmingham, UK.

Inclusion/exclusion criteria

For inclusion participants a) have to provide written informed consent, b) have to be available for three visits to Aston University, c) have to present with no ocular pathology in one eye, or no ocular pathology other than dry AMD in one eye. A cataract grading system consisting of grades one, two and three for each of cortical, nuclear, and posterior subcapsular cataracts has been developed. Participants presenting with lens opacities precluding fundus photography are excluded. Throughout the trial period, progression of any type of cataract to the successive grade will require the participant to withdraw.
Exclusion criteria include type I and II diabetes because vitamin E has been shown to affect glucose tolerance [7882] and diabetic retinopathy may confound the results. Those taking Warfarin medication are excluded as zinc may decrease its absorption and activity [83], as are those who use nutritional supplements that potentially raise vitamin and mineral intake above safe limits. The most recent guidelines for upper limits of nutritional supplementation are set out in the UK Food Standards Agency report [84]. Neovascular AMD and other ocular disease that could potentially interfere with the results are excluded.

Masking

The study formulation and placebo tablets have been produced by Quest Vitamins Ltd, Aston Science Park, Birmingham, B7 4AP, and are identical in external and internal appearance, and taste. The manufacturer has allocated distinguishing symbols, μ and λ. The tablets are packaged in identical, sealed, white containers; the only difference being the symbol on the label. Investigators and participants do not know which symbol represents the placebo tablets, and which represents the active formulation.

Intervention

The study formulation contains the following:
Lutein 6 mg
Vitamin A 750 μg
Vitamin C 250 mg
Vitamin E 34 mg
Zinc 10 mg
Copper 0.5 mg
Participants in both groups are instructed to take one tablet, at the same time every day, with food.

Randomisation

The random number generator function in Microsoft Excel is being used to allocate participants to μ and λ groups. Odd numbers allocate to the μ group.

Baseline data

On application, participants complete a health questionnaire, a food frequency questionnaire, and a food diary. The health questionnaire provides information about general health, medication, nutritional supplementation, smoking history, ocular health, and time spent living abroad. The food questionnaire and diary ask for information about diet for analysis using Foodbase 2000 software (The Institute of Brain Chemistry and Human Nutrition, London N7 8DB).

Outcome measures

The investigation of several measures of visual function is required, as age-related macular disease can produce varying signs and symptoms.

Visual acuity

Distance and near visual acuity (VA) measured using Bailey-Lovie logMAR charts. LogMAR charts have 5 letters and 0.1 log MAR progression per line. The advantage of using these charts is that they provide an equal-interval scale, and there are five letters per line. Standard Snellen charts do not provide a linear scale and have a decreasing number of letters per line as the letter size increases.

Contrast sensitivity

Contrast sensitivity (CS) is measured using a Pelli-Robson chart (Clement Clarke International, Edinburgh Way, Harlow, Essex, CM20 2TT, UK) and provides additional information about vision. The Pelli-Robson chart determines the contrast required to read large letters and is designed to test mid- to low-spatial frequencies. Some people may have normal visual acuity, but reduced contrast sensitivity at low spatial frequencies, particularly if they suffer from ocular pathologies such as age-related macular disease.

Colour vision

Colour vision measured using the PV-16 quantitative colour vision test (Precision Vision Inc, 944 First Street, La Salle, IL, 61301, USA). Macular disease can cause a deficiency in blue-yellow colour vision as the short-wavelength photoreceptors are concentrated around the fovea.

Macular Mapping Test

Macular Mapping (MM) test (The Smith-Kettlewell Research Institute, 2318 Fillmore Street, San Francisco, CA, 94115, USA) was developed to map visual defects caused by macular disease. It was developed by MacKeben and Colenbrander [85] and differs from conventional field analysis in that the stimuli are single letters rather than spots of light. This is a novel piece of equipment and each participant is given a practice run to eliminate learning effects. At the end of the test a single figure score is presented.

Glare recovery

Eger Macular Stressometer (EMS) (Gulden Ophthalmics, Elkins Park, PA 19027) is used to assess glare recovery, also known as photostress recovery time (PSRT). This is the time taken for the regeneration of photopigments in bleached photoreceptors to a level that allows resolution of, for example, a letter at near. Resynthesis of the photopigments is dependent upon the integrity of the photoreceptors and RPE [86]; it follows that the PSRT may be extended in those with diseases affecting these structures. This is a novel piece of equipment and each participant is given a practice run to eliminate learning effects.

Fundus photography

Fundus photographs of the macular will be assessed using colour and edge analysis software.

Follow up

Data collection will take place at baseline, nine, and 18 months.

Analyses

For each outcome measure the change between baseline, nine month, and 18 month values will be calculated. A Student's t test will be used to determine whether the means of these values differ at the 5% significance level between the placebo and active formulation results for age-related macular disease participants, and normal participants, after differences in age, gender and diet have been taken into account.

Power

From initial data collection we have calculated the treatment group sizes required in order to have 80% power at the 5% significance level for VA, CS, MM test, and the EMS. These values suggest that a total of 63 normal, and 96 age-related macular disease participants are required.

Ethical approval

The study has been approved by the Aston University Human Sciences Ethical Committee. The tenets of the Declaration of Helsinki are being followed [87].

Discussion

Randomised masked trials differ from observational studies in that they have the ability to demonstrate causality. The influence of confounding variables is reduced by random assignment of participants to intervention groups, and masking reduces the influence of investigator bias. There is evidence for selective deposition of lutein in the retina, increase of retinal and serum levels of lutein with supplementation, and an increased risk of age-related macular disease with reduced retinal lutein levels. This randomised controlled trial will provide further information regarding the effect of lutein and antioxidant supplementation on specific measures of visual function in people with and without age-related macular disease. The current paucity of treatment modalities for this condition has prompted research into the development of prevention strategies. A positive effect of the supplementation on normals may be indicative of its potential role in prevention or delaying the onset of age-related macular disease. This may be of particular importance for those with a positive family history, or exposure to other risk factors. A positive effect in age-related macular disease affected eyes may suggest a role of nutritional supplementation in prevention of progression of the disease, or even in reversal of symptoms.

Acknowledgments

This research is funded by the College of Optometrists, UK.

Competing interests

None declared.
Anhänge

Authors’ original submitted files for images

Below are the links to the authors’ original submitted files for images.
Literatur
1.
Zurück zum Zitat Evans JR: Causes of blindness and partial sight in England and Wales 1990-1991. Studies on medical and population subjects. 1995, London, HMSO, 57: Evans JR: Causes of blindness and partial sight in England and Wales 1990-1991. Studies on medical and population subjects. 1995, London, HMSO, 57:
2.
Zurück zum Zitat Klein R, Klein BEK, Linton KLP: Prevalence of Age-Related Maculopathy - the Beaver Dam Eye Study. Ophthalmology. 1992, 99: 933-943.CrossRefPubMed Klein R, Klein BEK, Linton KLP: Prevalence of Age-Related Maculopathy - the Beaver Dam Eye Study. Ophthalmology. 1992, 99: 933-943.CrossRefPubMed
3.
Zurück zum Zitat Mitchell P, Smith W, Attebo K, Wang JJ: Prevalence of Age-Related Maculopathy in Australia - the Blue Mountains Eye Study. Ophthalmology. 1995, 102: 1450-1460.CrossRefPubMed Mitchell P, Smith W, Attebo K, Wang JJ: Prevalence of Age-Related Maculopathy in Australia - the Blue Mountains Eye Study. Ophthalmology. 1995, 102: 1450-1460.CrossRefPubMed
4.
Zurück zum Zitat United Nations: The world population prospects: the 2002 revision. www.un.org/esa/population/publications/wpp2000/highlights.pdf. 2002 United Nations: The world population prospects: the 2002 revision. www.un.org/esa/population/publications/wpp2000/highlights.pdf. 2002
5.
Zurück zum Zitat Bird AEC, Bressler NM, Bressler SB, Chisholm IH, Coscas G, Davis MD, Dejong Ptvm, Klaver CCW, Klein BEK, Klein R, Mitchell P, Sarks JP, Sarks SH, Sourbane G, Taylor HR, Vingerling JR: An International Classification and Grading System for Age- Related Maculopathy and Age-Related Macular Degeneration. Survey of Ophthalmology. 1995, 39: 367-374.CrossRefPubMed Bird AEC, Bressler NM, Bressler SB, Chisholm IH, Coscas G, Davis MD, Dejong Ptvm, Klaver CCW, Klein BEK, Klein R, Mitchell P, Sarks JP, Sarks SH, Sourbane G, Taylor HR, Vingerling JR: An International Classification and Grading System for Age- Related Maculopathy and Age-Related Macular Degeneration. Survey of Ophthalmology. 1995, 39: 367-374.CrossRefPubMed
6.
Zurück zum Zitat Bressler NM, Bressler SB, Fine SL: Age-related macular degeneration. Survey of Ophthalmology. 1988, 32: 375-413.CrossRefPubMed Bressler NM, Bressler SB, Fine SL: Age-related macular degeneration. Survey of Ophthalmology. 1988, 32: 375-413.CrossRefPubMed
7.
Zurück zum Zitat Bressler NM, Bressler SB, Fine SL: Subfoveal neovascular membranes in senile macular degeneration: relationship between membrane size and visual prognosis. Retina. 1983, 3: 7-11.CrossRef Bressler NM, Bressler SB, Fine SL: Subfoveal neovascular membranes in senile macular degeneration: relationship between membrane size and visual prognosis. Retina. 1983, 3: 7-11.CrossRef
9.
10.
Zurück zum Zitat Arnold JJ, Sarks SH: Extracts from "Clinical evidence" - Age related macular degeneration. Br. Med. J. 2000, 321: 741-744. 10.1136/bmj.321.7263.741.CrossRef Arnold JJ, Sarks SH: Extracts from "Clinical evidence" - Age related macular degeneration. Br. Med. J. 2000, 321: 741-744. 10.1136/bmj.321.7263.741.CrossRef
11.
12.
Zurück zum Zitat Kanski JJ: Clinical Ophthalmology. 1994, Oxford, Butterworth-Heineman, Third Kanski JJ: Clinical Ophthalmology. 1994, Oxford, Butterworth-Heineman, Third
13.
Zurück zum Zitat Holz FG.et.al: Analysis of lipid deposits extracted from human macular and peripheral Bruch's membrane. Archives of Ophthalmology. 1994, 112: 402-406.CrossRefPubMed Holz FG.et.al: Analysis of lipid deposits extracted from human macular and peripheral Bruch's membrane. Archives of Ophthalmology. 1994, 112: 402-406.CrossRefPubMed
14.
Zurück zum Zitat Ambati J, Ambati BK, Yoo SH, Ianchulev S, Adamis AP: Age-Related Macular Degeneration: Etiology,Pathogenesis, and Therapeutic Strategies. Survey of Ophthalmology. 2003, 48: 257-293. 10.1016/S0039-6257(03)00030-4.CrossRefPubMed Ambati J, Ambati BK, Yoo SH, Ianchulev S, Adamis AP: Age-Related Macular Degeneration: Etiology,Pathogenesis, and Therapeutic Strategies. Survey of Ophthalmology. 2003, 48: 257-293. 10.1016/S0039-6257(03)00030-4.CrossRefPubMed
15.
Zurück zum Zitat Rawes V, Kipling D, Kill IR, Faragher RG: The kinetics of senescence in retinal pigment epithelial cells: a test for the telomere hypothesis of ageing?. Biochemistry. 1997, 62: 1291-1295.PubMed Rawes V, Kipling D, Kill IR, Faragher RG: The kinetics of senescence in retinal pigment epithelial cells: a test for the telomere hypothesis of ageing?. Biochemistry. 1997, 62: 1291-1295.PubMed
16.
Zurück zum Zitat Dorey CK, Wu G, Ebenstein D: Cell loss in the aging retina. Relationship to lipofuscin accumulation and macular degeneration. Invest Ophthalmol Vis Sci. 1989, 30: 1691-1699.PubMed Dorey CK, Wu G, Ebenstein D: Cell loss in the aging retina. Relationship to lipofuscin accumulation and macular degeneration. Invest Ophthalmol Vis Sci. 1989, 30: 1691-1699.PubMed
17.
Zurück zum Zitat Watzke RC, Soldevilla JD, Trune DR: Morphometric analysis of human retinal pigment epithelium: correlation with age and location. Current Eye Research. 1993, 12: 133-142.CrossRefPubMed Watzke RC, Soldevilla JD, Trune DR: Morphometric analysis of human retinal pigment epithelium: correlation with age and location. Current Eye Research. 1993, 12: 133-142.CrossRefPubMed
18.
Zurück zum Zitat Friedman E: A hemodynamic model of the pathogenesis of age-related macular degeneration. American Journal of Ophthalmology. 1997, 124: 677-682.CrossRefPubMed Friedman E: A hemodynamic model of the pathogenesis of age-related macular degeneration. American Journal of Ophthalmology. 1997, 124: 677-682.CrossRefPubMed
19.
Zurück zum Zitat Friedman E: The role of the atherosclerotic process in the pathogenesis of age-related macular degeneration. American Journal of Ophthalmology. 2000, 130: 658-663. 10.1016/S0002-9394(00)00643-7.CrossRefPubMed Friedman E: The role of the atherosclerotic process in the pathogenesis of age-related macular degeneration. American Journal of Ophthalmology. 2000, 130: 658-663. 10.1016/S0002-9394(00)00643-7.CrossRefPubMed
20.
Zurück zum Zitat Grunwald JE, Hariprasad SM, DuPont J: Effect of aging on foveolar choroidal circulation. Archives of Ophthalmology. 1998, 116: 150-154.CrossRefPubMed Grunwald JE, Hariprasad SM, DuPont J: Effect of aging on foveolar choroidal circulation. Archives of Ophthalmology. 1998, 116: 150-154.CrossRefPubMed
21.
Zurück zum Zitat Grunwald JE, Hariprasad SM, DuPont J: Foveolar choroidal blood flow in age-related macular degeneration. Investigative Ophthalmological Vision Science. 1998, 39: 385-390. Grunwald JE, Hariprasad SM, DuPont J: Foveolar choroidal blood flow in age-related macular degeneration. Investigative Ophthalmological Vision Science. 1998, 39: 385-390.
22.
Zurück zum Zitat Hyman LG, Lilienfeld AM, Ferris FL, Fine SL: Senile Macular Degeneration - a Case-Control Study. Am. J. Epidemiol. 1983, 118: 213-227.PubMed Hyman LG, Lilienfeld AM, Ferris FL, Fine SL: Senile Macular Degeneration - a Case-Control Study. Am. J. Epidemiol. 1983, 118: 213-227.PubMed
23.
Zurück zum Zitat Smith W, Mitchell P: Family history and age-related maculopathy: the Blue Mountains Eye Study. Archives of Ophthalmology. 1998, 26: 203-206. Smith W, Mitchell P: Family history and age-related maculopathy: the Blue Mountains Eye Study. Archives of Ophthalmology. 1998, 26: 203-206.
25.
Zurück zum Zitat Rose RC, Richer SP, Bode AM: Ocular Oxidants and Antioxidant Protection. Proceedings of the Society for Experimental Biology and Medicine. 1998, 217: 397-407.CrossRefPubMed Rose RC, Richer SP, Bode AM: Ocular Oxidants and Antioxidant Protection. Proceedings of the Society for Experimental Biology and Medicine. 1998, 217: 397-407.CrossRefPubMed
26.
Zurück zum Zitat Southorn PA, Powis G: Free radicals in medicine I. Chemical nature and biological reactions. Mayo Clinical Procedures. 1988, 63: 381-389.CrossRef Southorn PA, Powis G: Free radicals in medicine I. Chemical nature and biological reactions. Mayo Clinical Procedures. 1988, 63: 381-389.CrossRef
27.
Zurück zum Zitat Halliwell B: Reactive oxygen species in living systems: source, biochemistry and role in human disease. Am J Med. 1991, 91 (Supp): 14-22.CrossRef Halliwell B: Reactive oxygen species in living systems: source, biochemistry and role in human disease. Am J Med. 1991, 91 (Supp): 14-22.CrossRef
28.
Zurück zum Zitat Florence TM: Ther role of free radicals in disease (review). Australian and New Zealand Journal of Ophthalmology. 1995, 23: 3-7.CrossRefPubMed Florence TM: Ther role of free radicals in disease (review). Australian and New Zealand Journal of Ophthalmology. 1995, 23: 3-7.CrossRefPubMed
29.
Zurück zum Zitat Sickel W: Retinal metabolism in dark and light. Handbook of sensory physiology. Edited by: FuortesMGF. 1972, Berlin, Springer-Verlag, 667-727. Sickel W: Retinal metabolism in dark and light. Handbook of sensory physiology. Edited by: FuortesMGF. 1972, Berlin, Springer-Verlag, 667-727.
30.
Zurück zum Zitat Bazan NG: The metabolism of omega-3 polyunsaturated fatty acids in the eye: the possible role of docosahexaenoic acid and docosanoids in retinal physiology and ocular pathology. Progress in Clinical and Biological Research. 1989, 312: 95-112.PubMed Bazan NG: The metabolism of omega-3 polyunsaturated fatty acids in the eye: the possible role of docosahexaenoic acid and docosanoids in retinal physiology and ocular pathology. Progress in Clinical and Biological Research. 1989, 312: 95-112.PubMed
31.
Zurück zum Zitat Stone WL, Farnsworth CC, Dratz EA: A reinvestigation of the fatty acid content of bovine, rat and frog retinal rod outer segments. Experimental Eye Research. 1979, 28: 387-397.CrossRefPubMed Stone WL, Farnsworth CC, Dratz EA: A reinvestigation of the fatty acid content of bovine, rat and frog retinal rod outer segments. Experimental Eye Research. 1979, 28: 387-397.CrossRefPubMed
32.
Zurück zum Zitat Delmelle M: Retinal sensitized photodynamic damage to liposomes. Photochemistry and Photobiology. 1978, 28: 357-360.CrossRefPubMed Delmelle M: Retinal sensitized photodynamic damage to liposomes. Photochemistry and Photobiology. 1978, 28: 357-360.CrossRefPubMed
33.
Zurück zum Zitat Gaillard ER, Atherton SJ, Eldred G, Dillon J: Photophysical studies on human retinal lipofuscin. Photochemistry and Photobiology. 1995, 61: 448-453.CrossRefPubMed Gaillard ER, Atherton SJ, Eldred G, Dillon J: Photophysical studies on human retinal lipofuscin. Photochemistry and Photobiology. 1995, 61: 448-453.CrossRefPubMed
34.
Zurück zum Zitat Rozanowska M, Jarvis-Evans J, Korytowski W: Blue light-induced reactivity of retinal pigment. In vitro generation of oxygen-reactive species. Journal of Biological Chemistry. 1995, 270: 18825-18830. 10.1074/jbc.270.32.18825.CrossRefPubMed Rozanowska M, Jarvis-Evans J, Korytowski W: Blue light-induced reactivity of retinal pigment. In vitro generation of oxygen-reactive species. Journal of Biological Chemistry. 1995, 270: 18825-18830. 10.1074/jbc.270.32.18825.CrossRefPubMed
35.
Zurück zum Zitat Tate DJ Jr, Miceli MV, Newsome DA: Phagocytosis and H202 induce catalase and metallothionein gene expression in human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci. 1995, 36: 1271-1279.PubMed Tate DJ Jr, Miceli MV, Newsome DA: Phagocytosis and H202 induce catalase and metallothionein gene expression in human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci. 1995, 36: 1271-1279.PubMed
36.
Zurück zum Zitat Beatty S, Koh HH, Henson D, Boulton M: The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv. Ophthalmol. 2000, 45: 115-134. 10.1016/S0039-6257(00)00140-5.CrossRefPubMed Beatty S, Koh HH, Henson D, Boulton M: The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv. Ophthalmol. 2000, 45: 115-134. 10.1016/S0039-6257(00)00140-5.CrossRefPubMed
37.
Zurück zum Zitat Kahn HA, Moorhead HB: Statistics on blindness in the Model Reporting Area 1969-1970. 1973, Washington. DC, US DHEW Kahn HA, Moorhead HB: Statistics on blindness in the Model Reporting Area 1969-1970. 1973, Washington. DC, US DHEW
38.
Zurück zum Zitat Goldberg J, Flowerdew G, Smith E, Brody JA, Tso MOM: Factors Associated with Age-Related Macular Degeneration - an Analysis of Data from the 1st National-Health and Nutrition Examination Survey. Am. J. Epidemiol. 1988, 128: 700-710.PubMed Goldberg J, Flowerdew G, Smith E, Brody JA, Tso MOM: Factors Associated with Age-Related Macular Degeneration - an Analysis of Data from the 1st National-Health and Nutrition Examination Survey. Am. J. Epidemiol. 1988, 128: 700-710.PubMed
39.
Zurück zum Zitat Hawkins BS, Bird A, Klein R, West SK: Epidemiology of age-related macular degeneration. Mol. Vis. 1999, 5: U7-U10. Hawkins BS, Bird A, Klein R, West SK: Epidemiology of age-related macular degeneration. Mol. Vis. 1999, 5: U7-U10.
40.
Zurück zum Zitat Klein R: Epidemiology. Age-Related Macular Degeneration. Edited by: Berger JW; Fine SL; Maguire MG. 1999, Philadelphia, Mosby, 31-55. Klein R: Epidemiology. Age-Related Macular Degeneration. Edited by: Berger JW; Fine SL; Maguire MG. 1999, Philadelphia, Mosby, 31-55.
41.
Zurück zum Zitat Smith W, Assink J, Klein R, Mitchell P, Klaver CCW, Klein BEK, Hofman A, Jensen S, Wang JJ, de Jong Ptvm: Risk factors for age related macular degeneration - Pooled findings from three continents. Ophthalmology. 2001, 108: 697-704. 10.1016/S0161-6420(00)00580-7.CrossRefPubMed Smith W, Assink J, Klein R, Mitchell P, Klaver CCW, Klein BEK, Hofman A, Jensen S, Wang JJ, de Jong Ptvm: Risk factors for age related macular degeneration - Pooled findings from three continents. Ophthalmology. 2001, 108: 697-704. 10.1016/S0161-6420(00)00580-7.CrossRefPubMed
42.
Zurück zum Zitat Tamakoshi, Akiko, Yuzawa, Mitsuko, Matsui, Mizuo: Smoking and neovascular form of age-related macular degeneration in late middle aged males: findings from a case-control study in Japan. British Journal of Ophthalmology. 1997, 81: 901-904.CrossRefPubMedPubMedCentral Tamakoshi, Akiko, Yuzawa, Mitsuko, Matsui, Mizuo: Smoking and neovascular form of age-related macular degeneration in late middle aged males: findings from a case-control study in Japan. British Journal of Ophthalmology. 1997, 81: 901-904.CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Seddon JM, Willett WC, Speizer FE, Hankinson SE: A prospective study of cigarette smoking and age-related macular degeneration in women. JAMA. 1996, 276: Seddon JM, Willett WC, Speizer FE, Hankinson SE: A prospective study of cigarette smoking and age-related macular degeneration in women. JAMA. 1996, 276:
45.
Zurück zum Zitat Heiba IM,et.al: Sibling correlations and segregation analysis of age-related maculopathy: the Beaver Dam Eye Study. Genetic Epidemiology. 1994, 11: 51-67.CrossRefPubMed Heiba IM,et.al: Sibling correlations and segregation analysis of age-related maculopathy: the Beaver Dam Eye Study. Genetic Epidemiology. 1994, 11: 51-67.CrossRefPubMed
46.
Zurück zum Zitat Klaver CCW, Smith, Smith: Familial aggregation of age-related macular degeneration in the Rotterdam Study (abstract). Investigative Opthalmological Visual Science. 1997, 38: S967- Klaver CCW, Smith, Smith: Familial aggregation of age-related macular degeneration in the Rotterdam Study (abstract). Investigative Opthalmological Visual Science. 1997, 38: S967-
47.
Zurück zum Zitat Klaver CCW, Wolfs RCW, Assink JJM: Genetic Risk of Age-Related Maculopathy. Population-Based Familial Aggregation Study. Archives of Ophthalmology. 1998, 116: 1646-1651.CrossRefPubMed Klaver CCW, Wolfs RCW, Assink JJM: Genetic Risk of Age-Related Maculopathy. Population-Based Familial Aggregation Study. Archives of Ophthalmology. 1998, 116: 1646-1651.CrossRefPubMed
48.
Zurück zum Zitat Kahn HA, smith, jones.: The Framingon Eye Study. 1. Outline and major prevalence findings. American Journal of Epidemiology. 1977, 106: 17-32.PubMed Kahn HA, smith, jones.: The Framingon Eye Study. 1. Outline and major prevalence findings. American Journal of Epidemiology. 1977, 106: 17-32.PubMed
49.
Zurück zum Zitat Schachat AP, Hyman L, Leske MC, Connell AMS, Wu SY: Features of Age-Related Macular Degeneration in a Black- Population. Arch. Ophthalmol. 1995, 113: 728-735.CrossRefPubMed Schachat AP, Hyman L, Leske MC, Connell AMS, Wu SY: Features of Age-Related Macular Degeneration in a Black- Population. Arch. Ophthalmol. 1995, 113: 728-735.CrossRefPubMed
50.
Zurück zum Zitat Friedman DS, Katz J, Bressler NM, Rahmani B, Tielsch JM: Racial differences in the prevalence of age-related macular degeneration - The Baltimore eye survey. Ophthalmology. 1999, 106: 1049-1055. 10.1016/S0161-6420(99)90267-1.CrossRefPubMed Friedman DS, Katz J, Bressler NM, Rahmani B, Tielsch JM: Racial differences in the prevalence of age-related macular degeneration - The Baltimore eye survey. Ophthalmology. 1999, 106: 1049-1055. 10.1016/S0161-6420(99)90267-1.CrossRefPubMed
51.
Zurück zum Zitat Jampol LM, Tielsch JM: Race, Macular Degeneration, and the Macular Photocoagulation Study. Archives of Ophthalmology. 1992, 110: 1699-1700.CrossRefPubMed Jampol LM, Tielsch JM: Race, Macular Degeneration, and the Macular Photocoagulation Study. Archives of Ophthalmology. 1992, 110: 1699-1700.CrossRefPubMed
52.
Zurück zum Zitat Cruickshanks KJ, Klein R, Klein BEK, Nondahl DM: Sunlight and the 5-year incidence of early age-related maculopathy - The Beaver Dam Eye Study. Arch. Ophthalmol. 2001, 119: 246-250.PubMed Cruickshanks KJ, Klein R, Klein BEK, Nondahl DM: Sunlight and the 5-year incidence of early age-related maculopathy - The Beaver Dam Eye Study. Arch. Ophthalmol. 2001, 119: 246-250.PubMed
53.
Zurück zum Zitat Delcourt C, Carriere I, Ponton-Sanchez A: Light Exposure and the Risk of Age-Related Macular Degeneration: The POLA Study. Archives of Ophthalmology. 2001, 119: 1463-1468.CrossRefPubMed Delcourt C, Carriere I, Ponton-Sanchez A: Light Exposure and the Risk of Age-Related Macular Degeneration: The POLA Study. Archives of Ophthalmology. 2001, 119: 1463-1468.CrossRefPubMed
54.
Zurück zum Zitat Mares-Perlman JA.et.al: Dietary fat and age-related maculopathy. Archives of Ophthalmology. 1995, 113: 743-748.CrossRefPubMed Mares-Perlman JA.et.al: Dietary fat and age-related maculopathy. Archives of Ophthalmology. 1995, 113: 743-748.CrossRefPubMed
55.
Zurück zum Zitat Yannuzzi LA, Sorenson JA, Sobel RS, Daly JR, Derosa JT, Seddon JM, Gragoudas ES, Puliafito CA, Gelles E, Gonet R, Burton TC, Culver J, Metzger K, Kalbfleisch N, Zarling D, Farber MD, Blair N, Stelmack T, Axelrod A, Waitr SE, Cross A, Rolnick C, Flom T, Haller J, Pusin S, Cassel G, Applegate CA, Seigel D, Sperduto RD, Hiller R, Mowery R, Chew E, Tamboli A, Miller DT, Sowell AL, Gunter EW, Dunn M, Shamban K, Lento D, Alexander JA, Phillips DA: Risk-Factors for Neovascular Age-Related Macular Degeneration. Arch. Ophthalmol. 1992, 110: 1701-1708.CrossRef Yannuzzi LA, Sorenson JA, Sobel RS, Daly JR, Derosa JT, Seddon JM, Gragoudas ES, Puliafito CA, Gelles E, Gonet R, Burton TC, Culver J, Metzger K, Kalbfleisch N, Zarling D, Farber MD, Blair N, Stelmack T, Axelrod A, Waitr SE, Cross A, Rolnick C, Flom T, Haller J, Pusin S, Cassel G, Applegate CA, Seigel D, Sperduto RD, Hiller R, Mowery R, Chew E, Tamboli A, Miller DT, Sowell AL, Gunter EW, Dunn M, Shamban K, Lento D, Alexander JA, Phillips DA: Risk-Factors for Neovascular Age-Related Macular Degeneration. Arch. Ophthalmol. 1992, 110: 1701-1708.CrossRef
56.
Zurück zum Zitat Hyman L, Smith, Smith: Risk factors for age-related maculopathy. Investigative Ophthalmological Vision Science. 1992, 33: 801- Hyman L, Smith, Smith: Risk factors for age-related maculopathy. Investigative Ophthalmological Vision Science. 1992, 33: 801-
57.
Zurück zum Zitat Smith W, Mitchell P, Leeder SR.et.al: Plasma Fibrinogen Levels, Other Cardiovascular Risk Factors, and Age-Related Maculopathy. Archives of Ophthalmology. 1998, 116: 583-587.CrossRefPubMed Smith W, Mitchell P, Leeder SR.et.al: Plasma Fibrinogen Levels, Other Cardiovascular Risk Factors, and Age-Related Maculopathy. Archives of Ophthalmology. 1998, 116: 583-587.CrossRefPubMed
58.
Zurück zum Zitat The Age-Related Eye Disease Study Research Group: Risk factors associated with age-related macular degeneration - A case-control study in the Age-Related Eye Disease Study: Age- Related Eye Disease Study report number 3. Ophthalmology. 2000, 107: 2224-2232. 10.1016/S0161-6420(00)00409-7.CrossRef The Age-Related Eye Disease Study Research Group: Risk factors associated with age-related macular degeneration - A case-control study in the Age-Related Eye Disease Study: Age- Related Eye Disease Study report number 3. Ophthalmology. 2000, 107: 2224-2232. 10.1016/S0161-6420(00)00409-7.CrossRef
59.
Zurück zum Zitat Richer S: Multicenter ophthalmic and nutritional age-related macular degeneration study part 2: antioxidant intervention and conclusions. J Am Optom Assoc. 1996, 67: 30-49.PubMed Richer S: Multicenter ophthalmic and nutritional age-related macular degeneration study part 2: antioxidant intervention and conclusions. J Am Optom Assoc. 1996, 67: 30-49.PubMed
60.
Zurück zum Zitat Bartlett H, Eperjesi F: Age-related macular degeneration and nutritional supplementation: a review of randomised controlled trials. Ophthalmic and Physiological Optics. 2003, 23: 383-399. 10.1046/j.1475-1313.2003.00130.x.CrossRefPubMed Bartlett H, Eperjesi F: Age-related macular degeneration and nutritional supplementation: a review of randomised controlled trials. Ophthalmic and Physiological Optics. 2003, 23: 383-399. 10.1046/j.1475-1313.2003.00130.x.CrossRefPubMed
61.
Zurück zum Zitat Handelman GJ, Dratz EA, Reay CC: Carotenoids in the human macula and the whole retina. Invest Ophthalmol Vis Sci. 1988, 29: 850-855.PubMed Handelman GJ, Dratz EA, Reay CC: Carotenoids in the human macula and the whole retina. Invest Ophthalmol Vis Sci. 1988, 29: 850-855.PubMed
62.
Zurück zum Zitat Bone RA;, Landrum JT;, Tarsis SL;: Preliminary identification of the human macular pigment. Vision Res. 1985, 25: 1531-1535. 10.1016/0042-6989(85)90123-3.CrossRefPubMed Bone RA;, Landrum JT;, Tarsis SL;: Preliminary identification of the human macular pigment. Vision Res. 1985, 25: 1531-1535. 10.1016/0042-6989(85)90123-3.CrossRefPubMed
63.
Zurück zum Zitat Khachik F, Bernstein PS, Garland DL: Identification of lutein and zeaxanthin oxidation products in human and monkey retinas. Invest Ophthalmol Vis Sci. 1997, 38: 1802-1811.PubMed Khachik F, Bernstein PS, Garland DL: Identification of lutein and zeaxanthin oxidation products in human and monkey retinas. Invest Ophthalmol Vis Sci. 1997, 38: 1802-1811.PubMed
64.
65.
Zurück zum Zitat Goodwin TW: . Methods in Enzymology. Edited by: PackerL. 1992, New York, Academic Press, 213: 167-172. Goodwin TW: . Methods in Enzymology. Edited by: PackerL. 1992, New York, Academic Press, 213: 167-172.
66.
Zurück zum Zitat Nebeling LC, Forman MR, Graubard BI, Snyder RA: Changes in carotenoid intake in the United States. The 1987 and 1992 National Health Interview Surveys. Journal of the American Dietetic Association. 1997, 97: 991-996. 10.1016/S0002-8223(97)00239-3.CrossRefPubMed Nebeling LC, Forman MR, Graubard BI, Snyder RA: Changes in carotenoid intake in the United States. The 1987 and 1992 National Health Interview Surveys. Journal of the American Dietetic Association. 1997, 97: 991-996. 10.1016/S0002-8223(97)00239-3.CrossRefPubMed
67.
Zurück zum Zitat Nebeling LC, Forman MR;, Graubard BI, Snyder RA: The Impact of Lifestyle Characterisitcs on Carotenoid Intake in the United States: The 1987 National Health Interview Survey. American Journal of Public Health. 1997, 87: 268-271.CrossRefPubMedPubMedCentral Nebeling LC, Forman MR;, Graubard BI, Snyder RA: The Impact of Lifestyle Characterisitcs on Carotenoid Intake in the United States: The 1987 National Health Interview Survey. American Journal of Public Health. 1997, 87: 268-271.CrossRefPubMedPubMedCentral
68.
Zurück zum Zitat Bernstein PS, Khachik F, Carvalho LS, Muir GJ, Zhao DY, Katz NB: Identification and quantitation of carotenoids and their metabolites in the tissues of the human eye. Experimental Eye Research. 2001, 72: 215-223. 10.1006/exer.2000.0954.CrossRefPubMed Bernstein PS, Khachik F, Carvalho LS, Muir GJ, Zhao DY, Katz NB: Identification and quantitation of carotenoids and their metabolites in the tissues of the human eye. Experimental Eye Research. 2001, 72: 215-223. 10.1006/exer.2000.0954.CrossRefPubMed
69.
Zurück zum Zitat Rapp LM, Maple SS, Choi JH: Lutein and zeaxanthin concentrations in rod outer segment membranes from perifoveal and peripheral human retina. Investigative Ophthalmology & Visual Science. 2000, 41: 1200-1209. Rapp LM, Maple SS, Choi JH: Lutein and zeaxanthin concentrations in rod outer segment membranes from perifoveal and peripheral human retina. Investigative Ophthalmology & Visual Science. 2000, 41: 1200-1209.
70.
Zurück zum Zitat EDCCS Group: Antioxidant status and neovascular age-related macular degeneration. The Eye Disease Case Control Study Group. Archives of Ophthalmology. 1993, 111: 104-109. EDCCS Group: Antioxidant status and neovascular age-related macular degeneration. The Eye Disease Case Control Study Group. Archives of Ophthalmology. 1993, 111: 104-109.
71.
Zurück zum Zitat Bone RA, Landrum JT, Mayne ST, Gomez CM, Tibor SE, Twaroska EE: Macular pigment in donor eyes with and without AMD: A case-control study. Invest Ophthalmol Vis Sci. 2001, 42: 235-240.PubMed Bone RA, Landrum JT, Mayne ST, Gomez CM, Tibor SE, Twaroska EE: Macular pigment in donor eyes with and without AMD: A case-control study. Invest Ophthalmol Vis Sci. 2001, 42: 235-240.PubMed
72.
Zurück zum Zitat Beatty S, Murray IJ, Henson DB, Carden D, Koh H, Boulton ME: Macular pigment and risk for age-related macular degeneration in subjects from a Northern European population. Investigative Ophthalmology & Visual Science. 2001, 42: 439-446. Beatty S, Murray IJ, Henson DB, Carden D, Koh H, Boulton ME: Macular pigment and risk for age-related macular degeneration in subjects from a Northern European population. Investigative Ophthalmology & Visual Science. 2001, 42: 439-446.
73.
Zurück zum Zitat Landrum JT, Bone RA, Joa H, Kilburn MD, Moore LL, Sprague KE: A one year study of the macular pigment: the effect of 140 days of a lutein supplement. Experimental Eye Research. 1997, 65: 57-62. 10.1006/exer.1997.0309.CrossRefPubMed Landrum JT, Bone RA, Joa H, Kilburn MD, Moore LL, Sprague KE: A one year study of the macular pigment: the effect of 140 days of a lutein supplement. Experimental Eye Research. 1997, 65: 57-62. 10.1006/exer.1997.0309.CrossRefPubMed
74.
Zurück zum Zitat Hammond B R, Jr, Johnson EJ, Russell RM, Krinsky NI, Yeum KJ, Edwards RB, Snodderly DM: Dietary modification of human macular pigment density. Investigative Ophthalmology & Visual Science. 1997, 38: 1795-1801. Hammond B R, Jr, Johnson EJ, Russell RM, Krinsky NI, Yeum KJ, Edwards RB, Snodderly DM: Dietary modification of human macular pigment density. Investigative Ophthalmology & Visual Science. 1997, 38: 1795-1801.
75.
Zurück zum Zitat Berendschot Ttjm, Goldbohm RA, Klopping WAA, van de Kraats J, van Norel J, van Norren D: Influence of lutein supplementation on macular pigment, assessed with two objective techniques. Invest. Ophthalmol. Vis. Sci. 2000, 41: 3322-3326.PubMed Berendschot Ttjm, Goldbohm RA, Klopping WAA, van de Kraats J, van Norel J, van Norren D: Influence of lutein supplementation on macular pigment, assessed with two objective techniques. Invest. Ophthalmol. Vis. Sci. 2000, 41: 3322-3326.PubMed
76.
Zurück zum Zitat Ham WT Jr, Mueller HA, Ruffolo JJ Jr: Basic mechanisms underlying the production of photochemical lesions in the mammalian retina. Curr Eye Res. 1984, 3: 165-174.CrossRefPubMed Ham WT Jr, Mueller HA, Ruffolo JJ Jr: Basic mechanisms underlying the production of photochemical lesions in the mammalian retina. Curr Eye Res. 1984, 3: 165-174.CrossRefPubMed
77.
Zurück zum Zitat Landrum JT, Bone RA: Lutein, zeaxanthin, and the macular pigment. Archives of Biochemistry and Biophysics. 2001, 385: 28-40. 10.1006/abbi.2000.2171.CrossRefPubMed Landrum JT, Bone RA: Lutein, zeaxanthin, and the macular pigment. Archives of Biochemistry and Biophysics. 2001, 385: 28-40. 10.1006/abbi.2000.2171.CrossRefPubMed
78.
Zurück zum Zitat Bierenbaum ML, Noonan FJ, Machlin LJ: The effect of supplemental vitamin E on serum parameters in diabetics, post coronary and normal subjects. Nutr Rep Int. 1985, 31: 1171-1180. Bierenbaum ML, Noonan FJ, Machlin LJ: The effect of supplemental vitamin E on serum parameters in diabetics, post coronary and normal subjects. Nutr Rep Int. 1985, 31: 1171-1180.
79.
Zurück zum Zitat Paolisso G, D’Amore A, Giugliano D: Pharmacologic doses of vitamin E improve insulin action in healthy subjects and non-insulin dependent diabetic patients. Am J Clin Nutr. 1993, 57: 650-656.PubMed Paolisso G, D’Amore A, Giugliano D: Pharmacologic doses of vitamin E improve insulin action in healthy subjects and non-insulin dependent diabetic patients. Am J Clin Nutr. 1993, 57: 650-656.PubMed
80.
Zurück zum Zitat Paolisso G, D’Amore A, Galzerano D: Daily vitamin E supplements improve metabolic control but not insulin secretion in elderly type II diabetic patients. Diabetes Care. 1993, 16: 1433-1437.CrossRefPubMed Paolisso G, D’Amore A, Galzerano D: Daily vitamin E supplements improve metabolic control but not insulin secretion in elderly type II diabetic patients. Diabetes Care. 1993, 16: 1433-1437.CrossRefPubMed
81.
Zurück zum Zitat Tütüncü NB, Bayraktar M, Varli K: Reversal of defective nerve condition with vitamin E supplementation in type 2 diabetes. Diabetes Care. 1998, 21: 1915-1918.CrossRefPubMed Tütüncü NB, Bayraktar M, Varli K: Reversal of defective nerve condition with vitamin E supplementation in type 2 diabetes. Diabetes Care. 1998, 21: 1915-1918.CrossRefPubMed
82.
Zurück zum Zitat Skrha J, Sindelka G, Kvasnicka J, Hilgertova J: Insulin action and fibrinolysis influenced by vitamin E in obese type 2 diabetes mellitus. Diabetes Res Clin Pract. 1999, 44: 27-33. 10.1016/S0168-8227(99)00010-8.CrossRefPubMed Skrha J, Sindelka G, Kvasnicka J, Hilgertova J: Insulin action and fibrinolysis influenced by vitamin E in obese type 2 diabetes mellitus. Diabetes Res Clin Pract. 1999, 44: 27-33. 10.1016/S0168-8227(99)00010-8.CrossRefPubMed
83.
Zurück zum Zitat Pinto JT: The pharmacokinetic and pharmacodynamic interactions of foods and drugs. Topics in Clinical Nutrition. 1991, 6: 14-33.CrossRef Pinto JT: The pharmacokinetic and pharmacodynamic interactions of foods and drugs. Topics in Clinical Nutrition. 1991, 6: 14-33.CrossRef
84.
Zurück zum Zitat Minerals Expert Group on Vitamins and: Safe Upper Limits for Vitamins and Minerals. 2003, www.foodstandards.gov.uk/multimedia/pdfs/vitamins2003.pdf, Food Standard Agency Minerals Expert Group on Vitamins and: Safe Upper Limits for Vitamins and Minerals. 2003, www.foodstandards.gov.uk/multimedia/pdfs/vitamins2003.pdf, Food Standard Agency
85.
Zurück zum Zitat MacKeben M, Colenbrander A: The assessment of residual vision in patients with maculopathies. Non-invasive assessment of the visual system. Technical Digest. 1993, 3: 274-277. MacKeben M, Colenbrander A: The assessment of residual vision in patients with maculopathies. Non-invasive assessment of the visual system. Technical Digest. 1993, 3: 274-277.
86.
Zurück zum Zitat Brindley GS: Physiology of the retina and visual pathways. 1970, Baltimore, Williams and Wilkins Brindley GS: Physiology of the retina and visual pathways. 1970, Baltimore, Williams and Wilkins
87.
Zurück zum Zitat World Medical Association: Declaration of Helsinki. Journal of the Americal Medical Society. 1997, 277: 925-926. World Medical Association: Declaration of Helsinki. Journal of the Americal Medical Society. 1997, 277: 925-926.
Metadaten
Titel
A randomised controlled trial investigating the effect of nutritional supplementation on visual function in normal, and age-related macular disease affected eyes: design and methodology [ISRCTN78467674]
verfasst von
Hannah Bartlett
Frank Eperjesi
Publikationsdatum
01.12.2003
Verlag
BioMed Central
Erschienen in
Nutrition Journal / Ausgabe 1/2003
Elektronische ISSN: 1475-2891
DOI
https://doi.org/10.1186/1475-2891-2-12

Weitere Artikel der Ausgabe 1/2003

Nutrition Journal 1/2003 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Bei Herzinsuffizienz muss „Eisenmangel“ neu definiert werden!

16.05.2024 Herzinsuffizienz Nachrichten

Bei chronischer Herzinsuffizienz macht es einem internationalen Expertenteam zufolge wenig Sinn, die Diagnose „Eisenmangel“ am Serumferritin festzumachen. Das Team schlägt vor, sich lieber an die Transferrinsättigung zu halten.

Herzinfarkt mit 85 – trotzdem noch intensive Lipidsenkung?

16.05.2024 Hypercholesterinämie Nachrichten

Profitieren nach einem akuten Myokardinfarkt auch Betroffene über 80 Jahre noch von einer intensiven Lipidsenkung zur Sekundärprävention? Um diese Frage zu beantworten, wurden jetzt Registerdaten aus Frankreich ausgewertet.

ADHS-Medikation erhöht das kardiovaskuläre Risiko

16.05.2024 Herzinsuffizienz Nachrichten

Erwachsene, die Medikamente gegen das Aufmerksamkeitsdefizit-Hyperaktivitätssyndrom einnehmen, laufen offenbar erhöhte Gefahr, an Herzschwäche zu erkranken oder einen Schlaganfall zu erleiden. Es scheint eine Dosis-Wirkungs-Beziehung zu bestehen.

Erstmanifestation eines Diabetes-Typ-1 bei Kindern: Ein Notfall!

16.05.2024 DDG-Jahrestagung 2024 Kongressbericht

Manifestiert sich ein Typ-1-Diabetes bei Kindern, ist das ein Notfall – ebenso wie eine diabetische Ketoazidose. Die Grundsäulen der Therapie bestehen aus Rehydratation, Insulin und Kaliumgabe. Insulin ist das Medikament der Wahl zur Behandlung der Ketoazidose.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.