Skip to main content
Erschienen in: Inflammation Research 1/2019

10.10.2018 | Review

A review of inflammatory mechanism in airway diseases

verfasst von: Parya Aghasafari, Uduak George, Ramana Pidaparti

Erschienen in: Inflammation Research | Ausgabe 1/2019

Einloggen, um Zugang zu erhalten

Background

Inflammation in the lung is the body’s natural response to injury. It acts to remove harmful stimuli such as pathogens, irritants, and damaged cells and initiate the healing process. Acute and chronic pulmonary inflammation are seen in different respiratory diseases such as; acute respiratory distress syndrome, chronic obstructive pulmonary disease (COPD), asthma, and cystic fibrosis (CF).

Findings

In this review, we found that inflammatory response in COPD is determined by the activation of epithelial cells and macrophages in the respiratory tract. Epithelial cells and macrophages discharge transforming growth factor-β (TGF-β), which trigger fibroblast proliferation and tissue remodeling. Asthma leads to airway hyper-responsiveness, obstruction, mucus hyper-production, and airway-wall remodeling. Cytokines, allergens, chemokines, and infectious agents are the main stimuli that activate signaling pathways in epithelial cells in asthma. Mutation of the CF transmembrane conductance regulator (CFTR) gene results in CF. Mutations in CFTR influence the lung epithelial innate immune function that leads to exaggerated and ineffective airway inflammation that fails to abolish pulmonary pathogens. We present mechanistic computational models (based on ordinary differential equations, partial differential equations and agent-based models) that have been applied in studying the complex physiological and pathological mechanisms of chronic inflammation in different airway diseases.

Conclusion

The scope of the present review is to explore the inflammatory mechanism in airway diseases and highlight the influence of aging on airways’ inflammation mechanism. The main goal of this review is to encourage research collaborations between experimentalist and modelers to promote our understanding of the physiological and pathological mechanisms that control inflammation in different airway diseases.
Literatur
1.
Zurück zum Zitat Ahmed AU. An overview of inflammation: mechanism and consequences. Frontiers in Biology. 2011;6(4):274–81. Ahmed AU. An overview of inflammation: mechanism and consequences. Frontiers in Biology. 2011;6(4):274–81.
2.
Zurück zum Zitat Ward P. Acute lung injury: how the lung inflammatory response works. Eur Respir Soc; 2003;44:22s–23sCrossRef Ward P. Acute lung injury: how the lung inflammatory response works. Eur Respir Soc; 2003;44:22s–23sCrossRef
3.
Zurück zum Zitat Lee G, Walser TC, Dubinett SM. Chronic inflammation, chronic obstructive pulmonary disease, and lung cancer. Curr Opin Pulm Med. 2009;15(4):303–7.CrossRefPubMed Lee G, Walser TC, Dubinett SM. Chronic inflammation, chronic obstructive pulmonary disease, and lung cancer. Curr Opin Pulm Med. 2009;15(4):303–7.CrossRefPubMed
4.
Zurück zum Zitat Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140(6):805–20.CrossRefPubMed Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140(6):805–20.CrossRefPubMed
6.
Zurück zum Zitat Maskrey BH, Megson IL, Whitfield PD, Rossi AG. Mechanisms of resolution of inflammation. Arterioscler Thromb Vasc Biol. 2011;31(5):1001–6.CrossRefPubMed Maskrey BH, Megson IL, Whitfield PD, Rossi AG. Mechanisms of resolution of inflammation. Arterioscler Thromb Vasc Biol. 2011;31(5):1001–6.CrossRefPubMed
8.
Zurück zum Zitat Lumb AB. Nunn’s applied respiratory physiology eBook. Amsterdam: Elsevier Health Sciences; 2016. Lumb AB. Nunn’s applied respiratory physiology eBook. Amsterdam: Elsevier Health Sciences; 2016.
9.
Zurück zum Zitat Tripathi P, Aggarwal A. NF-kB transcription factor: a key player in the generation of immune response. Curr Sci Bangalore. 2006;90(4):519. Tripathi P, Aggarwal A. NF-kB transcription factor: a key player in the generation of immune response. Curr Sci Bangalore. 2006;90(4):519.
10.
Zurück zum Zitat Grommes J, Soehnlein O. Contribution of neutrophils to acute lung injury. Mol Med. 2011;17(3–4):293.PubMedCrossRef Grommes J, Soehnlein O. Contribution of neutrophils to acute lung injury. Mol Med. 2011;17(3–4):293.PubMedCrossRef
11.
Zurück zum Zitat Lee I-T, Yang C-M. Inflammatory signalings involved in airway and pulmonary diseases. Mediat Inflamm. 2013;2013:791231. Lee I-T, Yang C-M. Inflammatory signalings involved in airway and pulmonary diseases. Mediat Inflamm. 2013;2013:791231.
12.
Zurück zum Zitat Moldoveanu B, Otmishi P, Jani P, Walker J, Sarmiento X, Guardiola J, et al. Inflammatory mechanisms in the lung. J Inflamm Res. 2009;2:1–11.PubMed Moldoveanu B, Otmishi P, Jani P, Walker J, Sarmiento X, Guardiola J, et al. Inflammatory mechanisms in the lung. J Inflamm Res. 2009;2:1–11.PubMed
13.
Zurück zum Zitat Nelson RJ. Seasonal immune function and sickness responses. Trends Immunol. 2004;25(4):187–92.CrossRefPubMed Nelson RJ. Seasonal immune function and sickness responses. Trends Immunol. 2004;25(4):187–92.CrossRefPubMed
14.
Zurück zum Zitat Nelson RJ, Demas GE. Seasonal changes in immune function. Q Rev Biol. 1996:511–48. Nelson RJ, Demas GE. Seasonal changes in immune function. Q Rev Biol. 1996:511–48.
15.
Zurück zum Zitat Colgan SP, Curtis VF, Campbell EL. The inflammatory tissue microenvironment in IBD. Inflamm Bowel Dis. 2013;19(10):2238.CrossRefPubMed Colgan SP, Curtis VF, Campbell EL. The inflammatory tissue microenvironment in IBD. Inflamm Bowel Dis. 2013;19(10):2238.CrossRefPubMed
16.
Zurück zum Zitat Dantzer R. Cytokine-induced sickness behavior: where do we stand? Brain Behav Immun. 2001;15(1):7–24.CrossRefPubMed Dantzer R. Cytokine-induced sickness behavior: where do we stand? Brain Behav Immun. 2001;15(1):7–24.CrossRefPubMed
17.
18.
Zurück zum Zitat Chung K, Adcock I. Multifaceted mechanisms in COPD: inflammation, immunity, and tissue repair and destruction. Eur Respir J. 2008;31(6):1334–56.CrossRefPubMed Chung K, Adcock I. Multifaceted mechanisms in COPD: inflammation, immunity, and tissue repair and destruction. Eur Respir J. 2008;31(6):1334–56.CrossRefPubMed
19.
Zurück zum Zitat Hartupee J, Mann DL. Role of inflammatory cells in fibroblast activation. J Mol Cell Cardiol. 2016;93:143–8.CrossRefPubMed Hartupee J, Mann DL. Role of inflammatory cells in fibroblast activation. J Mol Cell Cardiol. 2016;93:143–8.CrossRefPubMed
21.
Zurück zum Zitat Libby P. Inflammatory mechanisms: the molecular basis of inflammation and disease. Nutr Rev. 2007;65(suppl_3):140-S6. Libby P. Inflammatory mechanisms: the molecular basis of inflammation and disease. Nutr Rev. 2007;65(suppl_3):140-S6.
27.
Zurück zum Zitat Lubkin SR, Murray JD. A mechanism for early branching in lung morphogenesis. J Math Biol. 1995;34(1):77–94.CrossRefPubMed Lubkin SR, Murray JD. A mechanism for early branching in lung morphogenesis. J Math Biol. 1995;34(1):77–94.CrossRefPubMed
41.
Zurück zum Zitat Sherratt JA, Dallon JC. Theoretical models of wound healing: past successes and future challenges. C R Biol. 2002;325(5):557–64.CrossRefPubMed Sherratt JA, Dallon JC. Theoretical models of wound healing: past successes and future challenges. C R Biol. 2002;325(5):557–64.CrossRefPubMed
56.
Zurück zum Zitat Hewitt TJ, Hattler BG, Federspiel WJ. A mathematical model of gas exchange in an intravenous membrane oxygenator. Ann Biomed Eng. 1998;26(1):166–78.CrossRefPubMed Hewitt TJ, Hattler BG, Federspiel WJ. A mathematical model of gas exchange in an intravenous membrane oxygenator. Ann Biomed Eng. 1998;26(1):166–78.CrossRefPubMed
57.
Zurück zum Zitat Brighenti C, Gnudi G, Avanzolini G. A simulation model of the oxygen alveolo-capillary exchange in normal and pathological conditions. Physiol Meas. 2003;24(2):261–75.CrossRefPubMed Brighenti C, Gnudi G, Avanzolini G. A simulation model of the oxygen alveolo-capillary exchange in normal and pathological conditions. Physiol Meas. 2003;24(2):261–75.CrossRefPubMed
60.
Zurück zum Zitat Pidaparti RM, Koombua K. Tissue strains induced in airways due to mechanical ventilation. Mol Cell Biomech. 2011;8(2):149–68.PubMed Pidaparti RM, Koombua K. Tissue strains induced in airways due to mechanical ventilation. Mol Cell Biomech. 2011;8(2):149–68.PubMed
64.
Zurück zum Zitat Roth CJ, Yoshihara L, Ismail M, Wall WA. Computational modelling of the respiratory system: discussion of coupled modeling approaches and two recent extensions. Comput Methods Appl Mech Eng. 2017;314:473–93.CrossRef Roth CJ, Yoshihara L, Ismail M, Wall WA. Computational modelling of the respiratory system: discussion of coupled modeling approaches and two recent extensions. Comput Methods Appl Mech Eng. 2017;314:473–93.CrossRef
75.
Zurück zum Zitat Kim Y, Lee S, Kim YS, Lawler S, Gho YS, Kim YK, et al. Regulation of Th1/Th2 cells in asthma development: a mathematical model. Math Biosci Eng. 2013;10(4):1095–133.CrossRefPubMed Kim Y, Lee S, Kim YS, Lawler S, Gho YS, Kim YK, et al. Regulation of Th1/Th2 cells in asthma development: a mathematical model. Math Biosci Eng. 2013;10(4):1095–133.CrossRefPubMed
76.
Zurück zum Zitat Reynolds A, Koombua K, Pidaparti RM, Ward KR. Cellular automata modeling of pulmonary inflammation. Mol Cell Biomech. 2012;9(2):141–56.PubMed Reynolds A, Koombua K, Pidaparti RM, Ward KR. Cellular automata modeling of pulmonary inflammation. Mol Cell Biomech. 2012;9(2):141–56.PubMed
78.
Zurück zum Zitat W GA,M. S. C. Agent-based modeling approaches to multi-scale systems biology: an example agent-based model of acute pulmonary inflammation. In: Prokop A, Csukás B, editors. Systems biology. Dordrecht: Springer; 2013. pp. 429–61. W GA,M. S. C. Agent-based modeling approaches to multi-scale systems biology: an example agent-based model of acute pulmonary inflammation. In: Prokop A, Csukás B, editors. Systems biology. Dordrecht: Springer; 2013. pp. 429–61.
79.
Zurück zum Zitat Lane N, Robins RA, Corne J, Fairclough L. Regulation in chronic obstructive pulmonary disease: the role of regulatory T-cells and Th17 cells. Clin Sci. 2010;119(2):75–86.CrossRef Lane N, Robins RA, Corne J, Fairclough L. Regulation in chronic obstructive pulmonary disease: the role of regulatory T-cells and Th17 cells. Clin Sci. 2010;119(2):75–86.CrossRef
80.
Zurück zum Zitat Donnelly LE, Barnes PJ. Chemokine receptors as therapeutic targets in chronic obstructive pulmonary disease. Trends Pharmacol Sci. 2006;27(10):546–53.CrossRefPubMed Donnelly LE, Barnes PJ. Chemokine receptors as therapeutic targets in chronic obstructive pulmonary disease. Trends Pharmacol Sci. 2006;27(10):546–53.CrossRefPubMed
81.
Zurück zum Zitat Traynor TR, Herring AC, Dorf ME, Kuziel WA, Toews GB, Huffnagle GB. Differential roles of CC chemokine ligand 2/monocyte chemotactic protein-1 and CCR2 in the development of T1 immunity. J Immunol. 2002;168(9):4659–66.CrossRefPubMed Traynor TR, Herring AC, Dorf ME, Kuziel WA, Toews GB, Huffnagle GB. Differential roles of CC chemokine ligand 2/monocyte chemotactic protein-1 and CCR2 in the development of T1 immunity. J Immunol. 2002;168(9):4659–66.CrossRefPubMed
82.
Zurück zum Zitat Barnes PJ. Cellular and molecular mechanisms of asthma and COPD. Clin Sci. 2017;131(13):1541–58.CrossRef Barnes PJ. Cellular and molecular mechanisms of asthma and COPD. Clin Sci. 2017;131(13):1541–58.CrossRef
83.
Zurück zum Zitat Suki B, Lutchen KR, Ingenito EP. On the progressive nature of emphysema: roles of proteases, inflammation, and mechanical forces. Am J Respir Crit Care Med. 2003;168(5):516–21.CrossRefPubMed Suki B, Lutchen KR, Ingenito EP. On the progressive nature of emphysema: roles of proteases, inflammation, and mechanical forces. Am J Respir Crit Care Med. 2003;168(5):516–21.CrossRefPubMed
84.
Zurück zum Zitat Barnes PJ. Immunology of asthma and chronic obstructive pulmonary disease. Nat Rev Immunol. 2008;8(3):183–92.CrossRefPubMed Barnes PJ. Immunology of asthma and chronic obstructive pulmonary disease. Nat Rev Immunol. 2008;8(3):183–92.CrossRefPubMed
85.
Zurück zum Zitat Chung KF. The role of airway smooth muscle in the pathogenesis of airway wall remodeling in chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2005;2(4):347–54.CrossRefPubMedPubMedCentral Chung KF. The role of airway smooth muscle in the pathogenesis of airway wall remodeling in chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2005;2(4):347–54.CrossRefPubMedPubMedCentral
86.
Zurück zum Zitat Hutchinson AT, Vlahos R, Bozinovski S. Role of alveolar macrophages in chronic obstructive pulmonary disease. Front Immunol. 2014;5:435. Hutchinson AT, Vlahos R, Bozinovski S. Role of alveolar macrophages in chronic obstructive pulmonary disease. Front Immunol. 2014;5:435.
87.
Zurück zum Zitat Brusselle GG, Joos GF, Bracke KR. New insights into the immunology of chronic obstructive pulmonary disease. Lancet. 2011;378(9795):1015–26.CrossRefPubMed Brusselle GG, Joos GF, Bracke KR. New insights into the immunology of chronic obstructive pulmonary disease. Lancet. 2011;378(9795):1015–26.CrossRefPubMed
89.
Zurück zum Zitat Chung KF. Targeting the interleukin pathway in the treatment of asthma. Lancet. 2015;386(9998):1086–96.CrossRefPubMed Chung KF. Targeting the interleukin pathway in the treatment of asthma. Lancet. 2015;386(9998):1086–96.CrossRefPubMed
90.
Zurück zum Zitat Wang Y, Bai C, Li K, Adler KB, Wang X. Role of airway epithelial cells in development of asthma and allergic rhinitis. Respir Med. 2008;102(7):949–55.CrossRefPubMed Wang Y, Bai C, Li K, Adler KB, Wang X. Role of airway epithelial cells in development of asthma and allergic rhinitis. Respir Med. 2008;102(7):949–55.CrossRefPubMed
91.
92.
Zurück zum Zitat Kubo T, Morita H, Sugita K, Akdis CA. Introduction to mechanisms of allergic diseases. Middleton’s allergy essentials. Amsterdam: Elsevier; 2017. pp. 1–27. Kubo T, Morita H, Sugita K, Akdis CA. Introduction to mechanisms of allergic diseases. Middleton’s allergy essentials. Amsterdam: Elsevier; 2017. pp. 1–27.
93.
Zurück zum Zitat Murdoch JR, Lloyd CM. Chronic inflammation and asthma. Mutat Res Fundam Mol Mech Mutagen. 2010;690(1):24–39.CrossRef Murdoch JR, Lloyd CM. Chronic inflammation and asthma. Mutat Res Fundam Mol Mech Mutagen. 2010;690(1):24–39.CrossRef
94.
95.
Zurück zum Zitat Barnig C, Frossard N, Levy BD. Towards targeting resolution pathways of airway inflammation in asthma. Pharmacol Ther. 2018;186:98–113CrossRefPubMed Barnig C, Frossard N, Levy BD. Towards targeting resolution pathways of airway inflammation in asthma. Pharmacol Ther. 2018;186:98–113CrossRefPubMed
96.
97.
Zurück zum Zitat Martín-Orozco E, Norte-Muñoz M, Martínez-García J. Regulatory T cells in allergy and asthma. Front Pediatr. 2017;5. Martín-Orozco E, Norte-Muñoz M, Martínez-García J. Regulatory T cells in allergy and asthma. Front Pediatr. 2017;5.
98.
Zurück zum Zitat Ross R. Platelet-derived growth factor. Lancet. 1989;333(8648):1179–82.CrossRef Ross R. Platelet-derived growth factor. Lancet. 1989;333(8648):1179–82.CrossRef
100.
Zurück zum Zitat Dolgachev VA, Ullenbruch MR, Lukacs NW, Phan SH. Role of stem cell factor and bone marrow-derived fibroblasts in airway remodeling. Am J Pathol. 2009;174(2):390–400.CrossRefPubMedPubMedCentral Dolgachev VA, Ullenbruch MR, Lukacs NW, Phan SH. Role of stem cell factor and bone marrow-derived fibroblasts in airway remodeling. Am J Pathol. 2009;174(2):390–400.CrossRefPubMedPubMedCentral
101.
Zurück zum Zitat Lee CG, Link H, Baluk P, Homer RJ, Chapoval S, Bhandari V, et al. Vascular endothelial growth factor (VEGF) induces remodeling and enhances TH2-mediated sensitization and inflammation in the lung. Nat Med. 2004;10(10):1095–103.CrossRefPubMedPubMedCentral Lee CG, Link H, Baluk P, Homer RJ, Chapoval S, Bhandari V, et al. Vascular endothelial growth factor (VEGF) induces remodeling and enhances TH2-mediated sensitization and inflammation in the lung. Nat Med. 2004;10(10):1095–103.CrossRefPubMedPubMedCentral
102.
Zurück zum Zitat Bhandari V, Choo-Wing R, Chapoval SP, Lee CG, Tang C, Kim Y, et al. Essential role of nitric oxide in VEGF-induced, asthma-like angiogenic, inflammatory, mucus, and physiologic responses in the lung. Proc Natl Acad Sci. 2006;103(29):11021–6.CrossRefPubMedPubMedCentral Bhandari V, Choo-Wing R, Chapoval SP, Lee CG, Tang C, Kim Y, et al. Essential role of nitric oxide in VEGF-induced, asthma-like angiogenic, inflammatory, mucus, and physiologic responses in the lung. Proc Natl Acad Sci. 2006;103(29):11021–6.CrossRefPubMedPubMedCentral
103.
Zurück zum Zitat McMillan SJ, Kearley J, Campbell JD, Zhu X-W, Larbi KY, Shipley JM, et al. Matrix metalloproteinase-9 deficiency results in enhanced allergen-induced airway inflammation. J Immunol. 2004;172(4):2586–94.CrossRefPubMed McMillan SJ, Kearley J, Campbell JD, Zhu X-W, Larbi KY, Shipley JM, et al. Matrix metalloproteinase-9 deficiency results in enhanced allergen-induced airway inflammation. J Immunol. 2004;172(4):2586–94.CrossRefPubMed
104.
Zurück zum Zitat Lee CG, Homer RJ, Zhu Z, Lanone S, Wang X, Koteliansky V, et al. Interleukin-13 induces tissue fibrosis by selectively stimulating and activating transforming growth factor β1. J Exp Med. 2001;194(6):809–22.CrossRefPubMedPubMedCentral Lee CG, Homer RJ, Zhu Z, Lanone S, Wang X, Koteliansky V, et al. Interleukin-13 induces tissue fibrosis by selectively stimulating and activating transforming growth factor β1. J Exp Med. 2001;194(6):809–22.CrossRefPubMedPubMedCentral
105.
Zurück zum Zitat Cutting GR. Cystic fibrosis genetics: from molecular understanding to clinical application. Nat Rev Genet. 2015;16(1):45.CrossRefPubMed Cutting GR. Cystic fibrosis genetics: from molecular understanding to clinical application. Nat Rev Genet. 2015;16(1):45.CrossRefPubMed
106.
Zurück zum Zitat Cutting GR, Engelhardt J, Zeitlin PL. Genetics and pathophysiology of cystic fibrosis. Kendig’s disorders of the respiratory tract in children (9th Edition). Amsterdam: Elsevier; 2019. pp. 757–68.e6. Cutting GR, Engelhardt J, Zeitlin PL. Genetics and pathophysiology of cystic fibrosis. Kendig’s disorders of the respiratory tract in children (9th Edition). Amsterdam: Elsevier; 2019. pp. 757–68.e6.
107.
Zurück zum Zitat Collawn JF, Matalon S. CFTR and lung homeostasis. Am J Physiol Lung Cell Mol Physiol. 2014;307(12):L917-L23.CrossRef Collawn JF, Matalon S. CFTR and lung homeostasis. Am J Physiol Lung Cell Mol Physiol. 2014;307(12):L917-L23.CrossRef
108.
Zurück zum Zitat Muir A, Soong G, Sokol S, Reddy B, Gomez MI, van Heeckeren A, et al. Toll-like receptors in normal and cystic fibrosis airway epithelial cells. Am J Respir Cell Mol Biol. 2004;30(6):777–83.CrossRefPubMed Muir A, Soong G, Sokol S, Reddy B, Gomez MI, van Heeckeren A, et al. Toll-like receptors in normal and cystic fibrosis airway epithelial cells. Am J Respir Cell Mol Biol. 2004;30(6):777–83.CrossRefPubMed
109.
Zurück zum Zitat Chirico V, Lacquaniti A, Leonardi S, Grasso L, Rotolo N, Romano C, et al. Acute pulmonary exacerbation and lung function decline in patients with cystic fibrosis: high-mobility group box 1 (HMGB1) between inflammation and infection. Clin Microbiol Infect. 2015;21(4):368.e1–e9.CrossRef Chirico V, Lacquaniti A, Leonardi S, Grasso L, Rotolo N, Romano C, et al. Acute pulmonary exacerbation and lung function decline in patients with cystic fibrosis: high-mobility group box 1 (HMGB1) between inflammation and infection. Clin Microbiol Infect. 2015;21(4):368.e1–e9.CrossRef
111.
Zurück zum Zitat McCuaig S, Martin JG. How the airway smooth muscle in cystic fibrosis reacts in proinflammatory conditions: implications for airway hyper-responsiveness and asthma in cystic fibrosis. Lancet Respir Med. 2013;1(2):137–47.CrossRefPubMed McCuaig S, Martin JG. How the airway smooth muscle in cystic fibrosis reacts in proinflammatory conditions: implications for airway hyper-responsiveness and asthma in cystic fibrosis. Lancet Respir Med. 2013;1(2):137–47.CrossRefPubMed
112.
Zurück zum Zitat Dekkers JF, van der Ent CK, Kalkhoven E, Beekman JM. PPARγ as a therapeutic target in cystic fibrosis. Trends Mol Med. 2012;18(5):283–91.CrossRefPubMed Dekkers JF, van der Ent CK, Kalkhoven E, Beekman JM. PPARγ as a therapeutic target in cystic fibrosis. Trends Mol Med. 2012;18(5):283–91.CrossRefPubMed
114.
Zurück zum Zitat Tang AC, Turvey SE, Alves MP, Regamey N, Tümmler B, Hartl D. Current concepts: host–pathogen interactions in cystic fibrosis airways disease. Eur Respir Rev. 2014;23(133):320–32.CrossRefPubMed Tang AC, Turvey SE, Alves MP, Regamey N, Tümmler B, Hartl D. Current concepts: host–pathogen interactions in cystic fibrosis airways disease. Eur Respir Rev. 2014;23(133):320–32.CrossRefPubMed
115.
Zurück zum Zitat Hilliard TN, Regamey N, Shute JK, Nicholson AG, Alton EW, Bush A, et al. Airway remodelling in children with cystic fibrosis. Thorax. 2007;62(12):1074–80.CrossRefPubMedPubMedCentral Hilliard TN, Regamey N, Shute JK, Nicholson AG, Alton EW, Bush A, et al. Airway remodelling in children with cystic fibrosis. Thorax. 2007;62(12):1074–80.CrossRefPubMedPubMedCentral
116.
Zurück zum Zitat Murphy G, Docherty AJ. The matrix metalloproteinases and their inhibitors. Am J Respir Cell Mol Biol. 1992;7:120-.CrossRefPubMed Murphy G, Docherty AJ. The matrix metalloproteinases and their inhibitors. Am J Respir Cell Mol Biol. 1992;7:120-.CrossRefPubMed
117.
Zurück zum Zitat Ratjen F, Hartog C, Paul K, Wermelt J, Braun J. Matrix metalloproteases in BAL fluid of patients with cystic fibrosis and their modulation by treatment with dornase alpha. Thorax. 2002;57(11):930–4.CrossRefPubMedPubMedCentral Ratjen F, Hartog C, Paul K, Wermelt J, Braun J. Matrix metalloproteases in BAL fluid of patients with cystic fibrosis and their modulation by treatment with dornase alpha. Thorax. 2002;57(11):930–4.CrossRefPubMedPubMedCentral
118.
Zurück zum Zitat Courtney J, Ennis M, Elborn J. Cytokines and inflammatory mediators in cystic fibrosis. J Cyst Fibros. 2004;3(4):223–31.CrossRefPubMed Courtney J, Ennis M, Elborn J. Cytokines and inflammatory mediators in cystic fibrosis. J Cyst Fibros. 2004;3(4):223–31.CrossRefPubMed
119.
Zurück zum Zitat Hardie WD, Bejarano PA, Miller MA, Yankaskas JR, Ritter JH, Whitsett JA, et al. Immunolocalization of transforming growth factor α and epidermal growth factor receptor in lungs of patients with cystic fibrosis. Pediatr Dev Pathol. 1999;2(5):415–23.CrossRefPubMed Hardie WD, Bejarano PA, Miller MA, Yankaskas JR, Ritter JH, Whitsett JA, et al. Immunolocalization of transforming growth factor α and epidermal growth factor receptor in lungs of patients with cystic fibrosis. Pediatr Dev Pathol. 1999;2(5):415–23.CrossRefPubMed
120.
Zurück zum Zitat Booth BW, Adler KB, Bonner JC, Tournier F, Martin LD. Interleukin-13 induces proliferation of human airway epithelial cells in vitro via a mechanism mediated by transforming growth factor-α. Am J Respir Cell Mol Biol. 2001;25(6):739–43.CrossRefPubMed Booth BW, Adler KB, Bonner JC, Tournier F, Martin LD. Interleukin-13 induces proliferation of human airway epithelial cells in vitro via a mechanism mediated by transforming growth factor-α. Am J Respir Cell Mol Biol. 2001;25(6):739–43.CrossRefPubMed
121.
Zurück zum Zitat Spannhake EW. Interactions of pollutants with the epithelium. In: The pulmonary epithelium in health and disease. John Wiley & Sons; 2008. pp 275–99. Spannhake EW. Interactions of pollutants with the epithelium. In: The pulmonary epithelium in health and disease. John Wiley & Sons; 2008. pp 275–99.
123.
Zurück zum Zitat Naylor R, Baker D, Van Deursen J. Senescent cells: a novel therapeutic target for aging and age-related diseases. Clin Pharmacol Ther. 2013;93(1):105–16.CrossRefPubMed Naylor R, Baker D, Van Deursen J. Senescent cells: a novel therapeutic target for aging and age-related diseases. Clin Pharmacol Ther. 2013;93(1):105–16.CrossRefPubMed
124.
Zurück zum Zitat Hosgood HD, Menashe I, He X, Chanock S, Lan Q. PTEN identified as important risk factor of chronic obstructive pulmonary disease. Respir Med. 2009;103(12):1866–70.CrossRefPubMedPubMedCentral Hosgood HD, Menashe I, He X, Chanock S, Lan Q. PTEN identified as important risk factor of chronic obstructive pulmonary disease. Respir Med. 2009;103(12):1866–70.CrossRefPubMedPubMedCentral
126.
Zurück zum Zitat Holzenberger M, Dupont J, Ducos B, Leneuve P, Géloën A, Even PC, et al. IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature. 2003;421(6919):182–7.CrossRefPubMed Holzenberger M, Dupont J, Ducos B, Leneuve P, Géloën A, Even PC, et al. IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature. 2003;421(6919):182–7.CrossRefPubMed
127.
Zurück zum Zitat Kapahi P, Zid BM, Harper T, Koslover D, Sapin V, Benzer S. Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr Biol. 2004;14(10):885–90.CrossRefPubMedPubMedCentral Kapahi P, Zid BM, Harper T, Koslover D, Sapin V, Benzer S. Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr Biol. 2004;14(10):885–90.CrossRefPubMedPubMedCentral
128.
129.
Zurück zum Zitat Ito K, Colley T, Mercado N. Geroprotectors as a novel therapeutic strategy for COPD, an accelerating aging disease. Int J Chron Obstruct Pulmon Dis. 2012;7(4):641–52.CrossRefPubMedPubMedCentral Ito K, Colley T, Mercado N. Geroprotectors as a novel therapeutic strategy for COPD, an accelerating aging disease. Int J Chron Obstruct Pulmon Dis. 2012;7(4):641–52.CrossRefPubMedPubMedCentral
130.
Zurück zum Zitat Hahn DR, Na C-L, Weaver TE. Reserve autophagic capacity in alveolar epithelia provides a replicative niche for influenza A virus. Am J Respir Cell Mol Biol. 2014;51(3):400–12.CrossRefPubMedPubMedCentral Hahn DR, Na C-L, Weaver TE. Reserve autophagic capacity in alveolar epithelia provides a replicative niche for influenza A virus. Am J Respir Cell Mol Biol. 2014;51(3):400–12.CrossRefPubMedPubMedCentral
131.
Zurück zum Zitat Ito K, Barnes PJ. COPD as a disease of accelerated lung aging. CHEST J. 2009;135(1):173–80.CrossRef Ito K, Barnes PJ. COPD as a disease of accelerated lung aging. CHEST J. 2009;135(1):173–80.CrossRef
132.
Zurück zum Zitat Aoshiba K, Zhou F, Tsuji T, Nagai A. DNA damage as a molecular link in the pathogenesis of COPD in smokers. Eur Respir J. 2012;39(6):1368–76.CrossRefPubMed Aoshiba K, Zhou F, Tsuji T, Nagai A. DNA damage as a molecular link in the pathogenesis of COPD in smokers. Eur Respir J. 2012;39(6):1368–76.CrossRefPubMed
134.
Zurück zum Zitat Athanazio R. Airway disease: similarities and differences between asthma, COPD and bronchiectasis. Clinics (Sao Paulo). 2012;67(11):1335–43.CrossRef Athanazio R. Airway disease: similarities and differences between asthma, COPD and bronchiectasis. Clinics (Sao Paulo). 2012;67(11):1335–43.CrossRef
145.
Zurück zum Zitat Brauer F, Kris C. Dynamical systems for biological modeling: an introduction. Boca Raton: CRC Press; 2015. Brauer F, Kris C. Dynamical systems for biological modeling: an introduction. Boca Raton: CRC Press; 2015.
156.
Zurück zum Zitat Brown BN, Price IM, Toapanta FR, DeAlmeida DR, Wiley CA, Ross TM, et al. An agent-based model of inflammation and fibrosis following particulate exposure in the lung. Math Biosci. 2011;231(2):186–96.CrossRefPubMedPubMedCentral Brown BN, Price IM, Toapanta FR, DeAlmeida DR, Wiley CA, Ross TM, et al. An agent-based model of inflammation and fibrosis following particulate exposure in the lung. Math Biosci. 2011;231(2):186–96.CrossRefPubMedPubMedCentral
169.
Zurück zum Zitat Cevenini E, Caruso C, Candore G, Capri M, Nuzzo D, Duro G, et al. Age-related inflammation: the contribution of different organs, tissues and systems. How to face it for therapeutic approaches. Curr Pharm Des. 2010;16(6):609–18.CrossRefPubMed Cevenini E, Caruso C, Candore G, Capri M, Nuzzo D, Duro G, et al. Age-related inflammation: the contribution of different organs, tissues and systems. How to face it for therapeutic approaches. Curr Pharm Des. 2010;16(6):609–18.CrossRefPubMed
174.
Zurück zum Zitat Witten TM. Modeling cellular aging: an introduction—mathematical and computational approaches. In: Rattan SIS, Hayflick L, editors. Cellular ageing and replicative senescence. vol 4. New York: Springer International Publishing; 2016. pp. 117–41. Witten TM. Modeling cellular aging: an introduction—mathematical and computational approaches. In: Rattan SIS, Hayflick L, editors. Cellular ageing and replicative senescence. vol 4. New York: Springer International Publishing; 2016. pp. 117–41.
Metadaten
Titel
A review of inflammatory mechanism in airway diseases
verfasst von
Parya Aghasafari
Uduak George
Ramana Pidaparti
Publikationsdatum
10.10.2018
Verlag
Springer International Publishing
Erschienen in
Inflammation Research / Ausgabe 1/2019
Print ISSN: 1023-3830
Elektronische ISSN: 1420-908X
DOI
https://doi.org/10.1007/s00011-018-1191-2

Weitere Artikel der Ausgabe 1/2019

Inflammation Research 1/2019 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.