Skip to main content
Erschienen in: World Journal of Surgical Oncology 1/2023

Open Access 01.12.2023 | Research

A review of 14 cases of perianal Paget’s disease: characteristics of anorectal cancer with pagetoid spread

verfasst von: Jun Imaizumi, Konosuke Moritani, Yasuyuki Takamizawa, Manabu Inoue, Shunsuke Tsukamoto, Yukihide Kanemitsu

Erschienen in: World Journal of Surgical Oncology | Ausgabe 1/2023

Abstract

Background

Perianal Paget’s disease (PPD) is an intraepithelial invasion of the perianal skin and is frequently associated with underlying anorectal carcinoma. The relatively rare nature of this disease has made it difficult to develop treatment recommendations. This study aims to analyze the clinical and pathological features of perianal Paget’s disease (PPD) and to explore rational treatment options and follow-up for this disease.

Methods

The National Cancer Center Hospital database was searched for all cases of perianal Paget’s disease diagnosed between 2006 and 2021. In the 14 patients identified, we reviewed the diagnosis, management, and outcomes of adenocarcinoma with pagetoid spread, including suspected or recurrent cases.

Results

All 14 cases met the inclusion criteria. The median follow-up period after diagnosis was 4.5 (range, 0.1–13.0) years. Pagetoid spread before initial treatment was suspected in 12 cases (85.7%). Underlying rectal cancer was identified in 6 cases, and no primary tumor was detected in the other 6 cases. Seven patients had recurrent disease, with the median time to recurrence of 34.6 (range, 19.2–81.7) months. The time to the first relapse was 3 months, and that to the second relapse was 6 months. The overall 5-year survival rate was 90.0%.

Conclusions

Endoscopic and radiologic evaluation, as well as immunohistologic examination, should be performed. is to differentiate PPD with and without underlying anorectal carcinoma. The time to first recurrence varies widely, and long-term and regular follow-up for more than 5 years is considered necessary for local recurrence and distant metastasis.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
CI
Confidence interval
EMPD
Extramammary Paget’s disease
HR
Hazard ratio
PPD
Perianal Paget’s disease
PS
Pagetoid spread

Background

Pagetoid spread (PS) is defined as the proliferation of individual cells in the epithelium characterized by erythema and inflammation. It can manifest as mammary or extramammary Paget’s disease (EMPD) and is described as an apocrine gland tumor that can be benign or malignant with metastatic potential. EMPD has been reported at several extramammary sites, including the axilla, thigh, groin, perineum, scrotum, vulva, and perianal area [1, 2]. When EMPD affects the perianal region, it is called perianal Paget’s disease (PPD). PPD is usually associated with an underlying malignancy, such as anal, rectal, cervical, or urinary bladder adenocarcinoma, with an appearance similar to that of simple PPD without an underlying malignancy [3, 4]. The prognosis of simple PPD is relatively favorable, with overall and disease-free survival of approximately 60% at 5 years [57]. However, PPD associated with an underlying malignancy has been reported to have a poor prognosis [59].
Immunohistochemical analysis of the skin lesion is useful for differentiating whether or not PPD is associated with underlying anorectal adenocarcinoma or carcinoma. Immunohistochemical markers that are frequently used include cytokeratin 7 (CK7), CK20, gross cystic disease fluid protein 15 (GCDFP-15), and CDX2. Although CK7 is a sensitive marker for almost all pagetoid neoplasms, it is not practical for differentiating PPD because some rectal adenocarcinomas also express CK7 [10, 11]. CK20 might be expressed in colorectal carcinoma but not in simple PPD [12]. GCDFP-15, which is regarded as a specific marker for apocrine epithelium tissue, is usually positive in simple PPD [1315]. As mentioned above, PPD associated with anorectal carcinoma often has the CK20+/GCDFP-15− immunophenotype. In contrast, simple PPD shows a CK20−/GCDFP-15+ pattern [16]. CDX2, which has a high positivity rate in gastrointestinal cancers, including rectal cancer, has been used [17]. However, about 17% of colorectal cancers are negative for CK20 [18]. Therefore, it is necessary to evaluate the underlying malignancy using a combination of colonoscopy and radiology [19].

Staging classification and treatment outcome

A staging classification for PPD that includes appropriate treatment for each stage has been proposed (Table 1) [9, 20]. The prognosis is good for stage I (Paget’s cells found in the perianal epidermis and adnexa without primary carcinoma) but worsens for stage II (invasive cutaneous disease penetrating the basement membrane and entering the underlying stroma and/or synchronous localized malignancies, i.e., IIa adnexal malignancy and IIb visceral malignancy), stage III (regional metastatic disease), and stage IV (distant metastatic disease).
Table 1
Perianal Paget’s disease classification and accompanying suggested therapy
Stage
Description
Management
I
Paget’s cells in the perianal epidermis and adnexa without primary carcinoma
Wide local excision
IIA
Cutaneous Paget’s disease with associated adnexal carcinoma
Wide local excision
IIB
Cutaneous Paget’s disease with associated anorectal carcinoma
Abdominoperineal resection
III
Paget’s disease in which associated carcinoma has spread to regional nodes
Inguinal lymph nodes dissection and abdominoperineal resection/wide local excision
IV
Paget’s disease with distant metastases of associated carcinoma
Chemotherapy, radiotherapy, local palliative management
APR abdominal perineal rectal dissection, WLE wide local excision
The treatment options for PPD depend on local (extent and depth of invasion) and regional (lymph node involvement) factors and the extent of systemic disease. Local excision (with macroscopic clearance of surgical margins) has been performed as a treatment for non-invasive PPD but was associated with a high local recurrence rate (40%) [19]. Wide local excision (WLE, >1 cm microscopic clearance of surgical margins) with a sphincter-saving technique was later proposed as the treatment of choice for PPD due to the higher survival rate in patients treated with WLE than in those treated with local excision and due to the better chance of cure and normal survival. The standard treatment for PPD associated with the anorectal canal is abdominoperineal resection (APR) [9, 20]. However, it is recommended that adenocarcinoma of the anal canal be managed in the same way as rectal cancer [21], and transanal local excision is appropriate for selected early-stage rectal cancers [22]. Therefore, even in cases of PPD associated with anal canal cancer, combined transanal local excision and WLE may be an alternative to APR.
The distinction between PPD with and without underlying anorectal cancer is essential [3, 2325] because of the differences in treatment methods and the prognosis [4]. Due to the rarity of PPD, few cases have been reported [2427], and long-term outcomes of treatment for PS are unknown. This study aims to analyze the clinical and pathological features of perianal Paget’s disease (PPD) and to explore rational treatment options and follow-up for this disease.

Methods

A search of the National Cancer Center Hospital database identified 14 cases of PPD diagnosed between 2006 and 2021. Cases of adenocarcinoma of the rectum or anal canal with pagetoid spread, including suspected and recurrent cases, were retrospectively reviewed for age, sex, tumor size, presence or absence of preoperative endoscopic findings, presence or absence of mapping biopsy, treatment methods, and long-term prognosis.
The study was approved by the National Cancer Center Hospital Institutional Review Board (code: 2017–437). The requirement for written informed consent was waived in view of the retrospective nature of the research and the anonymity of the study data.

Results

All 14 patients met the inclusion criteria. Eight patients (57.1%) were male, and 7 (50.0%) were female (Table 2). The median age was 74 (range, 55–84) years. Twelve patients (85.7%) were suspected of having PS before initial treatment. The most commonly used immunostaining for differentiation was CK7+/CK20+/GCDFP-15−/CDX2+. These 12 patients were clinically and radiologically evaluated for underlying anorectal carcinoma, which was identified in 6 cases. The median size of the primary tumor was 52 (9–110) mm. No primary lesions were detected in the other 6 cases. There were no distant metastases at the initial diagnosis; however, 1 patient had metastasis to the lateral lymph nodes, and another had metastasis to the inguinal lymph nodes.
Table 2
Clinicopathologic characteristics
Characteristic
Value
(n=14)
Age, median (IQR), years
74
(67.5–78.5)
Gender
 Male, No. (%)
7
(50%)
 Female, No. (%)
7
(50%)
Preoperative diagnosis of pagetoid spread, No. (%)
 Diagnosed
2
(14%)
 Not diagnosed
12
(86%)
Identification of underlying anorectal cancer, No. (%)
 Not found
6
(43%)
 Syncronous
7
(50%)
 Metachronous
1
(7%)
Primary tumor site, No. (%)
 Anal canal
7
(50%)
 Lower rectum
1
(7%)
 Unknown
6
(43%)
Immunohistochemistry, No. (%)
 Not confirmed
2
(14%)
 CK20+/CK7+
7
(50%)
 CK20+/CK7−
4
(29%)
 CK20−/CK7+
0
(0%)
 CK20−/CK7−
1
(7%)
 GCDFP15−a
8
(100%)
 CDX2+
11
(92%)
Histologya, No. (%)
 Adenocarcinoma (grade unknown)
7
(50%)
 Tub1/2
1
(7%)
 Por/sig
4
(933%)
 Muc
3
(600%)
Tumor size, median (IQR), cm
53.5
(26.3–87.5)
Depth of invasion, No. (%)
 M
3
(21%)
 SM
1
(7%)
 MP
2
(14%)
 A
1
(7%)
 AI
1
(7%)
 Invasive (WLE)
1
(7%)
 Non-invasive (WLE)
2
(14%)
Lymph node metastases at initial treatment, No. (%)
 Negative
4
(29%)
 Lateral lymph node
1
(7%)
 Inguinal lymph node
2
(14%)
 Unknown (clinically negative)
7
(50%)
Initial treatment, No. (%)
 WLE (±transanal local excision
7
(50%)
 APR (±WLE)
5
(36%)
 Radiation
1
(7%)
 Unknownb
1
(7%)
Mapping biopsyc, No. (%)
 Done
5
(42%)
 None
7
(58%)
Resection statusc, No. (%)
 R0
 
(0%)
 R1
 
(0%)
 R2
 
(0%)
Follow-up time, median (IQR), mo
4.5
(158.7–7.4)
Recurrence, No (%)
7
(50%)
Time to recurrence, median (IQR), mo
34.6
(18.2–81.7)
5-year recurrence free survival
55.9%
 
Mortality, No. (%)
2
(14%)
5-year overall survival
90.0%
 
Abbreviation: IQR interquartile range, WLE wide local excision, RT radiotherapy, LE local excision, APR abdominoperineal resection
aThere are duplicates
bReferred to another hospital
cExcluded: non-surgical 2 cases
The median follow-up period after diagnosis was 4.5 (range, 0.1–13.0) years. At the last follow-up, 7 patients were alive with no evidence of disease, 4 were alive with recurrent disease, 1 had transferred to another hospital, and 2 had died of disease. A summary of the 13 cases and their clinical course is presented in Table 3.
Table 3
A summary of cases attended
Case
Gender
Initial treatment
Immunohistological findings
Primary
Histology*
LN mets
Mapping biopsy
1st relapse
Outcome
Age
Lymph node dissection
CK7
CK20
GCDFP15
CDX2
Maximum diameter
Depth of invasion
Location of LN
Resection status
Interval
Treatment
Follow-up time (primary)
No detectable primary lesion
 1
M
WLE
+
NA
+
Unknown
Adenocarcinoma
Negative
Done
ILN
ILND
Dead of disease
76
None
55mm
Invasive
R1
61 months
6 years
 2
M
WLE
+
+
+
Unknown
Adenocarcinoma
NA
Done
ILN
ILND
Alive with no evidence of disease
55
None
30mm
Non-invasive
R1
34 months
13 years
 3
F
RT
+
Unknown
Adenocarcinoma
NA
None
Local
Medication
Alive with 2nd relapse
78
None
NA
NA
87 months
12 years
 4
F
APR with WLE
+
+
+
Unknown
Adenocarcinoma
Negative
None
NA
NA
Alive with no evidence of disease
73
D2
74mm
MP
R0
5 years
 5
F
WLE
NA
Unknown
Muc
Positive
Done
NA
NA
Alive with no evidence of disease
63
ILND
80mm
Invasive
Inguinal
R0
2 years
 6
M
WLE
+
+
Unknown
Adenocarcinoma
Negative
None
Local
WLE
Alive with 2nd relapse
80
None
50mm
Invasive
R0
25 months
5 years
Detectable underlying anorectal carcinoma
 7
M
APR with WLE
+
NA
+
P
Muc/sig
Positive
None
ILN
ILND
Dead of disease
68
D3,LLND
110mm
AI
Lateral pelvic
R1
7 months
2 years
 8
M
Transanal LE with WLE
+
+
P
Tub1
NA
None
NA
Alive with no evidence of disease
72
None
9mm
SM1
R0
5 years
 9
F
APR with WLE
+
+
+
P
Tub1/por/sig
Negative
Done
LD/ILN
LLND
Alive with no evidence of disease
80
D2
90mm
MP
R1
13 months
ILND
2 years
 10
M
APR with WLE
+
+
NA
+
P
Adenocarcinoma
Negative
None
NA
Alive with no evidence of disease
66
D2
106mm
M
R0
3 years
 11
F
NA
+
+
+
Rb
NA
NA
NA
NA
Unknown
69
None
Unknown
3 years
 12
F
Transanal LE with WLE
+
+
+
P
Por2/tub2/muc
NA
Done
Local
WLE
Alive with no evidence of disease
84
None
52mm
M
R1
36 months
4 years
No preoperative diagnosis of pagetoid spread
 13
M
Trans anal LE*
NA
NA
NA
NA
P
Tub2/por
NA
NA
Local
WLE
Alive with 2nd relapse
74
None
10mm
SM
159 months
13 years
 14
F
Chemoterapy
NA
NA
NA
+
P
Por/sig
Positive
None
NA
Alive with
74
D3, LLND, ILND
25mm
A
Inguinal
Positive
1 year
APR abdominal perineal rectal dissection, WLE wide local excision, LLND lateral lymph node dissection, ILND inguinal lymph node dissection
Seven patients (50%) developed recurrence, with a median time to recurrence of 34.6 (range 19.2–81.7) months. Three patients had local recurrence, and 4 (28.6%) had a recurrence in the inguinal lymph nodes. One patient had distant metastases. The time to the first relapse was 3 months, and that to the second relapse was 6 months. The 5-year overall survival rate was 90.0%.
The initial treatment in the 6 patients with no detectable primary lesion was WLE alone (n=4, 66.7%), APR + WLE (n=1, 16.7%), and radiotherapy (n=1, 16.7%). The outcomes in the 4 patients who underwent WLE alone were as follows: alive with no evidence of disease (n=2), alive with lung metastasis (n=1), and died after inguinal lymph node metastases at first relapse and liver and bone metastases at the second relapse (n=1).
The initial treatment of the 6 patients in whom anorectal carcinoma was detected was APR + WLE (n=3, 50%), transanal local excision + WLE (n=2, 33.3%), and referral to another hospital (n=1, 16.7%). The outcomes in the group that underwent APR + WLE were as follows: alive with no evidence of disease (n=2) and dead (n=1). The outcomes in the group that underwent transanal local excision + WLE were as follows: alive with no evidence of disease (n=1) and alive with recurrent disease (n=1).
In terms of initial treatment, there were 4 recurrences after WLE (with or without transanal local excision), 2 after APR, and 1 after radiotherapy. All 6 cases of recurrence after surgical resection had positive resection margins at the initial surgery. Mapping biopsy was performed in 5 (45.4%) of the 11 patients who underwent surgical resection, and 4 (80.0%) had positive margins. In the 6 cases without mapping biopsy, 2 (33.3%) had positive margins.

Discussion

PPD is usually associated with an underlying malignant anorectal tumor and has a relatively poor prognosis [23] with a high risk of local recurrence [28]. The rate of malignancy associated with PPD ranges from 33 to 86% [29]. In the present study, of the 11 cases of PPD associated with anal canal cancer who presented with CK20+/GCDFP-15− (GCDFP was not examined in some cases), anal cancer could be noted in 6 patients by endoscopic or radiographic evaluation. Immunohistological examination alone is not sufficient to identify underlying malignancy, and it is critical to apply PD staging (Table 1) in conjunction with endoscopic and radiologic evaluation.
In the present study, primary anorectal carcinoma could not be identified preoperatively in half of the patients, and APR was performed in only 1 case. There was 1 death in the WLE group. However, only half of the patients with anorectal cancer underwent APR + WLE to preserve the anus, although there were cases of recurrence-free survival of more than 5 years after WLE. Further investigations are needed to identify cases in which APR should be pursued aggressively and those in which WLE (with or without transanal local excision) can be considered.
The 2 deaths occurred in a patient without an identified primary tumor who underwent WLE alone as the initial treatment (case 1) and in a patient with a primary tumor identified preoperatively who underwent APR + WLE (case 7).
Of the 6 cases in which anal cancer was detected, APR + WLE was performed in 3 patients and Transanal Local Excision was performed in 2 cases. In the latter two cases, the depth of the primary tumor was M/SM1, and recurrence-free survival of 2 to 5 years was achieved. Further investigation is considered to be necessary.
On the other hand, both these fatal cases had inguinal lymph node metastasis as the first relapse, and distant metastasis several months later.
The time to first recurrence varies from 7 months to about 5 years, and it is difficult to predict prognosis in general from the course of the disease, but long-term and regular follow-up for more than 5 years is considered necessary to check for recurrence and distant metastasis.
Intraoperative frozen section analysis of the resection margin has been proposed to reduce the possibility of borderline invasion and minimize the local recurrence rate [19]. However, frozen section analysis of surgical margins in PPD can be misleading and dangerous because it may appear negative intraoperatively but become permanently positive on subsequent histological analysis. It is believed that permanent margin status is not a predictor of local recurrence and that a minimally invasive carcinoma measuring <1 mm probably does not have an adverse prognosis, whereas a deeply invasive carcinoma behaves as a fully malignant adenocarcinoma [30]. Of the five patients who underwent mapping biopsy in this study, four were positive for transection, but only one case resulted in local recurrence. This is consistent with previous studies that have shown that edge evaluation is not a predictor of local recurrence.
There are several potential limitations to this study. First, there is the possibility of selection bias due to the retrospective study design. Second, the sample size is very small (14 cases) and cannot shed light on treatment possibilities, especially the optimal approach and prognosis. Despite these limitations, we believe that our findings warrant more extensive investigation in patients with PPD.

Conclusions

Although skin biopsy and immunohistological diagnosis are useful for distinguishing underlying malignancy in patients with PPD, endoscopic and radiologic evaluation is mandatory. The time to first recurrence varies widely, and long-term and regular follow-up for more than 5 years is considered necessary for local recurrence and distant metastasis.

Acknowledgements

The authors thank Sigeki Sekine, all of whom served as staff members at the National Cancer Center Hospital.

Declarations

Ethics approval was obtained from our hospital’s review board (NCC2017437).
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Shepherd V, Davidson EJ, Davies-Humphreys J. Extramammary Paget’s disease. BJOG. 2005;112:273–9.CrossRef Shepherd V, Davidson EJ, Davies-Humphreys J. Extramammary Paget’s disease. BJOG. 2005;112:273–9.CrossRef
2.
Zurück zum Zitat Jones RE Jr, Austin C, Ackerman AB. Extramammary Paget’s disease. A critical reexamination. Am J Dermatopathol. 1979;1:101–32.CrossRef Jones RE Jr, Austin C, Ackerman AB. Extramammary Paget’s disease. A critical reexamination. Am J Dermatopathol. 1979;1:101–32.CrossRef
3.
Zurück zum Zitat Chumbalkar V, Jennings TA, Ainechi S, Lee EC, Lee H. Extramammary Paget’s disease of anal canal associated with rectal adenoma without invasive carcinoma. Gastroenterology Res. 2016;9:99–102.CrossRef Chumbalkar V, Jennings TA, Ainechi S, Lee EC, Lee H. Extramammary Paget’s disease of anal canal associated with rectal adenoma without invasive carcinoma. Gastroenterology Res. 2016;9:99–102.CrossRef
4.
Zurück zum Zitat Liao X, Mao W, Lin A. Perianal Paget’s disease co-associated with anorectal adenocarcinoma: primary or secondary disease. Case Rep Gastroenterol. 2014;8:186–92.CrossRef Liao X, Mao W, Lin A. Perianal Paget’s disease co-associated with anorectal adenocarcinoma: primary or secondary disease. Case Rep Gastroenterol. 2014;8:186–92.CrossRef
5.
Zurück zum Zitat McCarter MD, Quan SH, Busam K, Paty PP, Wong D, Guillem JG. Long-term outcome of perianal Paget’s disease. Dis Colon Rectum. 2003;46:612–6.CrossRef McCarter MD, Quan SH, Busam K, Paty PP, Wong D, Guillem JG. Long-term outcome of perianal Paget’s disease. Dis Colon Rectum. 2003;46:612–6.CrossRef
6.
Zurück zum Zitat Sarmiento JM, Wolff BG, Burgart LJ, Frizelle FA, Ilstrup DM. Paget’s disease of the perianal region--an aggressive disease? Dis Colon Rectum. 1997;40:1187–94.CrossRef Sarmiento JM, Wolff BG, Burgart LJ, Frizelle FA, Ilstrup DM. Paget’s disease of the perianal region--an aggressive disease? Dis Colon Rectum. 1997;40:1187–94.CrossRef
7.
Zurück zum Zitat Marchesa P, Fazio VW, Oliart S, Goldblum JR, Lavery IC, Milsom JW. Long-term outcome of patients with perianal Paget’s disease. Ann Surg Oncol. 1997;4:475–80.CrossRef Marchesa P, Fazio VW, Oliart S, Goldblum JR, Lavery IC, Milsom JW. Long-term outcome of patients with perianal Paget’s disease. Ann Surg Oncol. 1997;4:475–80.CrossRef
8.
Zurück zum Zitat Goldman S, Ihre T, Lagerstedt U, Svensson C. Perianal Paget’s disease: report of five cases. Int J Colorect Dis. 1992;7:167–9.CrossRef Goldman S, Ihre T, Lagerstedt U, Svensson C. Perianal Paget’s disease: report of five cases. Int J Colorect Dis. 1992;7:167–9.CrossRef
9.
Zurück zum Zitat Shutze WP, Gleysteen JJ. Perianal Paget’s disease. Classification and review of management: report of two cases. Dis Colon Rectum. 1990;33:502–7.CrossRef Shutze WP, Gleysteen JJ. Perianal Paget’s disease. Classification and review of management: report of two cases. Dis Colon Rectum. 1990;33:502–7.CrossRef
10.
Zurück zum Zitat Smith KJ, Tuur S, Corvette D, Lupton GP, Skelton HG. Cytokeratin 7 staining in mammary and extramammary Paget’s disease. Mod Pathol. 1997;10:1069–74. Smith KJ, Tuur S, Corvette D, Lupton GP, Skelton HG. Cytokeratin 7 staining in mammary and extramammary Paget’s disease. Mod Pathol. 1997;10:1069–74.
11.
Zurück zum Zitat Lundquist K, Kohler S, Rouse RV. Intraepidermal cytokeratin 7 expression is not restricted to Paget cells but is also seen in Toker cells and merkel cells. Am J Surg Pathol. 1999;23:212–9.CrossRef Lundquist K, Kohler S, Rouse RV. Intraepidermal cytokeratin 7 expression is not restricted to Paget cells but is also seen in Toker cells and merkel cells. Am J Surg Pathol. 1999;23:212–9.CrossRef
12.
Zurück zum Zitat Chu P, Wu E, Weiss LM. Cytokeratin 7 and cytokeratin 20 expression in epithelial neoplasms: a survey of 435 cases. Modern Pathol. 2000;13:962–72.CrossRef Chu P, Wu E, Weiss LM. Cytokeratin 7 and cytokeratin 20 expression in epithelial neoplasms: a survey of 435 cases. Modern Pathol. 2000;13:962–72.CrossRef
13.
Zurück zum Zitat Ansai S, Mitsuhashi Y, Kondo S, Manabe M. Immunohistochemical differentiation of extra-ocular sebaceous carcinoma from other skin cancers. J Dermatol. 2004;31:998–1008.CrossRef Ansai S, Mitsuhashi Y, Kondo S, Manabe M. Immunohistochemical differentiation of extra-ocular sebaceous carcinoma from other skin cancers. J Dermatol. 2004;31:998–1008.CrossRef
14.
Zurück zum Zitat Goldblum JR, Hart WR. Perianal Paget’s disease: a histologic and immunohistochemical study of 11 cases with and without associated rectal adenocarcinoma. Am J Surg Pathol. 1998;22:170–9.CrossRef Goldblum JR, Hart WR. Perianal Paget’s disease: a histologic and immunohistochemical study of 11 cases with and without associated rectal adenocarcinoma. Am J Surg Pathol. 1998;22:170–9.CrossRef
15.
Zurück zum Zitat Kohler S, Smoller BR. Gross cystic disease fluid protein-15 reactivity in extramammary Paget’s disease with and without associated internal malignancy. Am J Dermatopathol. 1996;18:118–23.CrossRef Kohler S, Smoller BR. Gross cystic disease fluid protein-15 reactivity in extramammary Paget’s disease with and without associated internal malignancy. Am J Dermatopathol. 1996;18:118–23.CrossRef
16.
Zurück zum Zitat Ohnishi T, Watanabe S. The use of cytokeratins 7 and 20 in the diagnosis of primary and secondary extramammary Paget’s disease. Br J Dermatol. 2000;142:243–7.CrossRef Ohnishi T, Watanabe S. The use of cytokeratins 7 and 20 in the diagnosis of primary and secondary extramammary Paget’s disease. Br J Dermatol. 2000;142:243–7.CrossRef
17.
Zurück zum Zitat Zeng HA, Cartun R, Ricci A Jr. Potential diagnostic utility of CDX-2 immunophenotyping in extramammary Paget’s disease. Appl Immunohistochem Mol Morphol. 2005;13:342–6.CrossRef Zeng HA, Cartun R, Ricci A Jr. Potential diagnostic utility of CDX-2 immunophenotyping in extramammary Paget’s disease. Appl Immunohistochem Mol Morphol. 2005;13:342–6.CrossRef
18.
Zurück zum Zitat Bayrak R, Haltas H, Yenidunya S. The value of CDX2 and cytokeratins 7 and 20 expression in differentiating colorectal adenocarcinomas from extraintestinal gastrointestinal adenocarcinomas: cytokeratin 7-/20+ phenotype is more specific than CDX2 antibody. Diagn Pathol. 2012;7:9.CrossRef Bayrak R, Haltas H, Yenidunya S. The value of CDX2 and cytokeratins 7 and 20 expression in differentiating colorectal adenocarcinomas from extraintestinal gastrointestinal adenocarcinomas: cytokeratin 7-/20+ phenotype is more specific than CDX2 antibody. Diagn Pathol. 2012;7:9.CrossRef
19.
Zurück zum Zitat Kyriazanos ID, Stamos NP, Miliadis L, Noussis G, Stoidis CN. Extra-mammary Paget’s disease of the perianal region: a review of the literature emphasizing the operative management technique. Surg Oncol. 2011;20:e61–71.CrossRef Kyriazanos ID, Stamos NP, Miliadis L, Noussis G, Stoidis CN. Extra-mammary Paget’s disease of the perianal region: a review of the literature emphasizing the operative management technique. Surg Oncol. 2011;20:e61–71.CrossRef
20.
Zurück zum Zitat Mehta NJ, Torno R, Sorra T. Extramammary Paget’s disease. South Med J. 2000;93:713–5.CrossRef Mehta NJ, Torno R, Sorra T. Extramammary Paget’s disease. South Med J. 2000;93:713–5.CrossRef
21.
Zurück zum Zitat Benson AB, Venook AP, Al-Hawary MM, Cederquist L, Chen Y-J, Ciombor KK, et al. Anal Carcinoma, Version 2.2018, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2018;16:852–71.CrossRef Benson AB, Venook AP, Al-Hawary MM, Cederquist L, Chen Y-J, Ciombor KK, et al. Anal Carcinoma, Version 2.2018, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2018;16:852–71.CrossRef
22.
Zurück zum Zitat Benson AB, Venook AP, Al-Hawary MM, Cederquist L, Chen Y-J, Ciombor KK, et al. Rectal cancer, version 2.2018, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2018;16:874–901.CrossRef Benson AB, Venook AP, Al-Hawary MM, Cederquist L, Chen Y-J, Ciombor KK, et al. Rectal cancer, version 2.2018, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2018;16:874–901.CrossRef
23.
Zurück zum Zitat Kubota K, Akasu T, Nakanishi Y, Sugihara K, Fujita S, Moriya Y. Perianal Paget’s disease associated with rectal carcinoma: a case report. Jpn J Clin Oncol. 1998;28:347–50.CrossRef Kubota K, Akasu T, Nakanishi Y, Sugihara K, Fujita S, Moriya Y. Perianal Paget’s disease associated with rectal carcinoma: a case report. Jpn J Clin Oncol. 1998;28:347–50.CrossRef
24.
Zurück zum Zitat Yamaura M, Yamada T, Watanabe R, Kawai H, Hirose S, Tajima H, et al. Anal canal adenocarcinoma with neuroendocrine features accompanying secondary extramammary Paget disease, successfully treated with modified FOLFOX6: a case report. BMC Cancer. 2018;18:1142.CrossRef Yamaura M, Yamada T, Watanabe R, Kawai H, Hirose S, Tajima H, et al. Anal canal adenocarcinoma with neuroendocrine features accompanying secondary extramammary Paget disease, successfully treated with modified FOLFOX6: a case report. BMC Cancer. 2018;18:1142.CrossRef
25.
Zurück zum Zitat Yukimoto R, Fujino S, Miyoshi N, Ogino T, Takahashi H, Uemura M, et al. A case report of anal canal cancer with pagetoid spread requiring differential diagnosis. Int J Surg Case Rep. 2020;75:198–202.CrossRef Yukimoto R, Fujino S, Miyoshi N, Ogino T, Takahashi H, Uemura M, et al. A case report of anal canal cancer with pagetoid spread requiring differential diagnosis. Int J Surg Case Rep. 2020;75:198–202.CrossRef
26.
Zurück zum Zitat Suenaga M, Oya M, Ueno M, Yamamoto J, Yamaguchi T, Mizunuma N, et al. Anal canal carcinoma with pagetoid spread: report of a case. Surg Today. 2006;36:666–9.CrossRef Suenaga M, Oya M, Ueno M, Yamamoto J, Yamaguchi T, Mizunuma N, et al. Anal canal carcinoma with pagetoid spread: report of a case. Surg Today. 2006;36:666–9.CrossRef
27.
Zurück zum Zitat Shimizu T, Inozume T, Takaki M, Ohnuma T, Sano S, Kawamura T, et al. Case of anal adenocarcinoma in situ with pagetoid spread but without macroscopic abnormality in anal mucosa. J Dermatol. 2017;44:1076–7.CrossRef Shimizu T, Inozume T, Takaki M, Ohnuma T, Sano S, Kawamura T, et al. Case of anal adenocarcinoma in situ with pagetoid spread but without macroscopic abnormality in anal mucosa. J Dermatol. 2017;44:1076–7.CrossRef
28.
Zurück zum Zitat Jensen SL, Sjølin KE, Shokouh-Amiri MH, Hagen K, Harling H. Paget’s disease of the anal margin. Br J Surg. 1988;75:1089–92.CrossRef Jensen SL, Sjølin KE, Shokouh-Amiri MH, Hagen K, Harling H. Paget’s disease of the anal margin. Br J Surg. 1988;75:1089–92.CrossRef
29.
Zurück zum Zitat Kanitakis J. Mammary and extramammary Paget’s disease. J Eur Acad Dermatol Venereol. 2007;21:581–90. Kanitakis J. Mammary and extramammary Paget’s disease. J Eur Acad Dermatol Venereol. 2007;21:581–90.
30.
Zurück zum Zitat Goldblum JR, Hart WR. Vulvar Paget’s disease: a clinicopathologic and immunohistochemical study of 19 cases. Am J Surg Pathol. 1997;21:1178–87.CrossRef Goldblum JR, Hart WR. Vulvar Paget’s disease: a clinicopathologic and immunohistochemical study of 19 cases. Am J Surg Pathol. 1997;21:1178–87.CrossRef
Metadaten
Titel
A review of 14 cases of perianal Paget’s disease: characteristics of anorectal cancer with pagetoid spread
verfasst von
Jun Imaizumi
Konosuke Moritani
Yasuyuki Takamizawa
Manabu Inoue
Shunsuke Tsukamoto
Yukihide Kanemitsu
Publikationsdatum
01.12.2023
Verlag
BioMed Central
Erschienen in
World Journal of Surgical Oncology / Ausgabe 1/2023
Elektronische ISSN: 1477-7819
DOI
https://doi.org/10.1186/s12957-022-02872-z

Weitere Artikel der Ausgabe 1/2023

World Journal of Surgical Oncology 1/2023 Zur Ausgabe

Vorsicht, erhöhte Blutungsgefahr nach PCI!

10.05.2024 Koronare Herzerkrankung Nachrichten

Nach PCI besteht ein erhöhtes Blutungsrisiko, wenn die Behandelten eine verminderte linksventrikuläre Ejektionsfraktion aufweisen. Das Risiko ist umso höher, je stärker die Pumpfunktion eingeschränkt ist.

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Deutlich weniger Infektionen: Wundprotektoren schützen!

08.05.2024 Postoperative Wundinfektion Nachrichten

Der Einsatz von Wundprotektoren bei offenen Eingriffen am unteren Gastrointestinaltrakt schützt vor Infektionen im Op.-Gebiet – und dient darüber hinaus der besseren Sicht. Das bestätigt mit großer Robustheit eine randomisierte Studie im Fachblatt JAMA Surgery.

Chirurginnen und Chirurgen sind stark suizidgefährdet

07.05.2024 Suizid Nachrichten

Der belastende Arbeitsalltag wirkt sich negativ auf die psychische Gesundheit der Angehörigen ärztlicher Berufsgruppen aus. Chirurginnen und Chirurgen bilden da keine Ausnahme, im Gegenteil.

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

Karpaltunnelsyndrom BDC Leitlinien Webinare
CME: 2 Punkte

Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

Radiusfraktur BDC Leitlinien Webinare
CME: 2 Punkte

Das Webinar beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

Appendizitis BDC Leitlinien Webinare
CME: 2 Punkte

Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.