Skip to main content

Open Access 16.04.2024 | Review

A review of multi-disciplinary decomposition research and key drivers of variation in decay

verfasst von: Donna B. McIntyre, Blake M. Dawson, Benjamin M. Long, Philip S. Barton

Erschienen in: International Journal of Legal Medicine

Abstract

The decomposition of animal remains is a multifaceted process, involving ecological, biological, and chemical interactions. While the complexity is acknowledged through concepts like the necrobiome, it’s unclear if this complexity is reflected in research. Appreciation of the complexity of decomposition is crucial for identifying sources of variation in estimations of time since death in medico-legal science, as well as building broader ecological knowledge of the decomposition process. To gain insights into the extent of multidisciplinary research in the field of decomposition science, we conducted an examination of peer-reviewed literature on four key drivers of variation: volatile organic compounds, microbes, drugs/toxins, and insects. Among 650 articles, we identified their scientific discipline, driver/s of variation investigated, and year of publication. We found that 19% explored relationships between two drivers, while only 4% investigated interactions between three. None considered all four drivers. Over the past three decades, there has been a steady increase in decomposition research publications, signifying its growing importance. Most research (79%) was linked to forensic science, highlighting opportunities for interdisciplinary collaboration in decomposition science. Overall, our review underscores the need to incorporate multidisciplinary approaches and theory into contemporary decomposition research.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

The decomposition of vertebrate remains consists of biological, chemical, and physical changes, resulting in the breakdown of large, complex organic molecules, and recycling of nutrients and energy back into ecosystems [16]. External and internal factors such as temperature, humidity, exposure, burial, health, diet, medical history, age, and genetics can influence the rate of decomposition and create variability in the process [713]. This variability is important to understand because it affects how we measure, explain, and predict decomposition rates under a broad range of scenarios, and therefore informs our capacity to explain variation in estimations of time since death, otherwise known as the post-mortem interval (PMI), within different biomes [9, 14, 15]. The community of decomposer organisms and their interactions, often referred to as the “necrobiome,” are an important source of variety that have attracted much interest. In order to integrate decomposition theory with the determination of the PMI, the necrobiome serves as a fundamental theoretical basis. It includes the biological and ecological processes and functions that are governed by bacteria, insects, and vertebrates within a broad framework that also considers their interactions with abiotic factors, soil, and the surrounding environment.
The necrobiome framework provides a foundation for understanding the relationship between multiple drivers of variation (hereafter referred to as ‘DoV’) in decomposition, which are individual components that create variability within decomposition and affect the rate of decay [16]. There are very few controlled experimental manipulations of differing components of the necrobiome model, but this is a keyway to validate the model and determine the relative roles and importance of multiple DoV. For example, a study by [17] investigated decomposition rates of wild rabbits which were either buried after exposure to insect activity, buried without exposure, kept above ground with insect excluded, or exposed to insects above ground. Their results demonstrated that insect presence was the primary agent affecting decomposition rate [17]. Another study by [18] compared insect activity and decomposition between humans and pigs, and discovered variability between insect species richness, colonisation, and decomposition rate. They theorised that these results were due to the differences in mass, diet, medical history, and microbiomes [18]. This highlights the importance of taking into consideration the variability of DoV between research models.
In another study by [19], researchers investigated the relationship between three key components (epinecrotic bacteria, volatile organic compounds (VOCs), and flies) during the first 4 days of decomposition using 75 piglet cadavers in three different forest regions. VOCs are organic molecules that are released into the surrounding environment during decomposition [20]. These compounds make up a variety of chemical classes; carboxylic acids, alcohols, aromatics, aldehydes, ketones, hydrocarbons, esters, ethers, nitrogen compounds and sulphur compounds, and originate from the community of micro-organisms within and around the carrion [21]. They play a vital role in the attraction and repulsion of insect and vertebrate scavengers to decomposing remains, serving as chemical cues that guide their search for food and colonisation sites [22, 23]. Their findings revealed dynamic changes in bacterial populations and VOC emissions during decomposition, which were influenced by factors like temperature and time but not by the specific forest region. However, the presence of flies varied both spatially and temporally.
The study highlighted a strong interdependence among these three components, primarily regulated by the temperature and time since death, as well as the specific study regions. Interestingly, this interdependence remained consistent across a gradient of forest management intensity. By examining the interactions between these components, the research contributed to a better understanding of the holistic mechanisms governing carrion community dynamics and cross-kingdom interactions, which are essential for describing food web dynamics and overall ecosystem functions [19].
In this review, we examined the peer-reviewed literature for studies of interdependent relationships between DoV in decomposition to investigate the extent of multidisciplinary perspectives in decomposition science. The complexity underpinning decomposition has been known for some time [13], and has since been built upon by the necrobiome framework [16] and recognised in the forensic literature [5]. Despite this growth in knowledge, it remains unclear how multidisciplinary perspectives have been adopted in the literature and if complexity is being incorporated into more recent studies. Our aim was to quantify how many studies examined more than one DoV, and to identify which subdisciplines tended to incorporate additional variables. We discuss our findings in light of improving understanding of decomposition and its implications for identifying factors that influence the rate of decay and forensic applications.

Methodology

We focused on four key variables in decomposition sciences, which we considered to be significant factors associated with variation in decay: VOCs, microbes, drugs and toxins, and insects. We further divided the topic of insects into 2 separate subcategories: (1) research on the pre-appearance interval (PAI, the interval preceding insect appearance) and colonisation (oviposition), and (2) insect succession.
We then conducted a literature search to identify peer-reviewed articles related to decomposition and necrobiome. We searched databases including PubMed, Scopus, and Web of Science, using the keywords “decomposition,“, “decay”, “necrobiome,” “animal remains,“, “cadaver”, “microbes,” “insects,” and “volatile organic compounds.” These broad search terms would ensure that we started with a larger group of literature, which we could further refine.
We initially found 16,121 articles between five different topic searches targeting VOCs, microbes, insects, drugs and toxins, and PAI and oviposition. We included publications from the first instance, to end of 2022, and then screened the titles and abstracts of identified articles to exclude irrelevant studies which neglected investigation of decomposition or one of our chosen DoV. We then selected those that met further inclusion criteria: studies that investigated the relationship between DoV and their subsequent effect on decomposition and role within the necrobiome.
From the final list of selected articles (n = 650), we extracted the following data:
a.
year of publication;
 
b.
mentions or interactions of other drivers of variability (such as research, reviews or case studies which investigated or considered VOCs, microbes, insects, and toxicology) within each topic, and;
 
c.
the disciplinary focus of the research– these were decided based on whether the paper itself suggested the application of the research to a particular discipline, or if this information was missing, which journal the paper was published in. The articles were then clearly divided into categories of forensic, ecological or combination; if the article mentioned more than 1 application to a discipline.
 
This data allowed us to identify what research has been conducted on the interaction between DoVs, how research has shifted over time, and if the scope of the research has connected multiple disciplines.
We analysed the extracted data to identify common themes and patterns across studies, and to answer our research questions. We used a narrative synthesis approach to analyse the data, which involved summarising the findings of each study and identifying patterns and relationships between them. We presented our findings in a descriptive and organised manner, including tables and figures to illustrate key findings. We utilised R version 2023.03.1 + 446 [24] and (ggplot package [25]), with the aid of Artificial Intelligence program, Chat GPT [26], to assist in coding, and Microsoft Excel [27] to create data visualisations.

Results

Microbes

We found 36 microbial-focused research articles from between 2009 and 2022; 22 articles focused on microbes only (i.e. one DoV), 10 considered the relationship between two DoV, and 10 between three. None considered or investigated the relationship between four or more DoV (Fig. 1). 12 articles discussed the role of insects in decomposition and their impact on the microbial community (i.e. two DoV), and one article emphasised the importance of considering the PAI and oviposition (i.e. two DoV). Six articles explored the relationship between VOCs, decomposition, and the microbiome (i.e. three DoV), while three articles investigated the influence of drugs (ethanol, GHB, nitrobenzodiazepines) and the toxin lead on the decomposition process involving microbes (i.e. two DoV) [2830].
We found that the majority of the microbial research articles focused on forensic science, with 23 out of 36 articles categorised in this discipline, while six articles had an ecological focus (Fig. 2). The remaining consisted of a combination of scientific disciplines. We also observed that there has been a notable increase in microbial research since 2020, with six articles published each year (Fig. 3).

Insects (succession)

The largest review was conducted on insect succession/behaviour articles, as we found 495 research articles from between 1992 and 2022, of which 353 articles focused on entomology only (i.e. one DoV). 108 articles considered the PAI and oviposition (Fig. 1), and there was an equal amount of research articles (18) which explored the role of VOCs as well as microbes in decomposition. (i.e. three DoV). A total of 22 articles investigated the effects of various chemical toxins on decomposition, covering a wide range of drugs: drugs of dependence [3133] malathion [3438], pesticides and insecticides [3941], insect repellent [42], gasoline [4345], carbon monoxide [46, 47], alcohol [48, 49], and bleach and hydrated lime [44, 50, 51].
The majority of entomology articles focused on forensic science (395 articles), with a smaller proportion categorised as ecology or a combination of scientific disciplines (Fig. 2). There was no clear trend observed regarding the year of publication, although there was an increasing prevalence in the last decade (Fig. 3).

Insects (PAI and oviposition)

We found 29 research articles investigating PAI and oviposition, with 21 articles focused only on PAI/Oviposition. We found eight also considered the effect of a single other DoV; drugs and toxins, but none investigated relationships with microbes or VOCs, or multiple DoV (Fig. 1). The drugs and toxins investigated in these articles included malathion [35], paraquat [52], diazepam [53], antifreeze [54], citronella and chlorpyrifos [55], hydrated lime and bleach [50].
We noted that most of these publications were within the forensic science discipline, with only two falling under a combination discipline (Fig. 2). We also observed a slow but increasing number of PAI and oviposition articles within the scientific discipline in recent years (Fig. 3).

Volatile Organic compounds (VOCs)

We found 74 articles on VOCs, of which 44 focused only on VOCs. We found that none of the articles considered drugs or other toxins. Out of all VOC articles, 29 focused on insect involvement and effects, while three considered microbes. Only three investigated effects on PAI and oviposition (Fig. 1).
Many of the reviewed articles had a forensic science discipline (59), with eight solely within the ecology discipline – the remaining several were a combination discipline (Fig. 2). Research on decomposition VOCs was first published in 2005 peaked in 2015 with 10 articles and has gradually climbed in number of publications (Fig. 3).

Drugs and other toxins

We found 16 articles on drugs and other toxins, of which 9 focused only on pharmaceutical substances. We found commonly abused substances were investigated, including benzodiazepines and synthetic cannabinoids [56], alcohol [49], cocaine [57], dextromethorphan and dextrorphan [58], tramadol [31], ketamine [59], and gasoline [45]; as well as key drugs and toxins such as cytotoxic chemicals and antibiotic treatments [60], clozapine [61], amitriptyline [62], strychnine and delorazepam [63]. We found a review of 39 case studies which investigated the utility of bone in detecting basic substances such as benzodiazepines, opiates, cocaine and metabolites [64].
Only six articles explored the relationship between drugs and toxins in decomposition, and insects, and only one article investigated how drugs and toxins may affect PAI and oviposition (Fig. 1).
Most (12) of these articles had a strong forensic science discipline, with a few falling into the combination category (Fig. 2). There does not appear to be any trend in publication year, with the first article being published in 2009, and the latest in 2021; the most publications occurred in 2016 with four articles (Fig. 3).
Overall, from 650 reviewed articles, only 174 (19%) investigated the effect between two drivers of variation, and 29 (4%) investigated the effect between three. None investigated the effect between four of more drivers of variation in decomposition.

Discussion

In this review we set out to identify the extent to which the literature was multidisciplinary in existing work in decomposition science. We did this by identifying key topics of interest and providing a descriptive account detailing the consideration of multiple drivers of variation in decay, the developments within publications across the years, and multidisciplinary perspectives.
Overall, we found there was a larger focus on the role of microbes and insects in decomposition than on PAI and oviposition. The study of VOCs and the influence of drugs and toxins on decomposition was also less common. Additionally, most of the reviewed literature had a strong forensic science discipline when compared to the other disciplines (ecological/veterinary/medicine), despite the interdisciplinary nature of these fields. For example, taphonomy, entomology, botany (ecology), animal forensics and zoonotic diseases (veterinary), and forensic pathology and toxicology (medicine), are some areas where these disciplines intersect.
Despite the individual contributions of each driver of variation in decay, growing empirical evidence suggests that these factors are interconnected and influence one another. However, no research articles were found in our review that investigated the relationships between all of our key variables simultaneously. This highlights an important knowledge gap and emphasises the need for collaborative efforts within the decomposition science community [5].

Microbes

Microbes play a significant role in decomposition, and their interactions with insects and the surrounding environment are vital factors to consider [6567]. The limited number of articles addressing the influence of insects on the microbial community highlights the need for further exploration [14, 68]. Understanding the intricate relationship between insects and microbes during decomposition can provide insights into how changes in insect behaviour and colonisation patterns influence microbial dynamics, and vice versa. For example [69], discovered that the progression of carrion-frequenting insects is influenced by shifts in microbial communities and the release of volatiles throughout decomposition. Additionally, they observed that certain insect species require specific combinations of volatiles to accurately identify the desired stage of decomposition. Another study by [70] demonstrated that flies found on human cadavers exhibit a microbiome composition that is comparable to flies from previous studies unrelated to human cadavers. However, variations in the microbiome were observed across different seasons and different parts of the flies’ body. Their research provides evidence supporting the role of flies as a potential source of microbial transfer to the human decomposer microbiome. Another study by [71] developed a novel model of bacterial community succession, transmigration and differential gene transcription which supports the theory of predictable microbial successions after death, in response to environmental variability. These findings contribute to our understanding of the ecological processes involved in the assembly of microbial communities associated with human cadavers. Another area for research is assessing the reliability of microbial data in trace evidence research. This area holds potential for enhancing investigative methodologies and can build on initiatives such as the Human Microbiome Project [72]. It is becoming increasingly clear that insects, VOCs, and microbes play an important role in decomposition variation, and a multidisciplinary perspective is key to improving understanding in this area of decomposition science [73].
Our review revealed that most of the reviewed articles (23 out of 36) were oriented towards forensic science, highlighting the strong influence of microbial research in this field. This suggests that researchers understand the significance of the microbiome in decomposition, and how understanding these microbial communities is essential for accurate PMI estimations and determining the cause and circumstances of death [12, 28, 67, 7476].
While forensic science dominates the microbial research landscape in decomposition science, our review also identified a smaller proportion of articles (six) with an ecological focus. This suggests that researchers recognise the broader ecological implications of microbial communities in the context of decomposition. Ecological studies explore the role of microbial communities in natural environments, including the decomposition of organic matter in various ecosystems [16, 77, 78]. By investigating the dynamics and functions of microbial populations during decomposition, these studies contribute to our understanding of ecological processes, competitive interactions, and the recycling of nutrients in ecosystems.
Our results for publications indicate a notable increase in the popularity of microbial research related to organic decomposition since 2020, with six articles published each year. This suggests a growing interest and recognition of the significant role that microbial communities play in the decomposition process. The rise in research publications in this area reflects the increasing recognition of the intricate relationship between microbes and decomposition and highlights the importance of studying microbial dynamics in understanding decomposition processes. Additionally, we are now witnessing the advent of innovative techniques which enable cheaper and more streamlined methodologies for microbiome sample processing and analysis of nucleotide sequence data. These factors combined, have likely facilitated the increase in research and publications in the field of decomposition research [79].

Insects (succession)

Insects have long been recognised to play a major role in the decomposition process [80, 81], and will accelerate decay [17, 82, 83]. Despite the clear significance of insects in decomposition [50, 69, 8491], our review highlights a scarcity of research which investigates the impact of key factors which can influence insect activity in decomposition, such as the influence of drugs and toxins [50, 51, 57]. Our review also noted that despite the application of insect research to various fields of science, the reviewed articles were predominantly skewed towards the forensic discipline. This finding highlights the strong focus on insects in forensic investigations of decomposition, particularly in estimating time since death and determining the circumstances surrounding human remains. While forensic entomology has gained significant attention, it is important to acknowledge the broader ecological and medical implications of insect decomposition research. In ecological studies, insects’ role in nutrient cycling, decomposition rates, and community dynamics can provide insights into ecosystem functioning and resilience [7, 16]. Additionally, understanding insect behaviour and interactions during decomposition has potential applications in medical research, such as wound healing and forensic pathology [92, 93], as well as understanding how different species can coexist on limited and patchy ephemeral resources in nature [94, 95].
Although there was no clear trend observed in the year of publication for entomology and decomposition, there has been an increasing prevalence of research in this field over the last decade. This trend indicates the ongoing interest and importance of studying insect behaviour and their role in decomposition processes.

Insects (pre-appearance interval (PAI) and oviposition)

Understanding the duration and factors influencing the PAI is crucial in forensic investigations as it helps estimate the minimum post-mortem interval (PMImin), which can be useful when determining the time of death [51]. Despite the significance of PAI and colonisation behaviour as key variables in the decomposition timeline, they have received limited attention in the literature [96, 97]. Investigating the impact of PAI and oviposition on decomposition rates, microbial succession, and VOC production can reveal their significance as drivers of variation in decay. Olfaction plays a significant role in the attraction of necrophagous insects and their subsequent colonisation of remains. VOCs, which partly come from the corpse or from endogenous and exogenous bacteria surrounding it or from the carcass itself, are released as remains decay and are what give them their distinctive smell [98]. An investigation by [99] discovered that cadavers concealed within tents significantly impacted colonisation time of flies; this ultimately led to a prolonged PAI and could lead to an under-estimation of the PMImin. This also resulted in an overall retarded decomposition rate [99]. It is also important to note that toxicants may also directly influence the PAI of insects. For example, an earlier research study conducted by the author [50] determined that the addition of hydrated lime and bleach to remains post-mortem resulted in a significantly longer PAI (> 12 h) and delayed oviposition. By incorporating these factors into decomposition studies, researchers can gain a more comprehensive understanding of the complex ecological processes occurring during decomposition.
Although most publications in our review focused on forensic science, our review identified two articles that encompassed a combined discipline of forensic and ecology. This suggests a recognition of the ecological aspects associated with PAI and insect colonisation/oviposition. Ecology plays a vital role in understanding the interactions between insects and their environment, including the factors that influence their colonisation patterns and oviposition behaviour [100]. Considering the ecological aspects of insect activity during decomposition can provide insights into the broader ecological processes and ecosystem dynamics. The number of articles focused on PAI and oviposition in relation to organic decomposition has been slowly increasing in recent years. This indicates a growing recognition of the importance of studying the timing and patterns of insect colonisation on remains.

Volatile Organic compounds (VOCs)

Further investigation is warranted to explore the relationship between VOCs and other factors that contribute to variations in the decomposition process [101104]. . The absence of research specifically exploring the impact of drugs and toxins on VOC production during decomposition is a notable gap, as none of our reviewed literature within this topic gave any consideration to the effect of these chemicals on VOCs. The production of VOCs is closely tied to microbial activity, as these compounds are generated as by-products of microbial processes [105]. Additionally, the presence of drugs or toxins can have a significant impact on the microbial profile, potentially altering the composition and activity of microorganisms involved in decomposition processes and subsequent VOC production [106]. Therefore, it is a notable gap that our review did not evaluate any articles on this topic. Studying the interactions between drugs and toxins, microbial activity, insect behaviour, and VOC profiles can provide valuable insights into the forensic implications and ecological consequences of drug presence in decomposition scenarios [19]. For example, a study by [107] demonstrated that the VOCs released by decaying remains are influenced by microbial activity and contribute to attracting insects to the decaying matter. These VOCs serve as a signal to insects, indicating the presence of a transient and valuable resource [108].
The majority of publications on VOCs in decomposition science were within a forensic science discipline, emphasising their significance in forensic investigations for estimating the PMI. However, the recognition of ecological implications in some publications and the presence of articles solely within the ecology discipline demonstrate the potential for interdisciplinary research in understanding the broader ecological context of VOC emissions during decomposition [109112]. Integrating ecological perspectives into VOC research can enhance our understanding of the ecological implications of decomposition and contribute to a more comprehensive understanding of ecosystem dynamics.
Publications on VOCs related to decomposition started in 2005, peaked in 2015 with 10 articles, and have shown a gradual increase in recent years. This indicates a sustained interest in studying the chemical cues emitted by decomposing remains and their role in attracting insects. VOCs play a crucial role in the detection and attraction of insects to decaying matter, highlighting the importance of understanding the chemical ecology of decomposition.

Drugs and toxins

Drugs and toxins can have a significant effect on the decomposition process and the interpretation of forensic evidence [50]. The presence of drugs (prescribed or illicit) or other toxins in a deceased individual’s system can influence the rate and pattern of decomposition, yet these effects are largely unknown, leading to unquantifiable errors in PMI estimations [113]. The use of human cadavers in forensic research has steadily increased over the years through the advent of outdoor human taphonomy facilities [114]. However, there is limited research which investigates or considers the effect of peri-mortem treatments on cadaver decomposition, despite the availabilities of such facilities, and evidence which suggests these intrinsic factors introduce variability in decay rates [18, 60, 115]. Certain chemicals, such as antibiotics or preservatives, is intended to inhibit microbial activity in living individuals but may have subsequent impacts on the bouquet of VOCs released from a body after death, although there is no current literature to support this idea yet [116]. On the other hand, there are substances such as illicit and prescription drugs, which can accelerate the decomposition process through various mechanisms [117]. Understanding the effects of drugs and other toxins on decomposition can help forensic scientists accurately estimate the time since death and interpret decomposition patterns in medicolegal investigations.
The distribution of scientific disciplines in drug and other toxin related articles pertaining to decomposition science offers valuable insights into the research focus and practical applications within this field. Our review identified that most of the reviewed articles (12) were within the forensic science discipline. Forensic science plays a crucial role in determining the cause and circumstances of death, estimating the PMI, and providing evidence for legal proceedings [50, 93, 118, 119]. The inclusion of drug and toxin research in forensic contexts reflects the importance of understanding the effects of these chemicals on decomposition processes [2, 37, 50]. By examining drugs and other toxins in decomposition, forensic scientists can enhance their ability to accurately interpret decomposed remains and provide more precise forensic analyses based on decomposition rates and toxin half-lives [49, 51, 58, 59].
Additionally, a few articles were categorised under other combination fields of forensic/veterinary (1) and forensic/medicine (3). These interdisciplinary approaches demonstrate the recognition of the broader applications of drugs and toxins research in decomposition science. Veterinary forensic science investigates animal deaths and crimes [93, 120], while forensic medicine focuses on the application of medical knowledge to legal issues. The inclusion of drugs and other toxins aspects in these fields suggests the importance of understanding the role of these chemicals in the decomposition of animal remains and in cases involving medical contexts, such as drug-related deaths or medical malpractice [121]. The limited representation of drug and toxin studies in ecological or medical contexts suggests potential areas for future research. Exploring the ecological impacts of pharmaceutical residues or other high profile chemical contaminants (e.g., PFAS) during decomposition or investigating the effects of drugs on other DoV such as the microbiome, insect behaviour and VOCs, could provide valuable insights into broader ecological and medical implications.
There does not appear to be a clear trend in the publication of articles related to drugs and other toxins in decomposition science. The number of publications in this area has been relatively stable, with no significant increase or decrease over the years. While not exhibiting a notable trend, the consistent publication of articles indicates the ongoing interest in understanding the interaction between the effect of drugs and toxins and decomposition.

Multidisciplinary approach to decomposition research

Collaboration among researchers specialising in various aspects of decomposition science is essential for bridging the gap between scientific disciplines and achieving a more holistic understanding of the field. By fostering interdisciplinary collaboration between experts in microbial ecology, entomology, chemistry, pharmacology, and forensic science, we can explore the synergistic effects, feedback loops, and complex interactions between the drivers of variation in decay. Forensic science is crucial to the administration of justice, with a call to aid being issued by many researchers, for the larger scientific community to advocate for more collaborative research, which is systematic, reliable, and affordable [119]. This has also been encouraged to extend beyond a forensic application, and to also be applied to other areas of decomposition research, such as ecology [122]. Our review highlights missed opportunities in a multidisciplinary approach to decomposition science due to a clear gap in the literature where a variety of DoV are studied. The authors have in a previous article highlighted how to bridge this gap in one-dimension, however, the evidence shows that there is more to be done in a multidisciplinary space considering a multitude of DoV [5]. Multidisciplinary studies will assist in providing a comprehensive understanding of decomposition science, which will not only enhance forensic investigations but also contribute to ecological research and conservation efforts by uncovering the ecological processes underlying nutrient recycling and ecosystem functioning.

Implications and conclusions

Our findings underscore the need to improve understanding of the interconnectedness of different drivers of variation in decay and their collective impact on decomposition processes. Although our study is not an exhaustive review of all literature surrounding decomposition science, it provides a foundation for future research and supports the need for decomposition science to incorporate greater sophistication into their design, such as building on the necrobiome concept or other multidisciplinary models. Such research is needed to investigate the relationships between microbes, insects, PAI and oviposition, VOCs, and drugs/toxins, with an emphasis on collaborative efforts within the decomposition science community. By collaborating across multiple disciplines, we can advance our understanding of decomposition science and contribute to a more comprehensive and holistic perspective of this crucial ecological process.

Acknowledgements

The author(s) sincerely thank Federation University for the opportunity to conduct and support of this review.

Declarations

Competing interests

The authors have no competing interests.

Compliance with ethical standards

Not applicable.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Literatur
1.
Zurück zum Zitat Amendt J, Krettek R, Zehner R (2004) Forensic Entomol Naturwissenschaften 91(2):51–65CrossRef Amendt J, Krettek R, Zehner R (2004) Forensic Entomol Naturwissenschaften 91(2):51–65CrossRef
2.
Zurück zum Zitat Introna F, Campobasso CP, Goff ML (2001) Entomotoxicology Forensic Sci Int 120(1–2):42–47PubMedCrossRef Introna F, Campobasso CP, Goff ML (2001) Entomotoxicology Forensic Sci Int 120(1–2):42–47PubMedCrossRef
3.
Zurück zum Zitat Battan Horenstein M et al (2010) Decomposition and dipteran succession in pig carrion in central Argentina: ecological aspects and their importance in forensic science. Med Vet Entomol 24(1):16–25PubMedCrossRef Battan Horenstein M et al (2010) Decomposition and dipteran succession in pig carrion in central Argentina: ecological aspects and their importance in forensic science. Med Vet Entomol 24(1):16–25PubMedCrossRef
4.
Zurück zum Zitat Babcock NJ, Pechal JL, Benbow ME (2020) Adult blow fly (Diptera: Calliphoridae) Community structure across Urban-Rural landscapes in Michigan, United States. J Med Entomol 57(3):705–714PubMedCrossRef Babcock NJ, Pechal JL, Benbow ME (2020) Adult blow fly (Diptera: Calliphoridae) Community structure across Urban-Rural landscapes in Michigan, United States. J Med Entomol 57(3):705–714PubMedCrossRef
5.
Zurück zum Zitat Dawson BM et al (2023) Bridging the gap between decomposition theory and forensic research on postmortem interval. Int J Legal Med, : p. 1–10 Dawson BM et al (2023) Bridging the gap between decomposition theory and forensic research on postmortem interval. Int J Legal Med, : p. 1–10
6.
Zurück zum Zitat Barton PS, Bump JK (2019) Carrion decomposition Carrion ecology and management, : pp. 101–124 Barton PS, Bump JK (2019) Carrion decomposition Carrion ecology and management, : pp. 101–124
7.
Zurück zum Zitat Benbow ME et al (2013) Seasonal Necrophagous Insect Community Assembly during Vertebrate Carrion Decomposition. J Med Entomol 50(2):440–450PubMedCrossRef Benbow ME et al (2013) Seasonal Necrophagous Insect Community Assembly during Vertebrate Carrion Decomposition. J Med Entomol 50(2):440–450PubMedCrossRef
8.
Zurück zum Zitat Prado e, Castro C et al (2011) Blowflies (Diptera: Calliphoridae) activity in sun exposed and shaded carrion in Portugal. Ann De La Societe Entomologique De France 47(1–2):128–139 Prado e, Castro C et al (2011) Blowflies (Diptera: Calliphoridae) activity in sun exposed and shaded carrion in Portugal. Ann De La Societe Entomologique De France 47(1–2):128–139
9.
Zurück zum Zitat Sharanowski BJ, Walker EG, Anderson GS (2008) Insect succession and decomposition patterns on shaded and sunlit carrion in Saskatchewan in three different seasons. Forensic Sci Int 179(2–3):219–240PubMedCrossRef Sharanowski BJ, Walker EG, Anderson GS (2008) Insect succession and decomposition patterns on shaded and sunlit carrion in Saskatchewan in three different seasons. Forensic Sci Int 179(2–3):219–240PubMedCrossRef
10.
Zurück zum Zitat Archer MS (2004) Rainfall and temperature effects on the decomposition rate of exposed neonatal remains. Sci Justice 44(1):35–41PubMedCrossRef Archer MS (2004) Rainfall and temperature effects on the decomposition rate of exposed neonatal remains. Sci Justice 44(1):35–41PubMedCrossRef
11.
Zurück zum Zitat Voss SC, Cook DF, Dadour IR (2011) Decomposition and insect succession of clothed and unclothed carcasses in Western Australia. Forensic Sci Int 211(1–3):67–75PubMedCrossRef Voss SC, Cook DF, Dadour IR (2011) Decomposition and insect succession of clothed and unclothed carcasses in Western Australia. Forensic Sci Int 211(1–3):67–75PubMedCrossRef
13.
Zurück zum Zitat Carter DO, Yellowlees D, Tibbett M (2007) Cadaver decomposition in terrestrial ecosystems. Naturwissenschaften 94(1):12–24PubMedCrossRef Carter DO, Yellowlees D, Tibbett M (2007) Cadaver decomposition in terrestrial ecosystems. Naturwissenschaften 94(1):12–24PubMedCrossRef
14.
Zurück zum Zitat Jordan HR, Tomberlin JK (2017) Abiotic and biotic factors regulating Inter-kingdom Engagement between insects and Microbe Activity on Vertebrate remains. Insects 8(2):19CrossRef Jordan HR, Tomberlin JK (2017) Abiotic and biotic factors regulating Inter-kingdom Engagement between insects and Microbe Activity on Vertebrate remains. Insects 8(2):19CrossRef
15.
Zurück zum Zitat Pechal JL et al (2013) Microbial Community Functional Change during Vertebrate Carrion Decomposition. PLoS ONE 8(11):11CrossRef Pechal JL et al (2013) Microbial Community Functional Change during Vertebrate Carrion Decomposition. PLoS ONE 8(11):11CrossRef
16.
Zurück zum Zitat Benbow ME et al (2019) Necrobiome framework for bridging decomposition ecology of autotrophically and heterotrophically derived organic matter. Ecol Monogr 89(1):29CrossRef Benbow ME et al (2019) Necrobiome framework for bridging decomposition ecology of autotrophically and heterotrophically derived organic matter. Ecol Monogr 89(1):29CrossRef
17.
Zurück zum Zitat Simmons T et al (2010) The influence of insects on decomposition rate in buried and Surface remains. J Forensic Sci 55(4):889–892PubMedCrossRef Simmons T et al (2010) The influence of insects on decomposition rate in buried and Surface remains. J Forensic Sci 55(4):889–892PubMedCrossRef
18.
Zurück zum Zitat Dawson BM, Barton PS, Wallman JF (2020) Contrasting insect activity and decomposition of pigs and humans in an Australian environment: a preliminary study. Forensic Science International, p 316 Dawson BM, Barton PS, Wallman JF (2020) Contrasting insect activity and decomposition of pigs and humans in an Australian environment: a preliminary study. Forensic Science International, p 316
19.
Zurück zum Zitat von Hoermann C et al (2022) Linking bacteria, volatiles and insects on carrion: the role of temporal and spatial factors regulating inter-kingdom communication via volatiles, vol 9. Royal Society Open Science, 8 von Hoermann C et al (2022) Linking bacteria, volatiles and insects on carrion: the role of temporal and spatial factors regulating inter-kingdom communication via volatiles, vol 9. Royal Society Open Science, 8
20.
Zurück zum Zitat Clases D et al (2021) Quantitative speciation of volatile sulphur compounds from human cadavers by GC-ICP-MS. Talanta, 221 Clases D et al (2021) Quantitative speciation of volatile sulphur compounds from human cadavers by GC-ICP-MS. Talanta, 221
21.
Zurück zum Zitat Irish L et al (2019) Identification of decomposition volatile organic compounds from surface-deposited and submerged porcine remains. Sci Justice 59(5):503–515PubMedCrossRef Irish L et al (2019) Identification of decomposition volatile organic compounds from surface-deposited and submerged porcine remains. Sci Justice 59(5):503–515PubMedCrossRef
22.
Zurück zum Zitat Paczkowski S et al (2012) Decaying mouse volatiles perceived by Calliphora vicina Rob.-Desv. J Forensic Sci 57(6):1497–1506PubMedCrossRef Paczkowski S et al (2012) Decaying mouse volatiles perceived by Calliphora vicina Rob.-Desv. J Forensic Sci 57(6):1497–1506PubMedCrossRef
23.
Zurück zum Zitat Butler-Valverde MJ et al (2022) Carcass appearance does not influence scavenger avoidance of Carnivore Carrion. Sci Rep, 12(1) Butler-Valverde MJ et al (2022) Carcass appearance does not influence scavenger avoidance of Carnivore Carrion. Sci Rep, 12(1)
24.
Zurück zum Zitat Core Team R (2022) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2012 Core Team R (2022) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2012
25.
Zurück zum Zitat Wickham H, Wickham H (2016) Data analysis. Springer Wickham H, Wickham H (2016) Data analysis. Springer
26.
Zurück zum Zitat AI O (2023) ChatGPT (Mar 14 version) [Large language model] AI O (2023) ChatGPT (Mar 14 version) [Large language model]
28.
Zurück zum Zitat Benedetti B et al (2019) From womb to tomb; we’re bound to others: microbiome in forensic science. J Pediatr Neonatal Individualized Med 8(2):6 Benedetti B et al (2019) From womb to tomb; we’re bound to others: microbiome in forensic science. J Pediatr Neonatal Individualized Med 8(2):6
29.
Zurück zum Zitat Aneyo I et al (2020) Aerobic microbe community and necrophagous insects associated with decomposition of pig carrion poisoned with lead. Leg Med 42:7CrossRef Aneyo I et al (2020) Aerobic microbe community and necrophagous insects associated with decomposition of pig carrion poisoned with lead. Leg Med 42:7CrossRef
31.
Zurück zum Zitat AbouZied EM (2016) Postmortem attraction of Sarcosaprophagous Diptera to Tramadol-treated rats and morphometric aspects of the developed larvae. Neotrop Entomol 45(3):326–332PubMedCrossRef AbouZied EM (2016) Postmortem attraction of Sarcosaprophagous Diptera to Tramadol-treated rats and morphometric aspects of the developed larvae. Neotrop Entomol 45(3):326–332PubMedCrossRef
32.
Zurück zum Zitat Al-Qahtni A et al (2021) Seasonal impact of heroin on rabbit carcass decomposition and insect succession. J Med Entomol 58(2):567–575PubMedCrossRef Al-Qahtni A et al (2021) Seasonal impact of heroin on rabbit carcass decomposition and insect succession. J Med Entomol 58(2):567–575PubMedCrossRef
33.
Zurück zum Zitat Mashaly A, Al-Khalifa M, Al-Qahtni A (2020) Chrysomya Albiceps Wiedemann (Diptera: Calliphoridae) colonising poisoned rabbit carcasses. Entomol Res 50(11):552–560CrossRef Mashaly A, Al-Khalifa M, Al-Qahtni A (2020) Chrysomya Albiceps Wiedemann (Diptera: Calliphoridae) colonising poisoned rabbit carcasses. Entomol Res 50(11):552–560CrossRef
34.
Zurück zum Zitat Jales JT et al (2020) Carrion decomposition and assemblage of necrophagous dipterans associated with Terbufos (Organophosphate) intoxicated rat carcasses. Acta Trop, 212 Jales JT et al (2020) Carrion decomposition and assemblage of necrophagous dipterans associated with Terbufos (Organophosphate) intoxicated rat carcasses. Acta Trop, 212
35.
Zurück zum Zitat Mahat NA, Zafarina Z, Jayaprakash PT (2009) Influence of rain and malathion on the oviposition and development of blowflies (Diptera: Calliphoridae) infesting rabbit carcasses in Kelantan, Malaysia. Forensic Sci Int 192(1–3):19–28PubMedCrossRef Mahat NA, Zafarina Z, Jayaprakash PT (2009) Influence of rain and malathion on the oviposition and development of blowflies (Diptera: Calliphoridae) infesting rabbit carcasses in Kelantan, Malaysia. Forensic Sci Int 192(1–3):19–28PubMedCrossRef
36.
Zurück zum Zitat Mahat NA, Jayaprakash PT, Zafarina Z (2012) Malathion extraction from larvae of Chrysomya megacephala (Fabricius) (Diptera: Calliphoridae) for determining death due to malathion. Trop Biomed 29(1):9–17PubMed Mahat NA, Jayaprakash PT, Zafarina Z (2012) Malathion extraction from larvae of Chrysomya megacephala (Fabricius) (Diptera: Calliphoridae) for determining death due to malathion. Trop Biomed 29(1):9–17PubMed
37.
Zurück zum Zitat Shi YW et al (2010) Effects of Malathion on the insect succession and the development of Chrysomya megacephala (Diptera: Calliphoridae) in the Field and implications for estimating Postmortem interval. Am J Forensic Med Pathol 31(1):46–51CrossRef Shi YW et al (2010) Effects of Malathion on the insect succession and the development of Chrysomya megacephala (Diptera: Calliphoridae) in the Field and implications for estimating Postmortem interval. Am J Forensic Med Pathol 31(1):46–51CrossRef
38.
Zurück zum Zitat Liu X et al (2009) Determination of Malathion levels and its effect on the development of Chrysomya megacephala (Fabricius) in South China. Forensic Sci Int 192(1–3):14–18PubMedCrossRef Liu X et al (2009) Determination of Malathion levels and its effect on the development of Chrysomya megacephala (Fabricius) in South China. Forensic Sci Int 192(1–3):14–18PubMedCrossRef
39.
Zurück zum Zitat Jales JT et al (2021) Effect of Terbufos (Organophosphate) on the cadaveric colonization process: implications for postmortem interval calculation. J Med Entomol 58(3):1056–1063PubMedCrossRef Jales JT et al (2021) Effect of Terbufos (Organophosphate) on the cadaveric colonization process: implications for postmortem interval calculation. J Med Entomol 58(3):1056–1063PubMedCrossRef
40.
Zurück zum Zitat Saber TM et al (2021) Identification of forensically important insects on atrazine-intoxicated rat carcasses at different decomposition stages during summer season. Slovenian Veterinary Res 58:373–387 Saber TM et al (2021) Identification of forensically important insects on atrazine-intoxicated rat carcasses at different decomposition stages during summer season. Slovenian Veterinary Res 58:373–387
41.
Zurück zum Zitat Abd El-Bar MM, Sawaby RF (2011) A preliminary investigation of insect colonization and succession on remains of rabbits treated with an organophosphate insecticide in El-Qalyubiya Governorate of Egypt. Forensic Sci Int 208(1–3):E26–E30PubMedCrossRef Abd El-Bar MM, Sawaby RF (2011) A preliminary investigation of insect colonization and succession on remains of rabbits treated with an organophosphate insecticide in El-Qalyubiya Governorate of Egypt. Forensic Sci Int 208(1–3):E26–E30PubMedCrossRef
42.
Zurück zum Zitat Shelomi M et al (2012) DEET (N,N-Diethyl-meta-toluamide) Induced Delay of Blowfly Landing and Oviposition Rates on Treated Pig Carrion (Sus scrofa L). J Forensic Sci 57(6):1507–1511PubMedCrossRef Shelomi M et al (2012) DEET (N,N-Diethyl-meta-toluamide) Induced Delay of Blowfly Landing and Oviposition Rates on Treated Pig Carrion (Sus scrofa L). J Forensic Sci 57(6):1507–1511PubMedCrossRef
43.
Zurück zum Zitat Malainey SL, Anderson GS (2020) Effect of arson fires on survivability of entomological evidence on carcasses inside vehicle trunks. Forensic Science International, p 306 Malainey SL, Anderson GS (2020) Effect of arson fires on survivability of entomological evidence on carcasses inside vehicle trunks. Forensic Science International, p 306
44.
Zurück zum Zitat Aubernon C et al (2015) Experimental study of Lucilia Sericata (Diptera Calliphoridae) larval development on rat cadavers: effects of climate and chemical contamination. Forensic Sci Int 253:125–130PubMedCrossRef Aubernon C et al (2015) Experimental study of Lucilia Sericata (Diptera Calliphoridae) larval development on rat cadavers: effects of climate and chemical contamination. Forensic Sci Int 253:125–130PubMedCrossRef
45.
Zurück zum Zitat Rumiza AR et al (2010) An observation on the decomposition process of gasoline-ingested monkey carcasses in a secondary forest in Malaysia. Trop Biomed 27(3):373–383PubMed Rumiza AR et al (2010) An observation on the decomposition process of gasoline-ingested monkey carcasses in a secondary forest in Malaysia. Trop Biomed 27(3):373–383PubMed
46.
Zurück zum Zitat Malainey SL, Anderson GS (2020) Impact of confinement in vehicle trunks on decomposition and entomological colonization of carcasses. PLoS ONE, 15(4) Malainey SL, Anderson GS (2020) Impact of confinement in vehicle trunks on decomposition and entomological colonization of carcasses. PLoS ONE, 15(4)
47.
Zurück zum Zitat Voss SC, Forbes SL, Dadour IR (2008) Decomposition and insect succession on cadavers inside a vehicle environment. Forensic Sci Med Pathol 4(1):22–32PubMedCrossRef Voss SC, Forbes SL, Dadour IR (2008) Decomposition and insect succession on cadavers inside a vehicle environment. Forensic Sci Med Pathol 4(1):22–32PubMedCrossRef
48.
Zurück zum Zitat Al-Mekhlafi FA et al (2020) A study of insect succession of forensic importance: Dipteran flies (diptera) in two different habitats of small rodents in Riyadh City, Saudi Arabia. J King Saud Univ Sci 32(7):3111–3118CrossRef Al-Mekhlafi FA et al (2020) A study of insect succession of forensic importance: Dipteran flies (diptera) in two different habitats of small rodents in Riyadh City, Saudi Arabia. J King Saud Univ Sci 32(7):3111–3118CrossRef
49.
Zurück zum Zitat Al-Khalifa M, Mashaly A, Al-Qahtni A (2021) Impacts of antemortem ingestion of alcoholic beverages on insect successional patterns. Saudi J Biol Sci 28(1):685–692PubMedCrossRef Al-Khalifa M, Mashaly A, Al-Qahtni A (2021) Impacts of antemortem ingestion of alcoholic beverages on insect successional patterns. Saudi J Biol Sci 28(1):685–692PubMedCrossRef
50.
Zurück zum Zitat McIntyre DB, Conlan X, Harvey ML (2022) The effects of hydrated lime and bleach on carrion decomposition and associated insect succession. Australian Journal of Forensic Sciences McIntyre DB, Conlan X, Harvey ML (2022) The effects of hydrated lime and bleach on carrion decomposition and associated insect succession. Australian Journal of Forensic Sciences
51.
Zurück zum Zitat Charabidze D et al (2009) Repellent effect of some household products on fly attraction to cadavers. Forensic Sci Int 189(1–3):28–33PubMedCrossRef Charabidze D et al (2009) Repellent effect of some household products on fly attraction to cadavers. Forensic Sci Int 189(1–3):28–33PubMedCrossRef
52.
Zurück zum Zitat Mahat NA, Yin CL, Jayaprakash PT (2014) Influence of paraquat on Chrysomya megacephala (Fabricius) (Diptera: Calliphoridae) infesting minced-beef substrates in Kelantan, Malaysia. J Forensic Sci 59(2):529–532PubMedCrossRef Mahat NA, Yin CL, Jayaprakash PT (2014) Influence of paraquat on Chrysomya megacephala (Fabricius) (Diptera: Calliphoridae) infesting minced-beef substrates in Kelantan, Malaysia. J Forensic Sci 59(2):529–532PubMedCrossRef
53.
Zurück zum Zitat Bugelli V et al (2017) Entomotoxicology in burnt bodies: a case of maternal filicide-suicide by fire. Int J Legal Med 131(5):1299–1306PubMedCrossRef Bugelli V et al (2017) Entomotoxicology in burnt bodies: a case of maternal filicide-suicide by fire. Int J Legal Med 131(5):1299–1306PubMedCrossRef
54.
Zurück zum Zitat Essarras A et al (2018) The effect of antifreeze (ethylene glycol) on the survival and the life cycle of two species of necrophagous blowflies (Diptera: Calliphoridae), vol 58. Science & Justice, pp 85–. 2 Essarras A et al (2018) The effect of antifreeze (ethylene glycol) on the survival and the life cycle of two species of necrophagous blowflies (Diptera: Calliphoridae), vol 58. Science & Justice, pp 85–. 2
55.
Zurück zum Zitat Denis CI et al (2018) Influence of citronella and chlorpyrifos on Chrysomya megacephala (Fabricius) and Chrysomya rufifacies (Macquart) (Diptera: Calliphoridae) infesting rabbit carcasses. Trop Biomed 35(3):755–768PubMed Denis CI et al (2018) Influence of citronella and chlorpyrifos on Chrysomya megacephala (Fabricius) and Chrysomya rufifacies (Macquart) (Diptera: Calliphoridae) infesting rabbit carcasses. Trop Biomed 35(3):755–768PubMed
56.
Zurück zum Zitat Groth O et al (2022) Unexpected results found in larvae samples from two postmortem forensic cases. Forensic Toxicol 40(1):144–155PubMedCrossRef Groth O et al (2022) Unexpected results found in larvae samples from two postmortem forensic cases. Forensic Toxicol 40(1):144–155PubMedCrossRef
57.
Zurück zum Zitat Mella M et al (2018) Detection of Cocaine and metabolites in Bone following decomposition using 2D LC-MS-MS. J Anal Toxicol 42(4):265–275PubMedCrossRef Mella M et al (2018) Detection of Cocaine and metabolites in Bone following decomposition using 2D LC-MS-MS. J Anal Toxicol 42(4):265–275PubMedCrossRef
58.
Zurück zum Zitat Morrison LM, Unger KA, Watterson JH (2017) Analysis of Dextromethorphan and Dextrorphan in skeletal remains following Differential Microclimate exposure: comparison of Acute vs. repeated drug exposure. J Anal Toxicol 41(6):566–572PubMedCrossRef Morrison LM, Unger KA, Watterson JH (2017) Analysis of Dextromethorphan and Dextrorphan in skeletal remains following Differential Microclimate exposure: comparison of Acute vs. repeated drug exposure. J Anal Toxicol 41(6):566–572PubMedCrossRef
59.
Zurück zum Zitat Cornthwaite HM, Watterson JH (2014) The influence of body position and microclimate on ketamine and metabolite distribution in decomposed skeletal remains. J Anal Toxicol 38(8):548–554PubMedCrossRef Cornthwaite HM, Watterson JH (2014) The influence of body position and microclimate on ketamine and metabolite distribution in decomposed skeletal remains. J Anal Toxicol 38(8):548–554PubMedCrossRef
60.
Zurück zum Zitat Hayman J, Oxenham M (2016) Peri-mortem disease treatment: a little known cause of error in the estimation of the time since death in decomposing human remains. Australian J Forensic Sci 48(2):171–185CrossRef Hayman J, Oxenham M (2016) Peri-mortem disease treatment: a little known cause of error in the estimation of the time since death in decomposing human remains. Australian J Forensic Sci 48(2):171–185CrossRef
61.
Zurück zum Zitat Chen H, Xiang P, Shen M (2014) Determination of clozapine in hair and nail: the role of keratinous biological materials in the identification of a bloated cadaver case. J Forensic Leg Med 22:62–67PubMedCrossRef Chen H, Xiang P, Shen M (2014) Determination of clozapine in hair and nail: the role of keratinous biological materials in the identification of a bloated cadaver case. J Forensic Leg Med 22:62–67PubMedCrossRef
62.
Zurück zum Zitat Desrosiers NA et al (2012) Detection of Amitriptyline, Citalopram, and metabolites in Porcine bones following extended Outdoor Decomposition*. J Forensic Sci 57(2):544–549PubMedCrossRef Desrosiers NA et al (2012) Detection of Amitriptyline, Citalopram, and metabolites in Porcine bones following extended Outdoor Decomposition*. J Forensic Sci 57(2):544–549PubMedCrossRef
63.
Zurück zum Zitat Bonete GP et al (2018) Strichnyne and Delorazepam detection in bone human remains. A case report. Romanian J Legal Med 26(3):298–301 Bonete GP et al (2018) Strichnyne and Delorazepam detection in bone human remains. A case report. Romanian J Legal Med 26(3):298–301
64.
Zurück zum Zitat McGrath KK, Jenkins AJ (2009) Detection of drugs of forensic importance in Postmortem Bone. Am J Forensic Med Pathol 30(1):40–44PubMedCrossRef McGrath KK, Jenkins AJ (2009) Detection of drugs of forensic importance in Postmortem Bone. Am J Forensic Med Pathol 30(1):40–44PubMedCrossRef
65.
Zurück zum Zitat Hilal MG et al (2021) Exploring microbial communities, assessment methodologies and applications of animal’s carcass decomposition: a review. FEMS Microbiol Ecol 97(8):13CrossRef Hilal MG et al (2021) Exploring microbial communities, assessment methodologies and applications of animal’s carcass decomposition: a review. FEMS Microbiol Ecol 97(8):13CrossRef
66.
Zurück zum Zitat Ceciliason AS et al (2021) Microbial neoformation of volatiles: implications for the estimation of post-mortem interval in decomposed human remains in an indoor setting. Int J Legal Med 135(1):223–233PubMedCrossRef Ceciliason AS et al (2021) Microbial neoformation of volatiles: implications for the estimation of post-mortem interval in decomposed human remains in an indoor setting. Int J Legal Med 135(1):223–233PubMedCrossRef
67.
Zurück zum Zitat Dash HR, Das S (2020) Thanatomicrobiome and epinecrotic community signatures for estimation of post-mortem time interval in human cadaver. Appl Microbiol Biotechnol 104(22):9497–9512PubMedCrossRef Dash HR, Das S (2020) Thanatomicrobiome and epinecrotic community signatures for estimation of post-mortem time interval in human cadaver. Appl Microbiol Biotechnol 104(22):9497–9512PubMedCrossRef
68.
Zurück zum Zitat Iancu L, Junkins EN, Purcarea C (2018) Characterization and microbial analysis of first recorded observation of Conicera similis Haliday (Diptera: Phoridae) in forensic decomposition study in Romania. J Forensic Leg Med 58:50–55PubMedCrossRef Iancu L, Junkins EN, Purcarea C (2018) Characterization and microbial analysis of first recorded observation of Conicera similis Haliday (Diptera: Phoridae) in forensic decomposition study in Romania. J Forensic Leg Med 58:50–55PubMedCrossRef
69.
Zurück zum Zitat Trumbo ST, Newton AF (2022) Microbial volatiles and succession of beetles on small carrion. Ecol Entomol 47(5):758–769CrossRef Trumbo ST, Newton AF (2022) Microbial volatiles and succession of beetles on small carrion. Ecol Entomol 47(5):758–769CrossRef
70.
Zurück zum Zitat Deel HL et al (2022) The microbiome of fly organs and fly-human microbial transfer during decomposition. Forensic Sci Int 340:11CrossRef Deel HL et al (2022) The microbiome of fly organs and fly-human microbial transfer during decomposition. Forensic Sci Int 340:11CrossRef
71.
Zurück zum Zitat Burcham ZM et al (2019) Bacterial community succession, transmigration, and differential gene transcription in a controlled vertebrate decomposition model. Front Microbiol 10:745PubMedPubMedCentralCrossRef Burcham ZM et al (2019) Bacterial community succession, transmigration, and differential gene transcription in a controlled vertebrate decomposition model. Front Microbiol 10:745PubMedPubMedCentralCrossRef
73.
Zurück zum Zitat Pechal JL, Benbow ME (2016) Microbial ecology of the salmon necrobiome: evidence salmon carrion decomposition influences aquatic and terrestrial insect microbiomes. Environ Microbiol 18(5):1511–1522PubMedCrossRef Pechal JL, Benbow ME (2016) Microbial ecology of the salmon necrobiome: evidence salmon carrion decomposition influences aquatic and terrestrial insect microbiomes. Environ Microbiol 18(5):1511–1522PubMedCrossRef
74.
Zurück zum Zitat Deel H et al (2021) A pilot study of Microbial Succession in Human Rib skeletal remains during terrestrial decomposition. Msphere 6(4):16CrossRef Deel H et al (2021) A pilot study of Microbial Succession in Human Rib skeletal remains during terrestrial decomposition. Msphere 6(4):16CrossRef
75.
Zurück zum Zitat Finley SJ et al (2016) Microbial signatures of Cadaver Gravesoil during decomposition. Microb Ecol 71(3):524–529PubMedCrossRef Finley SJ et al (2016) Microbial signatures of Cadaver Gravesoil during decomposition. Microb Ecol 71(3):524–529PubMedCrossRef
77.
Zurück zum Zitat Dangerfield CR et al (2020) Succession of bacterial communities on carrion is independent of vertebrate scavengers. Peerj 8:23CrossRef Dangerfield CR et al (2020) Succession of bacterial communities on carrion is independent of vertebrate scavengers. Peerj 8:23CrossRef
78.
Zurück zum Zitat Weatherbee CR, Pechal JL, Benbow ME (2017) The dynamic Maggot Mass Microbiome. Ann Entomol Soc Am 110(1):45–53CrossRef Weatherbee CR, Pechal JL, Benbow ME (2017) The dynamic Maggot Mass Microbiome. Ann Entomol Soc Am 110(1):45–53CrossRef
79.
Zurück zum Zitat Vila J et al (2017) Methods of rapid diagnosis in clinical microbiology: clinical needs. Enferm Infecc Microbiol Clin 35(1):41–46PubMedCrossRef Vila J et al (2017) Methods of rapid diagnosis in clinical microbiology: clinical needs. Enferm Infecc Microbiol Clin 35(1):41–46PubMedCrossRef
80.
Zurück zum Zitat Asen D (2017) Song Ci (1186–1249), Father of World Legal Medicine: history, Science, and Forensic Culture in Contemporary China. East Asian Sci Technol Society-an Int J 11(2):185–207CrossRef Asen D (2017) Song Ci (1186–1249), Father of World Legal Medicine: history, Science, and Forensic Culture in Contemporary China. East Asian Sci Technol Society-an Int J 11(2):185–207CrossRef
81.
Zurück zum Zitat Maisonhaute J-E, Forbes SL (2023) Decomposition and insect succession on human cadavers in a humid, continental (Dfb) climate (Quebec, Canada). Int J Legal Med 137(2):493–509PubMedCrossRef Maisonhaute J-E, Forbes SL (2023) Decomposition and insect succession on human cadavers in a humid, continental (Dfb) climate (Quebec, Canada). Int J Legal Med 137(2):493–509PubMedCrossRef
82.
Zurück zum Zitat Pechal JL et al (2014) Delayed insect access alters carrion decomposition and necrophagous insect community assembly. Ecosphere 5(4):21CrossRef Pechal JL et al (2014) Delayed insect access alters carrion decomposition and necrophagous insect community assembly. Ecosphere 5(4):21CrossRef
83.
Zurück zum Zitat Barton PS, Evans MJ (2017) Insect biodiversity meets ecosystem function: differential effects of habitat and insects on carrion decomposition. Ecol Entomol 42(3):364–374CrossRef Barton PS, Evans MJ (2017) Insect biodiversity meets ecosystem function: differential effects of habitat and insects on carrion decomposition. Ecol Entomol 42(3):364–374CrossRef
84.
Zurück zum Zitat Palavesam A et al (2022) Occurrence of necrophagous flies of forensic importance in medico-legal cases in Tamil Nadu State, India. Egypt J Forensic Sci, 12(1) Palavesam A et al (2022) Occurrence of necrophagous flies of forensic importance in medico-legal cases in Tamil Nadu State, India. Egypt J Forensic Sci, 12(1)
85.
Zurück zum Zitat Owings CG et al (2022) Not by the Book: observations of delayed oviposition and re-colonization of human remains by blow flies. Insects, 13(10) Owings CG et al (2022) Not by the Book: observations of delayed oviposition and re-colonization of human remains by blow flies. Insects, 13(10)
86.
Zurück zum Zitat Park S-H et al (2022) Insect diversity and succession patterns on pig cadavers in Changwon, South Korea. Entomol Res 52(5):241–250CrossRef Park S-H et al (2022) Insect diversity and succession patterns on pig cadavers in Changwon, South Korea. Entomol Res 52(5):241–250CrossRef
87.
Zurück zum Zitat Mashaly A, Ibrahim A (2022) Forensic entomology research in Egypt: a review article. Egypt J Forensic Sci, 12(1) Mashaly A, Ibrahim A (2022) Forensic entomology research in Egypt: a review article. Egypt J Forensic Sci, 12(1)
88.
Zurück zum Zitat Babu BS et al (2022) Calliphorids as forensic indicator to facilitate PMI estimation: a case study from Chhattisgarh, India. J King Saud Univ Sci, 34(1) Babu BS et al (2022) Calliphorids as forensic indicator to facilitate PMI estimation: a case study from Chhattisgarh, India. J King Saud Univ Sci, 34(1)
89.
Zurück zum Zitat Wang Y et al (2021) Dynamics of insects, microorganisms and muscle mRNA on pig carcasses and their significances in estimating PMI. Forensic Science International, p 329 Wang Y et al (2021) Dynamics of insects, microorganisms and muscle mRNA on pig carcasses and their significances in estimating PMI. Forensic Science International, p 329
90.
Zurück zum Zitat Park S-H, Baek S-H, Moon T-Y (2021) The impact of blowflies on pig cadaver decomposition on Yeongdo Island, Busan, South Korea. Entomol Res 51(11):578–584CrossRef Park S-H, Baek S-H, Moon T-Y (2021) The impact of blowflies on pig cadaver decomposition on Yeongdo Island, Busan, South Korea. Entomol Res 51(11):578–584CrossRef
91.
Zurück zum Zitat Lutz L et al (2021) It is all about the insects: a retrospective on 20 years of forensic entomology highlights the importance of insects in legal investigations. Int J Legal Med 135(6):2637–2651PubMedPubMedCentralCrossRef Lutz L et al (2021) It is all about the insects: a retrospective on 20 years of forensic entomology highlights the importance of insects in legal investigations. Int J Legal Med 135(6):2637–2651PubMedPubMedCentralCrossRef
92.
Zurück zum Zitat Nair HKR et al (2021) Maggot Debridement Therapy in Malaysia. Int J Lower Extremity Wounds 20(3):208–216CrossRef Nair HKR et al (2021) Maggot Debridement Therapy in Malaysia. Int J Lower Extremity Wounds 20(3):208–216CrossRef
93.
Zurück zum Zitat Brundage A, Byrd JH (2016) Forensic entomology in Animal Cruelty cases. Vet Pathol 53(5):898–909PubMedCrossRef Brundage A, Byrd JH (2016) Forensic entomology in Animal Cruelty cases. Vet Pathol 53(5):898–909PubMedCrossRef
94.
Zurück zum Zitat Ives AR (1991) AGGREGATION AND COEXISTENCE IN A CARRION FLY COMMUNITY. Ecol Monogr 61(1):75–94CrossRef Ives AR (1991) AGGREGATION AND COEXISTENCE IN A CARRION FLY COMMUNITY. Ecol Monogr 61(1):75–94CrossRef
95.
Zurück zum Zitat Kouki J, Hanski I (1995) POPULATION AGGREGATION FACILITATES COEXISTENCE OF MANY COMPETING CARRION FLY SPECIES. Oikos 72(2):223–227CrossRef Kouki J, Hanski I (1995) POPULATION AGGREGATION FACILITATES COEXISTENCE OF MANY COMPETING CARRION FLY SPECIES. Oikos 72(2):223–227CrossRef
96.
Zurück zum Zitat Bonacci T et al (2016) Darkness as factor influencing the oviposition delay in Calliphora vicina (Diptera: Calliphoridae). J Forensic Leg Med 44:98–102PubMedCrossRef Bonacci T et al (2016) Darkness as factor influencing the oviposition delay in Calliphora vicina (Diptera: Calliphoridae). J Forensic Leg Med 44:98–102PubMedCrossRef
97.
Zurück zum Zitat Matuszewski S, Madra A (2015) Factors affecting quality of temperature models for the pre-appearance interval of forensically useful insects. Forensic Sci Int 247:28–35PubMedCrossRef Matuszewski S, Madra A (2015) Factors affecting quality of temperature models for the pre-appearance interval of forensically useful insects. Forensic Sci Int 247:28–35PubMedCrossRef
98.
Zurück zum Zitat Kotze Z et al (2021) Volatile organic compounds in variably aged carrion impacted by the presence of the primary colonizer, Cochliomyia macellaria (Diptera: Calliphoridae). Int J Legal Med 135(3):1005–1014PubMedCrossRef Kotze Z et al (2021) Volatile organic compounds in variably aged carrion impacted by the presence of the primary colonizer, Cochliomyia macellaria (Diptera: Calliphoridae). Int J Legal Med 135(3):1005–1014PubMedCrossRef
99.
Zurück zum Zitat Thummel L et al (2023) Decomposition and insect succession of pig cadavers in tents versus outdoors-A preliminary study. Forensic Sci Int 346:12CrossRef Thummel L et al (2023) Decomposition and insect succession of pig cadavers in tents versus outdoors-A preliminary study. Forensic Sci Int 346:12CrossRef
100.
Zurück zum Zitat Dawson BM, Barton PS, Wallman JF (2021) Field succession studies and casework can help to identify forensically useful Diptera. J Forensic Sci 66(6):2319–2328PubMedCrossRef Dawson BM, Barton PS, Wallman JF (2021) Field succession studies and casework can help to identify forensically useful Diptera. J Forensic Sci 66(6):2319–2328PubMedCrossRef
101.
Zurück zum Zitat Maria Recinos-Aguilar Y et al (2020) The succession of flies of forensic importance is influenced by volatiles Organic compounds Emitted during the first hours of decomposition of chicken remains. J Med Entomol 57(5):1411–1420CrossRef Maria Recinos-Aguilar Y et al (2020) The succession of flies of forensic importance is influenced by volatiles Organic compounds Emitted during the first hours of decomposition of chicken remains. J Med Entomol 57(5):1411–1420CrossRef
102.
Zurück zum Zitat Weithmann S et al (2020) The attraction of the Dung BeetleAnoplotrupes stercorosus(Coleoptera: Geotrupidae) to volatiles from Vertebrate cadavers. Insects, 11(8) Weithmann S et al (2020) The attraction of the Dung BeetleAnoplotrupes stercorosus(Coleoptera: Geotrupidae) to volatiles from Vertebrate cadavers. Insects, 11(8)
103.
Zurück zum Zitat Martin C et al (2020) Behavioral and electrophysiological responses of the Fringed Larder Beetle Dermestes frischii to the smell of a cadaver at different decomposition stages. Insects, 11(4) Martin C et al (2020) Behavioral and electrophysiological responses of the Fringed Larder Beetle Dermestes frischii to the smell of a cadaver at different decomposition stages. Insects, 11(4)
104.
Zurück zum Zitat Recinos-Aguilar YM et al (2019) The colonization of Necrophagous Larvae accelerates the Decomposition of Chicken Carcass and the Emission of Volatile attractants for blowflies (Diptera: Calliphoridae). J Med Entomol 56(6):1590–1597PubMedCrossRef Recinos-Aguilar YM et al (2019) The colonization of Necrophagous Larvae accelerates the Decomposition of Chicken Carcass and the Emission of Volatile attractants for blowflies (Diptera: Calliphoridae). J Med Entomol 56(6):1590–1597PubMedCrossRef
105.
Zurück zum Zitat Cappas VM, Davenport ER, Sykes DG (2022) The Microbiome and Volatile Organic Compounds Reflect the State of Decomposition in an Indoor Environment bioRxiv, : p. 2022.05. 18.492585 Cappas VM, Davenport ER, Sykes DG (2022) The Microbiome and Volatile Organic Compounds Reflect the State of Decomposition in an Indoor Environment bioRxiv, : p. 2022.05. 18.492585
106.
Zurück zum Zitat Weersma RK, Zhernakova A, Fu J (2020) Interaction between drugs and the gut microbiome. Gut 69(8):1510–1519PubMedCrossRef Weersma RK, Zhernakova A, Fu J (2020) Interaction between drugs and the gut microbiome. Gut 69(8):1510–1519PubMedCrossRef
107.
Zurück zum Zitat Liu W et al (2016) Responses of Lucilia Sericata (Diptera: Calliphoridae) to compounds from microbial decomposition of larval resources. Anim Behav 115:217–225CrossRef Liu W et al (2016) Responses of Lucilia Sericata (Diptera: Calliphoridae) to compounds from microbial decomposition of larval resources. Anim Behav 115:217–225CrossRef
108.
Zurück zum Zitat Yoho K (2019) Necrophilous insect attraction to cadaveric volatile organic compounds. Purdue University Yoho K (2019) Necrophilous insect attraction to cadaveric volatile organic compounds. Purdue University
109.
Zurück zum Zitat von Hoermann C et al (2011) The importance of carcass volatiles as attractants for the hide beetle Dermestes maculatus (De Geer). Forensic Sci Int 212(1–3):173–179CrossRef von Hoermann C et al (2011) The importance of carcass volatiles as attractants for the hide beetle Dermestes maculatus (De Geer). Forensic Sci Int 212(1–3):173–179CrossRef
110.
Zurück zum Zitat von Hoermann C, Ruther J, Ayasse M (2016) Volatile Organic compounds of decaying Piglet cadavers Perceived by Nicrophorus vespilloides. J Chem Ecol 42(8):756–767CrossRef von Hoermann C, Ruther J, Ayasse M (2016) Volatile Organic compounds of decaying Piglet cadavers Perceived by Nicrophorus vespilloides. J Chem Ecol 42(8):756–767CrossRef
111.
Zurück zum Zitat Dekeirsschieter J et al (2013) Electrophysiological and behavioral responses of Thanatophilus Sinuatus Fabricius (Coleoptera: Silphidae) to selected cadaveric volatile Organic compounds. J Forensic Sci 58(4):917–923PubMedCrossRef Dekeirsschieter J et al (2013) Electrophysiological and behavioral responses of Thanatophilus Sinuatus Fabricius (Coleoptera: Silphidae) to selected cadaveric volatile Organic compounds. J Forensic Sci 58(4):917–923PubMedCrossRef
112.
Zurück zum Zitat Dekeirsschieter J et al (2009) Cadaveric volatile organic compounds released by decaying pig carcasses (Sus domesticus L.) in different biotopes. Forensic Sci Int 189(1–3):46–53PubMedCrossRef Dekeirsschieter J et al (2009) Cadaveric volatile organic compounds released by decaying pig carcasses (Sus domesticus L.) in different biotopes. Forensic Sci Int 189(1–3):46–53PubMedCrossRef
113.
Zurück zum Zitat Dawnie W, Steadman PD, D-ABFA, et al The impact of drugs on human decomposition and the Postmortem interval: insect, scavenger and Microbial evidence. Office Justice Programs. 306199 p. 1–56 Dawnie W, Steadman PD, D-ABFA, et al The impact of drugs on human decomposition and the Postmortem interval: insect, scavenger and Microbial evidence. Office Justice Programs. 306199 p. 1–56
114.
Zurück zum Zitat Matuszewski S et al (2020) Pigs vs people: the use of pigs as analogues for humans in forensic entomology and taphonomy research. Int J Legal Med 134(2):793–810PubMedCrossRef Matuszewski S et al (2020) Pigs vs people: the use of pigs as analogues for humans in forensic entomology and taphonomy research. Int J Legal Med 134(2):793–810PubMedCrossRef
115.
Zurück zum Zitat Forbes S (2017) Body farms forensic science. Med Pathol 13(4):477–479 Forbes S (2017) Body farms forensic science. Med Pathol 13(4):477–479
116.
Zurück zum Zitat Raza W et al (2020) Bacterial community richness shifts the balance between volatile organic compound-mediated microbe-pathogen and microbe-plant interactions Proceedings of the Royal Society B-Biological Sciences, 287(1925) Raza W et al (2020) Bacterial community richness shifts the balance between volatile organic compound-mediated microbe-pathogen and microbe-plant interactions Proceedings of the Royal Society B-Biological Sciences, 287(1925)
117.
Zurück zum Zitat Zhou C, Byard RW (2011) Factors and processes causing accelerated decomposition in human cadavers - an overview. J Forensic Leg Med 18(1):6–9PubMedCrossRef Zhou C, Byard RW (2011) Factors and processes causing accelerated decomposition in human cadavers - an overview. J Forensic Leg Med 18(1):6–9PubMedCrossRef
118.
Zurück zum Zitat Byrd J, Sutton L (2020) Forensic entomology for the investigator. Wiley Interdisciplinary Reviews: Forensic Sci 2(4):14 Byrd J, Sutton L (2020) Forensic entomology for the investigator. Wiley Interdisciplinary Reviews: Forensic Sci 2(4):14
120.
Zurück zum Zitat Mahat NA et al (2016) Patterns of oviposition and development of Chrysomya megacephala (Fabricius) (Diptera: Calliphoridae) and Chrysomya rufifacies (Macquart) (Diptera: Calliphoridae) on burned rabbit carcasses. Forensic Sci Int 260:9–13PubMedCrossRef Mahat NA et al (2016) Patterns of oviposition and development of Chrysomya megacephala (Fabricius) (Diptera: Calliphoridae) and Chrysomya rufifacies (Macquart) (Diptera: Calliphoridae) on burned rabbit carcasses. Forensic Sci Int 260:9–13PubMedCrossRef
121.
Zurück zum Zitat Di Nunno N et al (2021) Pharmacogenetics and forensic toxicology: a New Step towards a Multidisciplinary Approach. Toxics 9(11):18CrossRef Di Nunno N et al (2021) Pharmacogenetics and forensic toxicology: a New Step towards a Multidisciplinary Approach. Toxics 9(11):18CrossRef
122.
Zurück zum Zitat Tomberlin JK et al (2011) Basic research in evolution and ecology enhances forensics. Trends Ecol Evol 26(2):53–55PubMedCrossRef Tomberlin JK et al (2011) Basic research in evolution and ecology enhances forensics. Trends Ecol Evol 26(2):53–55PubMedCrossRef
Metadaten
Titel
A review of multi-disciplinary decomposition research and key drivers of variation in decay
verfasst von
Donna B. McIntyre
Blake M. Dawson
Benjamin M. Long
Philip S. Barton
Publikationsdatum
16.04.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
International Journal of Legal Medicine
Print ISSN: 0937-9827
Elektronische ISSN: 1437-1596
DOI
https://doi.org/10.1007/s00414-024-03222-2

Neu im Fachgebiet Rechtsmedizin

Molekularpathologische Untersuchungen im Wandel der Zeit

Open Access Biomarker Leitthema

Um auch an kleinen Gewebeproben zuverlässige und reproduzierbare Ergebnisse zu gewährleisten ist eine strenge Qualitätskontrolle in jedem Schritt des Arbeitsablaufs erforderlich. Eine nicht ordnungsgemäße Prüfung oder Behandlung des …

Vergleichende Pathologie in der onkologischen Forschung

Pathologie Leitthema

Die vergleichende experimentelle Pathologie („comparative experimental pathology“) ist ein Fachbereich an der Schnittstelle von Human- und Veterinärmedizin. Sie widmet sich der vergleichenden Erforschung von Gemeinsamkeiten und Unterschieden von …

Gastrointestinale Stromatumoren

Open Access GIST CME-Artikel

Gastrointestinale Stromatumoren (GIST) stellen seit über 20 Jahren ein Paradigma für die zielgerichtete Therapie mit Tyrosinkinaseinhibitoren dar. Eine elementare Voraussetzung für eine mögliche neoadjuvante oder adjuvante Behandlung bei …

Personalisierte Medizin in der Onkologie

Aufgrund des erheblichen technologischen Fortschritts in der molekularen und genetischen Diagnostik sowie zunehmender Erkenntnisse über die molekulare Pathogenese von Krankheiten hat in den letzten zwei Jahrzehnten ein grundlegender …