Skip to main content
Erschienen in: Journal of Experimental & Clinical Cancer Research 1/2021

Open Access 01.12.2021 | Review

Aberrant Bcl-x splicing in cancer: from molecular mechanism to therapeutic modulation

verfasst von: Zhihui Dou, Dapeng Zhao, Xiaohua Chen, Caipeng Xu, Xiaodong Jin, Xuetian Zhang, Yupei Wang, Xiaodong Xie, Qiang Li, Cuixia Di, Hong Zhang

Erschienen in: Journal of Experimental & Clinical Cancer Research | Ausgabe 1/2021

Abstract

Bcl-x pre-mRNA splicing serves as a typical example to study the impact of alternative splicing in the modulation of cell death. Dysregulation of Bcl-x apoptotic isoforms caused by precarious equilibrium splicing is implicated in genesis and development of multiple human diseases, especially cancers. Exploring the mechanism of Bcl-x splicing and regulation has provided insight into the development of drugs that could contribute to sensitivity of cancer cells to death. On this basis, we review the multiple splicing patterns and structural characteristics of Bcl-x. Additionally, we outline the cis-regulatory elements, trans-acting factors as well as epigenetic modifications involved in the splicing regulation of Bcl-x. Furthermore, this review highlights aberrant splicing of Bcl-x involved in apoptosis evade, autophagy, metastasis, and therapy resistance of various cancer cells. Last, emphasis is given to the clinical role of targeting Bcl-x splicing correction in human cancer based on the splice-switching oligonucleotides, small molecular modulators and BH3 mimetics. Thus, it is highlighting significance of aberrant splicing isoforms of Bcl-x as targets for cancer therapy.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
Bcl-x
Bcl-extra
Bcl-2
B-cell lymphoma 2
SSOs
Splicing-switch oligonucleotide
5' PSS
Proximal 5' splice site
5' DSS
Distal 5' splice site
TM
Transmembrane
IDR
Intrinsically disordered region
MOMP
Mitochondrial outer membrane permeabilization
ROS
Reactive oxygen species
PKC
Protein kinase C inhibitor
GM-CSF
Granulocyte-macrophage colony-stimulating factor
SR
Serine/arginine-rich
hnRNPs
Heterogeneous nuclear ribonucleoproteins
EMT
Epithelial-mesenchymal transition
CML
Chronic myeloid leukaemia
vMO
Vivo-Morpholino
PS
Phosphorothiate
2'-OMe
2'-O-methyl
2'-MOE
2'-O-methoxyethyl
ESS
Exonic splicing silencer
ESE
Exonic splicing enhancer
PP1
Protein phosphatase 1

Background

Apoptosis regulator Bcl-extra (Bcl-x), also named BCL2L or BCL2L1, is a typical example of apoptotic response gene impacted by splicing. It is an essential member of B-cell lymphoma 2 (Bcl-2) apoptosis family that regulates cell fate [1, 2]. Bcl-x nascent transcripts are alternatively spliced and mainly encode two antagonistic isoforms. The long isoform Bcl-xL blocks apoptosis by inhibiting pro-apoptotic counterparts of Bcl-2 family, whereas the short isoform Bcl-xS can promote apoptosis [2]. An increasing body of data suggests that dysregulated expression of Bcl-x apoptotic isoforms contributes to multiple hallmarks of human cancers. For example, Bcl-xL level was strongly enhanced in cancer cells at the invasive forefront of human breast carcinomas and simultaneously acquired resistance to apoptotic stimuli [3, 4]. However, Bcl-xS conferred the therapeutic sensitivity by decreasing the apoptosis threshold [5]. The ratio of pro-apoptotic Bcl-xS and anti-apoptotic Bcl-xL proteins plays a vital role in regulating the switch between cell life and death. Hence, in this review, we summarize the patterns and the splicing regulatory network of Bcl-x pre-mRNA splicing. In addition, we describe how this aberrant splicing impacted apoptosis, autophagy, invasion and metastasis, immune response, as well as clinical therapy resistance in cancer. Furthermore, we outline the emerging strategies that modulate the cancerous Bcl-x splicing and restore the balance of Bcl-xL/Bcl-xS ratio. Targeting the oncogenic splicing of Bcl-x is believed to result in sensitized cell death by simultaneously blocking Bcl-xL and enhancing Bcl-xS splicing [6].

Splicing isoforms of Bcl-x

Alternative splicing expands the coding capacity of genomes of eukaryotes significantly through splice site selection (Fig. 1) [7]. Nearly >95% of human multi-exonic genes could be alternatively spliced into mRNAs isoforms [8]. Splicing reaction is orchestrated by a highly dynamic ribonucleoprotein complex known as spliceosome and hundreds of related proteins [9]. The spliceosome recognizes and assembles reversibly on pre-mRNA to catalytic splicing in a stepwise manner. This process is further modulated by a number of cis-acting elements and trans-acting factors (splice factors) bound to them [9]. Indeed, mutations in cis-regulatory sequences and spliceosomal associated proteins are enriched in cancer. These mutations always affect the splicing of cancer-related genes [10, 11]. A growing body of evidence has revealed aberrant splicing events as contributors of hallmarks of tumorigenesis, such as proliferation, angiogenesis, invasion and apoptosis (Fig. 1) [11, 12].
Bcl-x, a critical apoptotic gene of the Bcl-2 family, is located in chromosome 20 (20q11.1). It was first discovered by using Bcl-2 fluorescent probe hybridization in chickens [2]. Subsequently, two antagonistic isoforms of Bcl-x pre-mRNA in human body were isolated, which then were identified as Bcl-xL and Bcl-xS, respectively. Splicing selection closer to the proximal 5' splice site (5'PSS) of exon 2 resulted in the long anti-apoptosis isoform Bcl-xL (Fig. 2a), which contained four exons and was composed of 780 bp. The primary structure of Bcl-xL is composed of 233 aa, which contains C-terminal hydrophobic transmembrane (TM) domain responsible for the anchoring to membranes and all four BH domains (BH1-4) (Fig. 2b,c). When the splicing occurred near the cryptic distal 5' splice site (5' DSS) of exon 2, the short isoform pro-apoptotic Bcl-xS with 591 bp was produced. Stable Bcl-xS expression played an important role in regulating the ability of pro-survival genes to inhibit apoptotic cell death [2]. Bcl-xS protein is encoded by 170 aa containing both BH3, BH4, and TM domains but lacking BH1 and BH2 domains, which might lead to alternation of hydrophobicity. In addition, other splice isoforms encoded by Bcl-x also had been identified in different cell types and performed diverse functions (Fig. 2b) [1317]. Despite multiple isoforms that Bcl-x could splice, the pro-apoptotic Bcl-xS and anti-apoptotic Bcl-xL are still the predominant isoforms acting in cell fate.

Regulation of Bcl-x pre-mRNA splicing

Cis-regulatory elements

Cis-regulatory elements are short nucleotide motifs within pre-mRNA transcripts that providing binding sites for specific trans-acting factors. It can be categorized into exonic splicing enhancers (ESEs), exonic splicing silencers (ESSs), intronic splicing enhancers (ISEs) and intronic splicing silencers (ISSs) depending on their position and impact on the use of splice site [18] Bcl-x pre-mRNA contains several cis-elements acting as splicing activators or repressors by interacting with related splicing factors (Fig. 2a). For example, SB1 (361bp), located in the first half of exon 2, was defined as an ESE because splicing to Bcl-xS was even stronger in the absence of SB1. Similarly, DNA damage-induced Bcl-xS splicing only increased in the presence of SB1 [19]. In addition, B1 was a composite element located upstream of 5' DSS of Bcl-x pre-mRNA. The 5' portion of B1 displayed ESE activity, whereas the 3' portion was occupied with ESS element. hnRNP K bound to the silencer portion of B1 to repress the production of Bcl-xS [20]. Moreover, B2G module was a 30-nucleotides G-rich element located immediately downstream of the 5' DSS. Combination of hnRNP F/H to B2G enhanced Bcl-xS splicing. B3 located up-stream of 5'PSS to favor the production of Bcl-xL. The two elements ML2 and AM2 within B3 were identified to enhance Bcl-xL splicing through interacting with SRp30c [21]. Deleting B2G and B3 regions completely abrogated production of Bcl-xS and Bcl-xL respectively [22]. Another two cis-elements CRCE1 and CRCE2 within exon 2 were essential for ceramide-responsive Bcl-x expression. Mutation of CRCE1 or CRCE2 induced a decreased ratio of Bcl-xL/Bcl-xS [23]. In addition to exonic elements, the intron region downstream from Bcl-xL 5'PSS also had been identified to mediate signals from extracellular factors such as interleukin-6 and granulocyte-macrophage colony-stimulating factor (GM-CSF) to repress Bcl-xL splicing [24].

Trans-acting factors

A variety of trans-acting factors are involved in the formation of splicing regulatory network, including SR proteins, hnRNPs as well as some transcription factors (Fig. 2a) [25]. Posttranslational modifications of splicing factors would also change their binding state to cis-elements. For example, Sam68 bound to Bcl-x pre-mRNA specifically and recruited hnRNP A1 to a particular region, which caused the selection of Bcl-xS in a dose-dependent manner. This favor could be inverted by tyrosine phosphorylation of Sam68 [26]. In addition, SRSF1 was known to compete with hnRNPA1 to promote Bcl-xL splicing. However, the activity of SRSF1 itself was antagonized by splicing factors RBM4 and PTBP1 [27, 28]. Moreover, a multicomponent regulatory hub consisting of SRSF10, hnRNP A1/A2, and Sam68 was reported to activate the 5'DSS of Bcl-x in response to DNA damage [29]. Because alternative splicing is coupled to transcription, a large number of transcription factors were found to influence splicing selection. For instance, E2EF1 was suggested to increase Bcl-xS isoform through upregulating SRSF2 [30]. FBI -1 could interact with the full length or C-terminal domain of Sam68 to counteract Sam68-mediated apoptosis [31]. Moreover, TCERG1 [32], FOXP3 [33], ETS [34] as well as cellular signal pathways and other regulatory modes such as exon junction complex, G-rich sequences were all involved in Bcl-x splicing and had been summarized in Table 1 (Table 1).
Table 1
Trans-acting factors involved in Bcl-x splicing regulation
Regulation methods
Mechanism
Selection
Ref
RNA binding proteins
Sam68
Recruit hnRNP A1 to certain regions.
Bcl-xS
[26]
SRSF1 (ASF/SF2)
Compete with hnRNP A1.
Bcl-xL
[26, 35]
SRSF10
Collaborate with hnRNP A1/A2 and Sam68.
Bcl-xS
[29]
SRSF2 (SC35)
As a direct transcriptional target of E2F1.
Bcl-xS
[30]
SRSF3
Favor the selection of the 5' DSS.
Bcl-xS
[28]
SRSF7
Favor the selection of the 5' DSS.
Bcl-xL
[28]
SRSF9 (SRp30c)
Bind to ML2 and AM2.
Bcl-xL
[21]
TRA2β
Favored selection of the 5' DSS.
Bcl-xS
[28]
hnRNP F/H
Bind to B2G region.
Bcl-xS
[22, 36]
PTBP1 (hnRNP I)
Bind to polypyrimidine to promote 5' DSS selection
Bcl-xS
[28]
hnRNP A1
Interact with Sam68.
Bcl-xS
[25, 26]
hnRNP A2/B1
Regulated by Fyn activity.
Bcl-xL
[37]
hnRNP K
Bind to silencer element of the 5' DSS.
Bcl-xL
[20]
RBM4
Antagonize oncogenic SRSF1.
Bcl-xS
[38]
RBM10 (S1-1)
Block the GGGUAAG of exon 2.
Bcl-xS
[39]
RBM11
Antagonize SRSF1.
Bcl-xS
[40]
RBM25
Bind to CGGGCA sequence within exon 2.
Bcl-xS
[41]
Transcription factors
E2F1
Upregulate SC35 protein expression.
Bcl-xS
[30]
FBI-1
Interact with Sam68 and affects its binding.
Bcl-xL
[31]
TCERG1
Increase the elongation rate of RNAPII.
Bcl-xS
[32]
FOXP3
Repress hnRNPF binding to 5'DSS.
Bcl-xL
[33]
SAP155 (SF3B1)
Bind to CRCE 1 region.
Bcl-xL
[42]
Signal pathway
PKC signal
Through SB1 to repress the 5'DSS splicing.
Bcl-xL
[43]
PI3K/PKCι signal
Regulate SAP155-CRCE1 complex formation.
Bcl-xL
[44]
LPS/PRMT2 or TNF-α pathway
Interact with Sam68 and regulate its subcellular localization via its SH3 domain.
Bcl-xL
[45]
G4s and G4s ligands
G-quadruplexes (G4s)
Close to the two alternative 5'SS to compete with other RNA structures or proteins
Bcl-xS or Bcl-xL
[46, 47]
G-quadruplex ligands (GQC05)
Stabilize G-quadruplexes.
Bcl-xS
[46]
EJC
Exon junction complex ( EJC )
RNPS1 and core EJC proteins control Bcl-x splicing through cis-acting elements SB1.
Bcl-xL
[48]

Epigenetic modifications

Epigenetic modifications had been suggested to interplay intricately with alternative splicing [49]. It had been reported that DNA methylation at exons and splicing sites were involved in over 20% splicing modulation by regulating the elongation rate of RNA polymerase II primarily [50]. In other studies, the dynamic histone acetylation mark of H3K4me3 nucleosome played a critical role in Mcl-1 pre-mRNA splicing [51]. Moreover, N6-methyladenosine modification was indicated to regulate splicing by co-localization with splice sites and reshaping the structure of pre-mRNA [52]. However, there were poor reports about whether and how the epigenetic modifications mentioned above affected the splicing decision of Bcl-x pre-mRNA. To date, ncRNA was the most common epigenetic regulation identified to influence Bcl-x splicing that functions as 'interactors' or 'hijackers' of splicing factors [49]. LncRNA BC200, LINC00162 as well as LncRNA-HEIH had been shown to modulate Bcl-x pre-mRNA splicing effectively [5355]. To investigate the splicing mechanism regulated by ncRNA in-depth is necessary.

The function of aberrant Bcl-x splicing in cancer

Apoptosis

Apoptosis, characterized by a series of morphological alternations including cell shrinkage, pyknosis and karyorrhexis, plasma membrane blebbing and apoptotic body formation, is a mechanism for all multicellular organisms to modulate cell life development [56]. Abnormalities in apoptosis play a crucial role in the progression of various human disease like cancer [57]. Therefore, targeting apoptotic pathways has been a mainstay for the cancer drug discovery and development. There are two commonly established apoptotic pathways in mammals: the extrinsic pathway of apoptosis mediated by the death receptor and the intrinsic pathway of apoptosis mediated by mitochondria [58]. The extrinsic apoptotic signal begins when extracellular death-inducing factors bind to its receptors (TNFR, TRAIL, FasL), recruiting adapter proteins (TRADD, FADD, caspase 8 and/or caspase 10) to form the death inducing signaling complex [59]. The intrinsic apoptotic pathway is closely regulated by the Bcl-2 family proteins. Bcl-2 proteins mainly were divided into three subgroups up to their BH domain: BH3 only proteins to initiate apoptosis (Bim, Bad, Bid, Noxa, Bmf, Hrk, Bik, Puma), pro-apoptotic proteins act as apoptotic executioner (Bax, Bak, Bok) and anti-apoptotic subfamily (Bcl-2, Bcl-xL, Bcl-W, A1, Bcl-B, Mcl-1) [60]. Initiated by internal stimuli such as DNA damage, hypoxia and oxidative stress, activated-BH3 only proteins inhibit the anti-apoptotic Bcl-2 proteins. Subsequently, activated and oligomerized Bax/Bak located in the mitochondrial outer membrane, promoting mitochondrial outer membrane permeability (MOMP), the release of cytochrome C and caspase activation [61]. Disruption in the balance of pro-apoptotic and anti-apoptotic members of the Bcl-2 family proteins promotes carcinogenesis and cancer cell survival [62]. More importantly, anti-apoptotic Bcl-2 proteins are widely over-expressed in cancers and have been established to contribute to therapy resistance, recurrence and poor prognosis [63, 64].
Alternative splicing of Bcl-x pre-mRNA is one of the earliest oncogenic splicing events critical for apoptotic responses of cancer cells. The elevated level of Bcl-xL caused by aberrant splicing has been revealed in a multitude of human cancers and is considered to be a powerful driving force for cell apoptotic resistance (Table 2) [1, 78]. Instead, cells with highly expressed Bcl-xS were more sensitive to apoptosis stimuli [25]. Structural features enabled Bcl-xL to bind to its natural ligands, such as pro-apoptotic Bcl-2 family members that respond to a variety of cellular stimuli [64]. This process had been well documented by the tertiary structure of Bcl-xL/BH3 peptides, that pro-apoptotic BH3 peptide bound to the hydrophobic groove of Bcl-xL via hydrophobic and electrostatic interactions [88]. In general, Bcl-xL distributed on the intracellular membrane appeared to regulate apoptosis mainly by three modes. In mode 0, Bcl-xL could prevent the binding of apoptotic effectors Bax to mitochondrial outer membrane through retrotranslocating Bax from the mitochondria into cytosol constantly (Fig. 2a) [89]. In mode 1, Bcl-xL could sequester BH3-only activators (For example Bid truncated in the death receptor-mediated pathways (Fig. 3b)) to prevent them from binding to and activating Bax (Fig. 3a). In mode 2, Bcl-xL was suggested to directly bind to activated Bax to prevent its oligomerization and pore formation, which prevented the release of caspase activator from mitochondrial outer membrane (Fig. 3a) [90]. However, Bcl-xL sequestration could be derepressed by sensitizer BH3 only proteins (For example Bad), which then induced activation of Bax and MOMP (Fig. 3b) [90]. Bogner et al. suggested that the allosteric regulation by Bcl-xL complexes might play an important role in this process [91]. Moreover, Bcl-xL was suggested to inhibit a weak Bax activation and apoptotic signal via directly sequestrating active cytosolic p53 induced by damage stimuli (Fig. 3b) [92]. The above demonstrated that apoptosis decision of cells was dependent on the relative abundance of Bcl-xL and its pro-apoptotic counterparts [64, 90]. In addition to the already established roles in mitochondrial apoptotic pathways, Bcl-xL was proved to function as an inhibitor of VDAC1 to prevent apoptosis induced by excessive Ca2+ transferred from endoplasmic reticulum to mitochondria (Fig. 3b) [93]. Thus it is imperative to investigate the in-depth mechanism that Bcl-xL used to coordinate apoptotic signals from multiple pathways and ultimately, form an integrated perspective. Compared to Bcl-xL, the short isoform Bcl-xS was reported as a negative regulator of survival because it could inhibit the function of Bcl-xL by forming heterodimers with Bcl-xL through the BH3 domain, or disrupting the VDAC2-Bak complex to cause the release of Bak and activation of MOMP (Fig. 3b) [94, 95]. Furthermore, Bcl-xS induced activation of Bak and promoted apoptosis through apoptosome-dependent and independent pathways [96]. Therefore, the antagonistic roles played by Bcl-x isoforms were critical for cell fate decision. Alternative splicing regulation of Bcl-x to promote Bcl-xS but inhibit Bcl-xL splicing could act as a tumour suppression strategy. For instance, Src family kinase Fyn was found to decrease the phosphorylation of Sam68 but regulate hnRNPA2/B1 expression, which synergistically promoted the splicing of Bcl-xL and inhibited apoptosis of pancreatic cancer cells. Fyn inhibition down-regulated hnRNPA2/B1 expression and increased Bcl-xS splicing [37]. In addition, study on human liver fibrosis suggested that Bcl-xL was preferentially spliced in human hepatic stellate cells and consistent with apoptosis resistance of HSCs. Antisense oligonucleotides inhibiting Bcl-xL splicing induced HSC cell apoptosis [97]. Interestingly, the IE86 gene of human cytomegalovirus was found to inhibit apoptosis and promote proliferation of glioma cells by enhancing the favor splicing of Bcl-xL mediated by hnRNPA2/B1 [98]. Thus, the favored use of 5’PSS splice site in Bcl-x pre-mRNA contributes to the escape of cancer cells from intrinsic programmed apoptosis.
Table 2
Aberrant Bcl-x splicing in cancers and its clinical application
 
Cancer type
Bcl-xL/S
Function
Ref
Apoptosis
Hepatocellular Carcinomas
Bcl-xL↑
Inhibit apoptosis initiated by cellular stimuli
[65]
Colorectal cancer (CRC)
Bcl-xL↑
Drive tumourigenesis and progression.
[66]
Breast cancer
Bcl-xL↑
Suppress BETi-induced apoptosis.
[67]
Meningioma
Bcl-xL↑
Contribute to apoptosis induced by Dovitinib.
[68]
Malignancy
Gastric cancer
Bcl-xL↑
Associated with high Beclin1 expression.
[69]
Tongue Carcinoma
Bcl-xL↑
Related to the degree of differentiation.
[70]
Hodgkin lymphoma
Bcl-xL↑
Consistent with the severity of patients.
[71]
Myeloproliferative neoplasms
Bcl-xL↑
Progressively over-expressed.
[72]
Lymphomas
Bcl-XS/L
Expressed by malignant cells.
[73]
Wilms' tumours
Bcl-XS/L
Negatively correlated with tumour stage.
[74]
Endometrial carcinoma
Bcl-XS/L
Correlated with pathological grading.
[75]
Metastasis
Pancreatic cancer
Bcl-xL↑
Promote metastasis
[76]
Glioblastoma
Bcl-xL↑
Promote cell migration, invasion, angiogenesis and stemness.
[77]
Melanoma
Bcl-xL↑
[77]
Drug-resistance
Chondrosarcoma
Bcl-xL↑
Confer resistance to chemotherapy.
[78]
Ewing sarcoma
Bcl-xL↑
Resistant to olaparib.
[79]
Ovarian carcinoma (OC)
Bcl-xL↑
Confer resistance to chemotherapy.
[80]
Hepatocellular carcinoma
Bcl-xL↑
Chemoresistance and poor prognosis.
[81]
Urothelial Carcinoma
Bcl-xL↑
Effectively inhibited cisplatin-resistant UCs.
[82]
Radiation
laryngeal cancer
Bcl-xL↑
Associated with radioresistant.
[83]
Non-small cell lung cancer
Bcl-xL↑
Enhance irradiation resistance.
[84]
Prostate cancer
Bcl-xL↑
Enhance survival to cells exposured to IR.
[85]
Osteosarcoma
Bcl-xL↑
Enhance irradiation resistance.
[86]
Malignant pleural mesothelioma
Bcl-xL↑
Negatively associated with radiosensitivity.
[87]

Autophagy

In addition to apoptosis, the long isoform Bcl-xL also had been suggested to be involved in autophagy, which was an evolutionarily conserved pathway and played a double-edged role in tumour progression [84]. A recent study explored that Bcl-xL could inhibit PINK1/Parkin-dependent mitophagy through directly interacting with Parkin and PINK1 to inhibit the translocation of Parkin from cytoplasm into mitochondria (Fig. 4) [99]. More importantly, Bcl-xL was identified to hinder macro-autophagy mediated by class III PI3K pathway through direct interactions with Beclin-1, a new BH-3 only protein that is essential to regulate the initial of autophagy [100, 101]. Low expressed Beclin-1 but highly expressed Bcl-xL is consistent with malignant phenotype and poor prognosis of cancer [69, 102]. Bcl-xL physically interacted with BH3 domain of Beclin-1 and disrupted hVps34–Beclin-1 complex which stimulated autophagosomes formation (Fig. 4) [103, 104]. BH3 mimetics and overexpressed BH3-only proteins could displace Beclin-1 from Bcl-xL and stimulate autophagy. Intriguingly, Beclin-1 was reported to induce apoptosis of glioblastoma cells through binding to Bcl-xL [105], whereas another research suggested that heterooligomers formed by Bcl-xL and Beclin-1 could maintain full anti-apoptotic function in HeLa cells induced by staurosporine [106]. These results support the model that direct interactions between Bcl-xL and Beclin-1. However, Lindqvist LM et al. suggested that Bcl-xL had no measurable effect on autophagy in the absence of Bax/Bak [107]. When Bax/Bak were present, inhibiting the pro-survival Bcl-2 family members stimulated autophagy and correlated with increased cell death, suggesting that inhibition of Bcl-xL on autophagy was an indirect effect generated from apoptosis inhibition by a yet unknow mechanism. In summary, the possible relevance between apoptosis and autophagy in the process of cell death mediated by Bcl-xL includes:(1) Bcl-xL physically interacts with Beclin-1 to regulate apoptosis and autophagy synergistically or antagonisticly; (2) Bcl-xL does not bind to Beclin 1 but instead regulate autophagy by inhibiting Bax/Bak mediated apoptosis [3]. Thus, further research is required to determin the crosstalk between apoptosis and autophagy mediated by Bcl-xL and other Bcl-2 family proteins, which is of great significance for maintaining the overall cell fates.

Invasion and metastasis

Bcl-xL had been suggested to contribute to invasion and metastasis in multiple cancer types. After knocking Bcl-xL, the invasive and metastatic phenotype of CRC cells were reduced but did not cause spontaneous cell death [108, 109]. Studies of oral tongue cancer and breast cancer found that Bcl-xL expression was significantly high in metastasis tissue [4, 70] . In transformed human mammary epithelial cells, Bcl-xL directly interacted with RAS to modulate RAS signaling through BH4 domain, which was critical for RAS induced stemness and cancer initiating cell phenotype [110]. In addition, overexpressed Bcl-xL in human melanoma was found to promote vasculogenic structures through CXCL8/CXCR2 pathway. Meanwhile, the increased cancer stem cell markers associated with stemness and aggression of tumour cells ( for example HIF-1α, NANOG, OCT4, BMI1, and SOX2) were also observed [111]. Notably, a recent study of Bcl-xL with defection in apoptosis suggested that anti-apoptotic function of Bcl-xL might be separated from its roles in the motility of cancer cells. For example, Choi et al. [76] showed that Bcl-xL defected in anti-apoptotic function promoted epithelial-mesenchymal transition (EMT), migration, invasion, as well as stemness of panNET and breast cancer cells. Additionally, Bessou et al. [112] suggested that the complex formed by BH4 domain of Bcl-xL and VDAC1 acted on MOMP to increase ROS in mitochondrial electron transport chain and inhibit the absorption of Ca2+, thereby promoting migration and metastasis of breast cancer cells independently of apoptotic activity. How Bcl-xL regulates the invasion and metastasis of cancer cells independently of apoptosis still needs further exploration.

Anti-tumor immunity

Anti-apoptotic Bcl-xL has been demonstrated to play a key role in the survival of immune cells and immune responses. Grillot et al. has reported that Bcl-xL is highly expressed in CD4+ CD8+ thymocytes which exhibited increased viability in vitro [113]. Enforced Bcl-xL expression could also restore the development of splenic B Lymphocyte [114]. In addition, Bcl-xL was proved to promote survival of effector T cells and antigen-bearing dendritic cells [115, 116]. Regulatory T cells showed enhanced suppressive capacity through increasing Bcl-xL expression, which provide a new strategy for treatment of tumours through remodelling regulatory T cells [117]. Surprisingly, Bcl-xL was demonstrated to protect tumour cells from Natural Killer cells-mediated suppression and therefore exerted tumour-progressive activity [118, 119]. However, Andersen et al. suggested highly expressed Bcl-xL of cancer cells were the common target recognized by specific T cells [120]. They also speculated that immune responses against apoptosis inhibitors like Bcl-xL might represent a general feature in cancer [120]. Taken together, there is a complex effect of Bcl-xL expression on anti-tumour immune response. It is of great significance to identify the role of overexpressed Bcl-xL in immune escape of tumor cells.

Clinical impaction of Bcl-x splicing in cancer

Chemotherapy

Tolerability generated during chemotherapy such as apoptosis escape and Epithelial mesenchymal transformation (EMT), results in poor prognosis and is currently impeding the success of targeted therapies in cancer treatment [121, 122]. Plenty of evidence suggested that Bcl-xL-dependent apoptotic inhibition was the main reason that promoted chemotherapy resistance in tumours in vitro and vivo (Table 2) [123, 124]. A study on breast cancer showed that cells passed through EMT obtained therapeutic resistance by upregulating Bcl-xL transcripts. However, apparent apoptotic resistance was removed after deleting Bcl-xL [4]. Bcl-xL was also found to mediate doxorubicin resistance of breast cancer through the Ring finger protein 6/Estrogen receptor α/Bcl-xL pathway [125]. Inhibiting Bcl-xL expression in breast cancer cells enhanced the cytotoxicity and apoptosis induced by T-DM1 [126]. Additionally, increased CXCR4 expression in ovarian cancer induced cisplatin resistance through promoting Bcl-xL/S [123]. Upregulated Bcl-xL expression was also found to be involved in resistance to therapy targeting Bcl-2 in mantle-cell lymphoma and Acute Myelocytic Leukemia [57, 127]. Regarding melanoma, it has been demonstrated that forced expression of ectopic Bcl-xL converted drug-sensitive cell lines into drug-resistant ones [128]. However, vivo-Morpholino (vMO) antisense oligomers that used to upregulate Bcl-xS expression but decrease Bcl-xL in chronic myeloid leukemia (CML) increased growth inhibition and apoptotic sensitivity of imatinib mesylate-resistant CML cells [5]. Similarly, overexpressed Bcl-xS in human breast carcinoma cells induced a remarkable increase in sensitivity to chemotherapy agents, but did not affect cell viability by itself [129].

Radiotherapy

The splicing favor of Bcl-xL contributed to long-term radiotherapy resistance (Table 2). Clinical data showed that Bcl-xL was expressed by about 91% of laryngeal cancer patients resistant to radiotherapy, suggesting a critical function of Bcl-xL in radiotherapy [83]. Streffer et al. [130, 131] found that glioma cell lines with high Bcl-xL expression had higher ED50 (2.9 ± 0.8Gy) than cell lines with lower Bcl-xL. However, no association with radiosensitivity was observed for the expression levels of Bcl-xS. Highly expressed Bcl-xL was also found to cause radiation resistance of osteosarcoma cells with both low and high metastasis level, and Bcl-xL downregulation could significantly enhance radiation cytotoxicity of osteosarcoma cells [86]. Moreover, inhibiting the expression level of Bcl-xL were suggested to reverse radio-resistance and regulate radiation-induced apoptosis of mesothelioma, breast cancer, prostate cancer, colorectal cancer as well as non-small cell lung cancer [84, 87, 132, 133]. In addition to therapeutic effects, irradiation was well known to induce increased invasiveness and metastasis of cancer cells. Ho et al. demonstrated that the expression of Bcl-x was elevated after irradiation, which promoted the malignant actions of lung cancer cells [134]. A recent study also suggested that upregulated Bcl-xL induced invasion of cancer cells that underwent sublethal doses of irradiation by stimulating respiratory complex I and increasing additional ROS production, which might be involved in the local recurrence or distal metastasis of somne patients after radiotherapy [135]. Interestingly, the expression of Bcl-xL could enhance energy metabolism and prevent oxidative stress, which might be involved in the alleviation of mitochondrial oxidative stress induced by radiation [136]. In addition, inhibition targeting Bcl-xL/2 had been found to reverse the pulmonary fibrosis induced by ionizing radiation [137]. These results provided a wealth of evidence that inhibition the endogenous expression of Bcl-xL might promote both radiation sensitization and radiation protection. However, combination of γ-irradiation and genetic loss but not pharmacological inhibition of Bcl-xL was found to cause fatal kidney damage and secondary anemia in adult mice, and the underlying mechanism remained unclear [138]. This finding demonstrated the protective role of Bcl-xL in adult kidney, which also represents challenges for the radio-sensitization targeting Bcl-xL.

Strategies modulating Bcl-x splicing in cancer

Splice-switching oligonucleotides

SSOs, typically 15-30 nucleotides, is a kind of synthetic, modified, steric block antisense oligonucleotides which have been widely used to disrupt the splicing mode of pre-mRNA through Watson-Crick base pairing. The generated steric hindrance but not degradation of targeted transcripts affected accessibility of splicing factors and visibility of spliceosome, which led to splicing isoforms switching ultimately [139]. Notably, natural oligonucleotides had been proved to be quite ineffective due to their defects such as easy to be degraded, lower affinity, and higher off-target effect. Therefore, various chemical modifications on phosphate backbone or ribose rings of SSOs had been developed to allow for improved stability and binding affinity, meanwhile, reduced cytotoxicity and immunogenicity [139]. Common types of oligonucleotides chemistry have been shown in Fig. 5. Notably, the third generation of antisense oligonucleotides was featured by furanose ring modifications of nucleotides including phosphorodiamidate morpholinos (PMOs), locked nucleic acid and peptide nucleic acid. PMOs was a type of neutrally charged nucleic acid, in which the furanose ring was substituted by a morpholine ring while each unit was bridged with a phosphorodiamidate linkage. PMOs usually needed to be conjugated to cell-penetrating peptides or covalently linked to an octaguanidine dendrimer for efficient delivery due to their rapid renal clearance. To date, PMOs modified SSOs drugs eteplirsen and golodirsen had been approved by the FDA for clinical therapy of Duchenne muscular dystrophy and spinal muscular atrophy, respectively [140, 141]. In addition, for effective SSOs of target genes, the optimized length, sequence constitution, secondary structures, accessibility, as well as thermodynamic properties were all critical factors [92]. Generally, SSOs base-paired to the alternative splice siteof Bcl-x pre-mRNA could block arrival of spliceosome and binding of splicing factors to their target motif, which led to the redirection of splicing favor (Fig. 6a). Bcl-xSSOs could promote apoptosis and drug sensitivity of cancer cells by correcting Bcl-xL splicing to Bcl-xS efficiently [142]. Some Bcl-xSSOs sequences used in preclinical had been summarized in Table 3. Mercatante et al. proved that endogenous highly expressed Bcl-xL was positively correlated with cellular response to Bcl-xSSOs induced splice shift [147], which indicated that normal cells with low expressed Bcl-xL might be more resistant to Bcl-xSSOs therapy. 2'-OMe-PS modified Bcl-xSSOs caused a splice shift from Bcl-xL to Bcl-xS and increased apoptosis of prostate cancer, breast cancer, and hepatic stellate cells [97, 147]. In addition, splice redirection of Bcl-x pre-mRNA induced by 2'-MOE modified Bcl-xSSOs in glioma cells and melanoma xenograft models showed pro-apoptotic effect and reduced tumour load respectively [142, 143]. Moreover, vMO modified Bcl-xSSOs was found to correct aberrant splicing of Bcl-x in CML cells and improve therapeutic sensitivity to imatinib mesylate significantly [5, 148]. Therefore, highly expressed Bcl-xL could be reversed by modified Bcl-xSSOs, which allowed the redirection of aberrant splicing and rebalanced the ratio of Bcl-xL/Bcl-xS [6].
Table 3
Splice switching oligonucleotids used to modulate Bcl-x pre-mRNA splicing
Cells types
Sequence
Length
Chemistry
Ref
K562
5'-GCTTGGTTCTTACCCAGCCGCCGTT-3'
25 mer
vMO
[5]
Primary HSCs
5'-TGGTTCTTACCCAGCCGCCG-3'
20 mer
2'-OMe-PS
[97]
U87, U251
5'-TGGTTCTTACCCAGCCGCCG-3'
20 mer
2'-MOE-PS
[142]
B16F10
5'-TGGTTCTTACCCAGCCGCCG-3'
20 mer
2'-MOE-PS
[143]
Human RPE
5'-TGGTTCTTACCCAGCCGCCG-3'
20 mer
2'-MOE
[144]
A549
5'-CTGGATCCAAGGCTCTAGGT-3'
20 mer
2'-MOE
[145]
PC-3
5'-ACCCAGCCGCCGUUCUCC-3'
18 mer
2'-OMe-PS
[146]
MCF-7
5'-ACCCAGCCGCCGUUCUCC-3'
18 mer
2'-OMe-PS
[146]
Hela
5'-ACCCAGCCGCCGUUCUCC-3'
18 mer
2'-OMe-PS
[146]

Small molecular modulators redirect Bcl-x splicing

A class of natural or synthetic small molecular modulators had been identified to perform anti-tumour activity through inhibiting the activity of targeted splicing factors (Fig. 6b) [149, 150]. These compounds modulated RNA splicing in two ways generally. One way was to directly target pre-mRNA splicing factors. For example, the crude extract of the South African Medicinal Plant (Cotyledon orbiculata) could induce a splicing shift from Bcl-xL to Bcl-xS and apoptosis of cancer cells [151]. However, it was interesting that Bcl-x exhibited resistance to splicing perturbation induced by SF3B1 inhibitors E7107. Splicing modulation of E7107 was sensitized after Bcl-xL knockdown, which suggested that Bcl-xL could function as a sensitizing gene or as a biomarker for splicing modulator treatment [152]. The other way was to target kinases that were involved in post-translation modulation of splicing factors. For example, potent protein synthesis inhibitor emetine had been proved to enhance Bcl-xS splicing in a time and dose-dependent manner in multiple cancers, however, this effect could be hindered by protein phosphatase 1 (PP1 )[153]. Alkaloid Homoharringtonine approved for CML treatment by the FDA as well as antihypertensive agent amiloride and its derivatives BS008 were all proved to normalize oncogenic splicing pattern of Bcl-x in cancer cells depending on PP1 activation [154156]. Intriguingly, Moore et al. found that inhibitors of cell cycle factors aurora kinase A (for example ZM447439 and VX-680) could induce endogenous Bcl-xS splicing significantly, revealing a complex alternative splicing network coordinating cell cycle and apoptosis [157]. In general terms, studying the mechanism of splice switch induced by small molecular modulators is essential for splicing therapies and antitumour agent discovery based on splicing correction. Notably, although the effectiveness that small molecules showed in splicing modulation, they usually lacked specificity and caused off-targeted or on-targeted cytotoxicity.

BH3 mimetics inhibit Bcl-xL isoform

Selective or multi-targeted BH3 mimetics had been developed to antagonize anti-apoptotic proteins of Bcl-2 family through competitively occupying the hydrophobic pockets and thus blocking their anti-apoptotic activity (Fig. 6c) [158]. Table 4 listed BH3-mimetics targeting anti-apoptotic Bcl-2 family proteins selectively. A-1331852 and WEHI-539 selectively targeted to Bcl-xL were all proved to enhance death signals of cancer cells synergistically with radiation or chemotherapy agents [158, 187]. In addition, compounds DT2216 and XZ424 converted from BH3 mimetics by proteolysis-targeting chimera showed improved anticancer potency and reduced cytotoxicity based on E3 ligase mediated degradation of Bcl-xL [162, 163]. However, use of BH3-mimetics in chronic lymphocytic leukaemia and other solid tumours exhibited on-target and off-target effects of Bcl-xL dependent cells and pathways [158, 188190]. In addition, efficacy of BH3 mimetics was intensely dependent on the membrane localization of Bcl-xL and the nature of interactions between Bcl-xL and pro-apoptotic proteins, which might contribute to a chemotherapeutic resistance of BH3 mimetics [191]. These are still the obstacles for clinical application of BH3 mimetics. Consequently, optimizing the pharmacological effect and concurrent targets of BH3 mimetics to make them promising therapeutic regimens of cancer has been challenging.
Table 4
Clinical application of BH3-mimetics targeting anti-apoptotic Bcl-2 family proteins. (clinicaltrials.gov)
Multiple targets
Compounds
Origin
Stage
Ref
Bcl-xL
A-1155463
Structure-based design.
Preclinical
[159]
A-1331852
Structure-based design.
Preclinical
[160]
WEHI-539
Structure- based design
Preclinical
[161]
DT2216
Proteolysis targeting chimera
Preclinical
[162]
XZ424
Proteolysis targeting chimera
Preclinical
[163]
ABBV-155
Structure-based design
Phase I
NCT03595059
Bcl-xL
Bcl-2
AZD4320
Structure-based design
Preclinical
[164]
BM-957
Structure-based design
Preclinical
[165]
BM-1197
Structure-based design
Preclinical
[166]
S44563
Structure-based design
Preclinical
[167]
APG-1252
Structure-based design
Phase I/II
[168]
Bcl-xL
Bcl-2
Bcl-w
Ch282-5
Gossypol derivative
Preclinical
[169]
ABT-737
Synthetic, acylsulfonamide-based
Phase I/II
[170]
ABT-263 (Navitoclax)
Derivant of ABT-737
Phase I/II/III
[171]
Bcl-xL, Bcl-2, Mcl-1
BH3-M6
Synthetic terphenyl scaffold
Preclinical
[172]
Bcl-xL, Bcl-2,
Bcl-w, Mcl-1
TW-37
Benzenesulfonyl derivative of gossypol
Preclinical
[173]
BI-97C1 (Sabutoclax)
Diastereoisomer of Apogossypol
Preclinical
[174]
BIM-SAHB
Stapled Bim peptide
Preclinical
[175]
GX15-070 (Obatoclax)
Synthetic indolyl-dipyrromethene
Phase I/II/III
[176]
AT-101
(−)-gossypol enantiomer
Phase I/II/III
[177]
Bcl-2
S55746
Structure-based design
Phase I
[178]
 
ABT-199 (Venetoclax)
Derivant of ABT-263
Phase I/II/III
[127]
Mcl-1
A-1210477
Structure-based design
Preclinical
[179]
UMI-77
Structure-based design
Preclinical
[180]
VU661013
Fragment-based lead generation
Preclinical
[181]
S63845
Structure-based design
Preclinical
[182]
AMG176,
Structure-based design
Phase I
[183]
AZD5991
Structure-based design
Phase I
[184]
S64315
Fragment-based lead generation
Phase I/II
[182]
Bcl-2, Mcl-1
S1-6
Structure-based design
Preclinical
[185]
 
Nap-1
Derivant of S1-6
Preclinical
[186]

Conclusions

The inactivation or dysfunction of essential genes caused by defective splicing is emerging as a potential driver of cancer development. Therefore, controlling splicing is of great therapeutic benefit. Dysregulated Bcl-x splicing plays a key role in promoting malignant phenotypes of cancers and weakening the toxicity of treatment. Bcl-xL contributed to the invasion, metastasis, and angiogenesis of cancers. On the contrary, Bcl-xS overexpression was suggested to sensitize apoptosis induced by drugs [129]. Bcl-x splicing correction by SSOs and small molecular modulators showed efficiency in apoptosis regulation of cancer cells. However, the on-targeted toxicity to Bcl-xL-dependent cell types posed challenges to the exploitation and delivery of splicing modulation drugs, which was expected to be addressed by the breakthrough of drug chemistry and carrier system [6]. In addition, the inhibitors of specific splicing factors for Bcl-x splicing correction are needed to be identified. Generally, induction of the balanced ratio of Bcl-xL/Bcl-xS has been shown anti-tumour activity by targeting multiple hallmarks of tumour, but it is still imperative that we understood this biomolecule. It is still unknown what is the intracellular mechanism that induced the preferred splicing of long isoform Bcl-xL. In addition, to discover the interplay of apoptosis and autophagy regulated by Bcl-xL means great significance to Bcl-xL targeted therapy. Moreover, whether the diverse domains of Bcl-xL execute biological functions independently and how does membrane localization affect its biological function in vivo remains unknown. Little is known about the biological function of Bcl-xS beyond its canonical function of lowering apoptosis threshold. In addition to Bcl-x, the anti-apoptotic family members including Bcl-2, Mcl-1 and Bcl-w also have a variety of splice isoforms, however, the elaborate coordination of biological roles played by multiple splice isoforms of Bcl-2 family members is unclear. Thus, much more remains to be researched about this gene in the future.

Acknowledgements

Not applicable

Declarations

All authors have agreed on the contents of the manuscript.

Competing interests

The authors have declared that no competing interest exists.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Pistritto G, Trisciuoglio D, Ceci C, Garufi A, D'orazi G. Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging (Albany NY). 2016;8:603–19.CrossRef Pistritto G, Trisciuoglio D, Ceci C, Garufi A, D'orazi G. Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging (Albany NY). 2016;8:603–19.CrossRef
2.
Zurück zum Zitat Boise LH, González-García M, Postema CE, Ding L, Lindsten T, Turka LA, et al. bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell. 1993;74:597–608.PubMedCrossRef Boise LH, González-García M, Postema CE, Ding L, Lindsten T, Turka LA, et al. bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell. 1993;74:597–608.PubMedCrossRef
3.
Zurück zum Zitat Li M, Wang D, He J, Chen L, Li H. Bcl-X(L): A multifunctional anti-apoptotic protein. Pharmacol Res. 2020;151:104547.PubMedCrossRef Li M, Wang D, He J, Chen L, Li H. Bcl-X(L): A multifunctional anti-apoptotic protein. Pharmacol Res. 2020;151:104547.PubMedCrossRef
4.
Zurück zum Zitat Keitel U, Scheel A, Thomale J, Halpape R, Kaulfuß S, Scheel C, et al. Bcl-xL mediates therapeutic resistance of a mesenchymal breast cancer cell subpopulation. Oncotarget. 2014;5:11778–91.PubMedPubMedCentralCrossRef Keitel U, Scheel A, Thomale J, Halpape R, Kaulfuß S, Scheel C, et al. Bcl-xL mediates therapeutic resistance of a mesenchymal breast cancer cell subpopulation. Oncotarget. 2014;5:11778–91.PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Zhang J, Wang Y, Li SQ, Fang L, Wang XZ, Li J, et al. Correction of Bcl-x splicing improves responses to imatinib in chronic myeloid leukaemia cells and mouse models. Br J Haematol. 2020;189:1141–50.PubMedCrossRef Zhang J, Wang Y, Li SQ, Fang L, Wang XZ, Li J, et al. Correction of Bcl-x splicing improves responses to imatinib in chronic myeloid leukaemia cells and mouse models. Br J Haematol. 2020;189:1141–50.PubMedCrossRef
6.
Zurück zum Zitat Roberts TC, Langer R, Wood MJA. Advances in oligonucleotide drug delivery. Nat Rev Drug Discov. 2020:1–22. Roberts TC, Langer R, Wood MJA. Advances in oligonucleotide drug delivery. Nat Rev Drug Discov. 2020:1–22.
7.
Zurück zum Zitat Irimia M, Blencowe BJ. Alternative splicing: decoding an expansive regulatory layer. Curr Opin Cell Biol. 2012;24:323–32.PubMedCrossRef Irimia M, Blencowe BJ. Alternative splicing: decoding an expansive regulatory layer. Curr Opin Cell Biol. 2012;24:323–32.PubMedCrossRef
8.
Zurück zum Zitat Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet. 2008;40:1413–5.PubMedCrossRef Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet. 2008;40:1413–5.PubMedCrossRef
9.
Zurück zum Zitat Wahl MC, Will CL, Lührmann R. The spliceosome: design principles of a dynamic RNP machine. Cell. 2009;136:701–18.PubMedCrossRef Wahl MC, Will CL, Lührmann R. The spliceosome: design principles of a dynamic RNP machine. Cell. 2009;136:701–18.PubMedCrossRef
11.
Zurück zum Zitat Bonnal SC, López-Oreja I, Valcárcel J. Roles and mechanisms of alternative splicing in cancer - implications for care. Nat Rev Clin Oncol. 2020;17:457–74.PubMedCrossRef Bonnal SC, López-Oreja I, Valcárcel J. Roles and mechanisms of alternative splicing in cancer - implications for care. Nat Rev Clin Oncol. 2020;17:457–74.PubMedCrossRef
12.
Zurück zum Zitat Paschalis A, Sharp A, Welti JC, Neeb A, Raj GV, Luo J, et al. Alternative splicing in prostate cancer. Nat Rev Clin Oncol. 2018;15:663–75.PubMedCrossRef Paschalis A, Sharp A, Welti JC, Neeb A, Raj GV, Luo J, et al. Alternative splicing in prostate cancer. Nat Rev Clin Oncol. 2018;15:663–75.PubMedCrossRef
13.
14.
Zurück zum Zitat Fang W, Rivard JJ, Mueller DL, Behrens TW. Cloning and molecular characterization of mouse bcl-x in B and T lymphocytes. J Immunol. 1994;153:4388–98.PubMed Fang W, Rivard JJ, Mueller DL, Behrens TW. Cloning and molecular characterization of mouse bcl-x in B and T lymphocytes. J Immunol. 1994;153:4388–98.PubMed
15.
Zurück zum Zitat Hossini AM, Geilen CC, Fecker LF, Daniel PT, Eberle J. A novel Bcl-x splice product, Bcl-xAK, triggers apoptosis in human melanoma cells without BH3 domain. Oncogene. 2006;25:2160–9.PubMedCrossRef Hossini AM, Geilen CC, Fecker LF, Daniel PT, Eberle J. A novel Bcl-x splice product, Bcl-xAK, triggers apoptosis in human melanoma cells without BH3 domain. Oncogene. 2006;25:2160–9.PubMedCrossRef
16.
Zurück zum Zitat Schmitt E, Paquet C, Beauchemin M, Bertrand R. Bcl-xES, a BH4- and BH2-containing antiapoptotic protein, delays Bax oligomer formation and binds Apaf-1, blocking procaspase-9 activation. Oncogene. 2004;23:3915–31.PubMedCrossRef Schmitt E, Paquet C, Beauchemin M, Bertrand R. Bcl-xES, a BH4- and BH2-containing antiapoptotic protein, delays Bax oligomer formation and binds Apaf-1, blocking procaspase-9 activation. Oncogene. 2004;23:3915–31.PubMedCrossRef
17.
Zurück zum Zitat Ban J, Eckhart L, Weninger W, Mildner M, Tschachler E. Identification of a human cDNA encoding a novel Bcl-x isoform. Biochem Biophys Res Commun. 1998;248:147–52.PubMedCrossRef Ban J, Eckhart L, Weninger W, Mildner M, Tschachler E. Identification of a human cDNA encoding a novel Bcl-x isoform. Biochem Biophys Res Commun. 1998;248:147–52.PubMedCrossRef
18.
Zurück zum Zitat Naftelberg S, Schor IE, Ast G, Kornblihtt AR. Regulation of alternative splicing through coupling with transcription and chromatin structure. Annu Rev Biochem. 2015;84:165–98.PubMedCrossRef Naftelberg S, Schor IE, Ast G, Kornblihtt AR. Regulation of alternative splicing through coupling with transcription and chromatin structure. Annu Rev Biochem. 2015;84:165–98.PubMedCrossRef
19.
Zurück zum Zitat Shkreta L, Michelle L, Toutant J, Tremblay ML, Chabot B. The DNA damage response pathway regulates the alternative splicing of the apoptotic mediator Bcl-x. J Biol Chem. 2011;286:331–40.PubMedCrossRef Shkreta L, Michelle L, Toutant J, Tremblay ML, Chabot B. The DNA damage response pathway regulates the alternative splicing of the apoptotic mediator Bcl-x. J Biol Chem. 2011;286:331–40.PubMedCrossRef
20.
Zurück zum Zitat Revil T, Pelletier J, Toutant J, Cloutier A, Chabot B. Heterogeneous nuclear ribonucleoprotein K represses the production of pro-apoptotic Bcl-xS splice isoform. J Biol Chem. 2009;284:21458–67.PubMedPubMedCentralCrossRef Revil T, Pelletier J, Toutant J, Cloutier A, Chabot B. Heterogeneous nuclear ribonucleoprotein K represses the production of pro-apoptotic Bcl-xS splice isoform. J Biol Chem. 2009;284:21458–67.PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Cloutier P, Toutant J, Shkreta L, Goekjian S, Revil T, Chabot B. Antagonistic effects of the SRp30c protein and cryptic 5' splice sites on the alternative splicing of the apoptotic regulator Bcl-x. J Biol Chem. 2008;283:21315–24.PubMedCrossRef Cloutier P, Toutant J, Shkreta L, Goekjian S, Revil T, Chabot B. Antagonistic effects of the SRp30c protein and cryptic 5' splice sites on the alternative splicing of the apoptotic regulator Bcl-x. J Biol Chem. 2008;283:21315–24.PubMedCrossRef
22.
Zurück zum Zitat Garneau D, Revil T, Fisette JF, Chabot B. Heterogeneous nuclear ribonucleoprotein F/H proteins modulate the alternative splicing of the apoptotic mediator Bcl-x. J Biol Chem. 2005;280:22641–50.PubMedCrossRef Garneau D, Revil T, Fisette JF, Chabot B. Heterogeneous nuclear ribonucleoprotein F/H proteins modulate the alternative splicing of the apoptotic mediator Bcl-x. J Biol Chem. 2005;280:22641–50.PubMedCrossRef
23.
Zurück zum Zitat Massiello A, Salas A, Pinkerman RL, Roddy P, Roesser JR, Chalfant CE. Identification of two RNA cis-elements that function to regulate the 5' splice site selection of Bcl-x pre-mRNA in response to ceramide. J Biol Chem. 2004;279:15799–804.PubMedCrossRef Massiello A, Salas A, Pinkerman RL, Roddy P, Roesser JR, Chalfant CE. Identification of two RNA cis-elements that function to regulate the 5' splice site selection of Bcl-x pre-mRNA in response to ceramide. J Biol Chem. 2004;279:15799–804.PubMedCrossRef
24.
Zurück zum Zitat Li CY, Chu JY, Yu JK, Huang XQ, Liu XJ, Shi L, et al. Regulation of alternative splicing of Bcl-x by IL-6, GM-CSF and TPA. Cell Res. 2004;14:473–9.PubMedCrossRef Li CY, Chu JY, Yu JK, Huang XQ, Liu XJ, Shi L, et al. Regulation of alternative splicing of Bcl-x by IL-6, GM-CSF and TPA. Cell Res. 2004;14:473–9.PubMedCrossRef
26.
Zurück zum Zitat Paronetto MP, Achsel T, Massiello A, Chalfant CE, Sette C. The RNA-binding protein Sam68 modulates the alternative splicing of Bcl-x. J Cell Biol. 2007;176:929–39.PubMedPubMedCentralCrossRef Paronetto MP, Achsel T, Massiello A, Chalfant CE, Sette C. The RNA-binding protein Sam68 modulates the alternative splicing of Bcl-x. J Cell Biol. 2007;176:929–39.PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Kędzierska H, Piekiełko-Witkowska A. Splicing factors of SR and hnRNP families as regulators of apoptosis in cancer. Cancer Lett. 2017;396:53–65.PubMedCrossRef Kędzierska H, Piekiełko-Witkowska A. Splicing factors of SR and hnRNP families as regulators of apoptosis in cancer. Cancer Lett. 2017;396:53–65.PubMedCrossRef
28.
Zurück zum Zitat Bielli P, Bordi M, Di Biasio V, Sette C. Regulation of BCL-X splicing reveals a role for the polypyrimidine tract binding protein (PTBP1/hnRNP I) in alternative 5' splice site selection. Nucleic Acids Res. 2014;42:12070–81.PubMedPubMedCentralCrossRef Bielli P, Bordi M, Di Biasio V, Sette C. Regulation of BCL-X splicing reveals a role for the polypyrimidine tract binding protein (PTBP1/hnRNP I) in alternative 5' splice site selection. Nucleic Acids Res. 2014;42:12070–81.PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Cloutier A, Shkreta L, Toutant J, Durand M, Thibault P, Chabot B. hnRNP A1/A2 and Sam68 collaborate with SRSF10 to control the alternative splicing response to oxaliplatin-mediated DNA damage. Sci Rep. 2018;8:2206.PubMedPubMedCentralCrossRef Cloutier A, Shkreta L, Toutant J, Durand M, Thibault P, Chabot B. hnRNP A1/A2 and Sam68 collaborate with SRSF10 to control the alternative splicing response to oxaliplatin-mediated DNA damage. Sci Rep. 2018;8:2206.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Merdzhanova G, Edmond V, De Seranno S, Van den Broeck A, Corcos L, Brambilla C, et al. E2F1 controls alternative splicing pattern of genes involved in apoptosis through upregulation of the splicing factor SC35. Cell Death Differ. 2008;15:1815–23.PubMedCrossRef Merdzhanova G, Edmond V, De Seranno S, Van den Broeck A, Corcos L, Brambilla C, et al. E2F1 controls alternative splicing pattern of genes involved in apoptosis through upregulation of the splicing factor SC35. Cell Death Differ. 2008;15:1815–23.PubMedCrossRef
31.
Zurück zum Zitat Bielli P, Busà R, Di Stasi SM, Munoz MJ, Botti F, Kornblihtt AR, et al. The transcription factor FBI-1 inhibits SAM68-mediated BCL-X alternative splicing and apoptosis. EMBO Rep. 2014;15:419–27.PubMedPubMedCentralCrossRef Bielli P, Busà R, Di Stasi SM, Munoz MJ, Botti F, Kornblihtt AR, et al. The transcription factor FBI-1 inhibits SAM68-mediated BCL-X alternative splicing and apoptosis. EMBO Rep. 2014;15:419–27.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Montes M, Cloutier A, Sánchez-Hernández N, Michelle L, Lemieux B, Blanchette M, et al. TCERG1 regulates alternative splicing of the Bcl-x gene by modulating the rate of RNA polymerase II transcription. Mol Cell Biol. 2012;32:751–62.PubMedPubMedCentralCrossRef Montes M, Cloutier A, Sánchez-Hernández N, Michelle L, Lemieux B, Blanchette M, et al. TCERG1 regulates alternative splicing of the Bcl-x gene by modulating the rate of RNA polymerase II transcription. Mol Cell Biol. 2012;32:751–62.PubMedPubMedCentralCrossRef
33.
34.
Zurück zum Zitat Cao X, Littlejohn J, Rodarte C, Zhang L, Martino B, Rascoe P, et al. Up-regulation of Bcl-xl by hepatocyte growth factor in human mesothelioma cells involves ETS transcription factors. Am J Pathol. 2009;175:2207–16.PubMedPubMedCentralCrossRef Cao X, Littlejohn J, Rodarte C, Zhang L, Martino B, Rascoe P, et al. Up-regulation of Bcl-xl by hepatocyte growth factor in human mesothelioma cells involves ETS transcription factors. Am J Pathol. 2009;175:2207–16.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Naro C, Barbagallo F, Chieffi P, Bourgeois CF, Paronetto MP, Sette C. The centrosomal kinase NEK2 is a novel splicing factor kinase involved in cell survival. Nucleic Acids Res. 2014;42:3218–27.PubMedCrossRef Naro C, Barbagallo F, Chieffi P, Bourgeois CF, Paronetto MP, Sette C. The centrosomal kinase NEK2 is a novel splicing factor kinase involved in cell survival. Nucleic Acids Res. 2014;42:3218–27.PubMedCrossRef
36.
Zurück zum Zitat Shkreta L, Toutant J, Durand M, Manley JL, Chabot B. SRSF10 connects DNA damage to the alternative splicing of transcripts encoding apoptosis, cell-cycle control, and DNA repair factors. Cell Rep. 2016;17:1990–2003.PubMedPubMedCentralCrossRef Shkreta L, Toutant J, Durand M, Manley JL, Chabot B. SRSF10 connects DNA damage to the alternative splicing of transcripts encoding apoptosis, cell-cycle control, and DNA repair factors. Cell Rep. 2016;17:1990–2003.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Chen ZY, Cai L, Zhu J, Chen M, Chen J, Li ZH, et al. Fyn requires HnRNPA2B1 and Sam68 to synergistically regulate apoptosis in pancreatic cancer. Carcinogenesis. 2011;32:1419–26.PubMedCrossRef Chen ZY, Cai L, Zhu J, Chen M, Chen J, Li ZH, et al. Fyn requires HnRNPA2B1 and Sam68 to synergistically regulate apoptosis in pancreatic cancer. Carcinogenesis. 2011;32:1419–26.PubMedCrossRef
38.
Zurück zum Zitat Wang Y, Chen D, Qian H, Tsai YS, Shao S, Liu Q, et al. The splicing factor RBM4 controls apoptosis, proliferation, and migration to suppress tumor progression. Cancer Cell. 2014;26:374–89.PubMedPubMedCentralCrossRef Wang Y, Chen D, Qian H, Tsai YS, Shao S, Liu Q, et al. The splicing factor RBM4 controls apoptosis, proliferation, and migration to suppress tumor progression. Cancer Cell. 2014;26:374–89.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Inoue A, Yamamoto N, Kimura M, Nishio K, Yamane H, Nakajima K. RBM10 regulates alternative splicing. FEBS Lett. 2014;588:942–7.PubMedCrossRef Inoue A, Yamamoto N, Kimura M, Nishio K, Yamane H, Nakajima K. RBM10 regulates alternative splicing. FEBS Lett. 2014;588:942–7.PubMedCrossRef
40.
Zurück zum Zitat Pedrotti S, Busà R, Compagnucci C, Sette C. The RNA recognition motif protein RBM11 is a novel tissue-specific splicing regulator. Nucleic Acids Res. 2012;40:1021–32.PubMedCrossRef Pedrotti S, Busà R, Compagnucci C, Sette C. The RNA recognition motif protein RBM11 is a novel tissue-specific splicing regulator. Nucleic Acids Res. 2012;40:1021–32.PubMedCrossRef
41.
Zurück zum Zitat Zhou A, Ou AC, Cho A, Benz EJ Jr, Huang SC. Novel splicing factor RBM25 modulates Bcl-x pre-mRNA 5' splice site selection. Mol Cell Biol. 2008;28:5924–36.PubMedPubMedCentralCrossRef Zhou A, Ou AC, Cho A, Benz EJ Jr, Huang SC. Novel splicing factor RBM25 modulates Bcl-x pre-mRNA 5' splice site selection. Mol Cell Biol. 2008;28:5924–36.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Massiello A, Roesser JR, Chalfant CE. SAP155 Binds to ceramide-responsive RNA cis-element 1 and regulates the alternative 5' splice site selection of Bcl-x pre-mRNA. Faseb j. 2006;20:1680–2.PubMedCrossRef Massiello A, Roesser JR, Chalfant CE. SAP155 Binds to ceramide-responsive RNA cis-element 1 and regulates the alternative 5' splice site selection of Bcl-x pre-mRNA. Faseb j. 2006;20:1680–2.PubMedCrossRef
43.
Zurück zum Zitat Revil T, Toutant J, Shkreta L, Garneau D, Cloutier P, Chabot B. Protein kinase C-dependent control of Bcl-x alternative splicing. Mol Cell Biol. 2007;27:8431–41.PubMedPubMedCentralCrossRef Revil T, Toutant J, Shkreta L, Garneau D, Cloutier P, Chabot B. Protein kinase C-dependent control of Bcl-x alternative splicing. Mol Cell Biol. 2007;27:8431–41.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Shultz JC, Vu N, Shultz MD, Mba MU, Shapiro BA, Chalfant CE. The Proto-oncogene PKCι regulates the alternative splicing of Bcl-x pre-mRNA. Mol Cancer Res. 2012;10:660–9.PubMedPubMedCentralCrossRef Shultz JC, Vu N, Shultz MD, Mba MU, Shapiro BA, Chalfant CE. The Proto-oncogene PKCι regulates the alternative splicing of Bcl-x pre-mRNA. Mol Cancer Res. 2012;10:660–9.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Vhuiyan MI, Pak ML, Park MA, Thomas D, Lakowski TM, Chalfant CE, et al. PRMT2 interacts with splicing factors and regulates the alternative splicing of BCL-X. J Biochem. 2017;162:17–25.PubMedPubMedCentral Vhuiyan MI, Pak ML, Park MA, Thomas D, Lakowski TM, Chalfant CE, et al. PRMT2 interacts with splicing factors and regulates the alternative splicing of BCL-X. J Biochem. 2017;162:17–25.PubMedPubMedCentral
46.
Zurück zum Zitat Weldon C, Dacanay JG, Gokhale V, Boddupally PVL, Behm-Ansmant I, Burley GA, et al. Specific G-quadruplex ligands modulate the alternative splicing of Bcl-X. Nucleic Acids Res. 2018;46:886–96.PubMedCrossRef Weldon C, Dacanay JG, Gokhale V, Boddupally PVL, Behm-Ansmant I, Burley GA, et al. Specific G-quadruplex ligands modulate the alternative splicing of Bcl-X. Nucleic Acids Res. 2018;46:886–96.PubMedCrossRef
47.
Zurück zum Zitat Weldon C, Behm-Ansmant I, Hurley LH, Burley GA, Branlant C, Eperon IC, et al. Identification of G-quadruplexes in long functional RNAs using 7-deazaguanine RNA. Nat Chem Biol. 2017;13:18–20.PubMedCrossRef Weldon C, Behm-Ansmant I, Hurley LH, Burley GA, Branlant C, Eperon IC, et al. Identification of G-quadruplexes in long functional RNAs using 7-deazaguanine RNA. Nat Chem Biol. 2017;13:18–20.PubMedCrossRef
48.
Zurück zum Zitat Michelle L, Cloutier A, Toutant J, Shkreta L, Thibault P, Durand M, Garneau D, Gendron D, Lapointe E, Couture S, et al. Proteins associated with the exon junction complex also control the alternative splicing of apoptotic regulators. Mol Cell Biol. 2012;32(5):954–67. Michelle L, Cloutier A, Toutant J, Shkreta L, Thibault P, Durand M, Garneau D, Gendron D, Lapointe E, Couture S, et al. Proteins associated with the exon junction complex also control the alternative splicing of apoptotic regulators. Mol Cell Biol. 2012;32(5):954–67.
49.
Zurück zum Zitat Zhu LY, Zhu YR, Dai DJ, Wang X, Jin HC. Epigenetic regulation of alternative splicing. Am J Cancer Res. 2018;8:2346–58.PubMedPubMedCentral Zhu LY, Zhu YR, Dai DJ, Wang X, Jin HC. Epigenetic regulation of alternative splicing. Am J Cancer Res. 2018;8:2346–58.PubMedPubMedCentral
50.
Zurück zum Zitat Lev Maor G, Yearim A, Ast G. The alternative role of DNA methylation in splicing regulation. Trends Genet. 2015;31:274–80.PubMedCrossRef Lev Maor G, Yearim A, Ast G. The alternative role of DNA methylation in splicing regulation. Trends Genet. 2015;31:274–80.PubMedCrossRef
51.
Zurück zum Zitat Khan DH, Gonzalez C, Tailor N, Hamedani MK, Leygue E, Davie JR. Dynamic histone acetylation of H3K4me3 nucleosome regulates MCL1 Pre-mRNA splicing. J Cell Physiol. 2016;231:2196–204.PubMedCrossRef Khan DH, Gonzalez C, Tailor N, Hamedani MK, Leygue E, Davie JR. Dynamic histone acetylation of H3K4me3 nucleosome regulates MCL1 Pre-mRNA splicing. J Cell Physiol. 2016;231:2196–204.PubMedCrossRef
53.
Zurück zum Zitat Singh R, Gupta SC, Peng WX, Zhou N, Pochampally R, Atfi A, et al. Regulation of alternative splicing of Bcl-x by BC200 contributes to breast cancer pathogenesis. Cell Death Dis. 2016;7:e2262.PubMedPubMedCentralCrossRef Singh R, Gupta SC, Peng WX, Zhou N, Pochampally R, Atfi A, et al. Regulation of alternative splicing of Bcl-x by BC200 contributes to breast cancer pathogenesis. Cell Death Dis. 2016;7:e2262.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Zong L, Hattori N, Yasukawa Y, Kimura K, Mori A, Seto Y, et al. LINC00162 confers sensitivity to 5-Aza-2'-deoxycytidine via modulation of an RNA splicing protein, HNRNPH1. Oncogene. 2019;38:5281–93.PubMedCrossRef Zong L, Hattori N, Yasukawa Y, Kimura K, Mori A, Seto Y, et al. LINC00162 confers sensitivity to 5-Aza-2'-deoxycytidine via modulation of an RNA splicing protein, HNRNPH1. Oncogene. 2019;38:5281–93.PubMedCrossRef
55.
Zurück zum Zitat Cui C, Zhai D, Cai L, Duan Q, Xie L, Yu J. Long Noncoding RNA HEIH Promotes Colorectal Cancer Tumorigenesis via Counteracting miR-939–Mediated Transcriptional Repression of Bcl-xL. Cancer Res Treat. 2018;50:992–1008.PubMedCrossRef Cui C, Zhai D, Cai L, Duan Q, Xie L, Yu J. Long Noncoding RNA HEIH Promotes Colorectal Cancer Tumorigenesis via Counteracting miR-939–Mediated Transcriptional Repression of Bcl-xL. Cancer Res Treat. 2018;50:992–1008.PubMedCrossRef
58.
Zurück zum Zitat Goldar S, Khaniani MS, Derakhshan SM, Baradaran B. Molecular mechanisms of apoptosis and roles in cancer development and treatment. Asian Pac J Cancer Prev. 2015;16:2129–44.PubMedCrossRef Goldar S, Khaniani MS, Derakhshan SM, Baradaran B. Molecular mechanisms of apoptosis and roles in cancer development and treatment. Asian Pac J Cancer Prev. 2015;16:2129–44.PubMedCrossRef
59.
Zurück zum Zitat Schneider P, Tschopp J. Apoptosis induced by death receptors. Pharm Acta Helv. 2000;74:281–6.PubMedCrossRef Schneider P, Tschopp J. Apoptosis induced by death receptors. Pharm Acta Helv. 2000;74:281–6.PubMedCrossRef
60.
Zurück zum Zitat O'Neill KL, Huang K, Zhang J, Chen Y, Luo X. Inactivation of prosurvival Bcl-2 proteins activates Bax/Bak through the outer mitochondrial membrane. Genes Dev. 2016;30:973–88.PubMedPubMedCentralCrossRef O'Neill KL, Huang K, Zhang J, Chen Y, Luo X. Inactivation of prosurvival Bcl-2 proteins activates Bax/Bak through the outer mitochondrial membrane. Genes Dev. 2016;30:973–88.PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Ashkenazi A, Fairbrother WJ, Leverson JD, Souers AJ. From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors. Nat Rev Drug Discov. 2017;16:273–84.PubMedCrossRef Ashkenazi A, Fairbrother WJ, Leverson JD, Souers AJ. From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors. Nat Rev Drug Discov. 2017;16:273–84.PubMedCrossRef
62.
63.
Zurück zum Zitat Amundson SA, Myers TG, Scudiero D, Kitada S, Reed JC, Fornace AJ Jr. An informatics approach identifying markers of chemosensitivity in human cancer cell lines. Cancer Res. 2000;60:6101–10.PubMed Amundson SA, Myers TG, Scudiero D, Kitada S, Reed JC, Fornace AJ Jr. An informatics approach identifying markers of chemosensitivity in human cancer cell lines. Cancer Res. 2000;60:6101–10.PubMed
64.
Zurück zum Zitat Delbridge AR, Grabow S, Strasser A, Vaux DL. Thirty years of BCL-2: translating cell death discoveries into novel cancer therapies. Nat Rev Cancer. 2016;16:99–109.PubMedCrossRef Delbridge AR, Grabow S, Strasser A, Vaux DL. Thirty years of BCL-2: translating cell death discoveries into novel cancer therapies. Nat Rev Cancer. 2016;16:99–109.PubMedCrossRef
65.
Zurück zum Zitat Takehara T, Liu X, Fujimoto J, Friedman SL, Takahashi H. Expression and role of Bcl-xL in human hepatocellular carcinomas. Hepatology. 2001;34:55–61.PubMedCrossRef Takehara T, Liu X, Fujimoto J, Friedman SL, Takahashi H. Expression and role of Bcl-xL in human hepatocellular carcinomas. Hepatology. 2001;34:55–61.PubMedCrossRef
66.
Zurück zum Zitat Scherr AL, Gdynia G, Salou M, Radhakrishnan P, Duglova K, Heller A, et al. Bcl-xL is an oncogenic driver in colorectal cancer. Cell Death Dis. 2016;7:e2342.PubMedPubMedCentralCrossRef Scherr AL, Gdynia G, Salou M, Radhakrishnan P, Duglova K, Heller A, et al. Bcl-xL is an oncogenic driver in colorectal cancer. Cell Death Dis. 2016;7:e2342.PubMedPubMedCentralCrossRef
67.
Zurück zum Zitat Gayle SS, Sahni JM, Webb BM, Weber-Bonk KL, Shively MS, Spina R, et al. Targeting BCL-xL improves the efficacy of bromodomain and extra-terminal protein inhibitors in triple-negative breast cancer by eliciting the death of senescent cells. J Biol Chem. 2019;294:875–86.PubMedCrossRef Gayle SS, Sahni JM, Webb BM, Weber-Bonk KL, Shively MS, Spina R, et al. Targeting BCL-xL improves the efficacy of bromodomain and extra-terminal protein inhibitors in triple-negative breast cancer by eliciting the death of senescent cells. J Biol Chem. 2019;294:875–86.PubMedCrossRef
68.
Zurück zum Zitat Das A, Martinez Santos JL, Alshareef M, Porto GBF, Infinger LK, Vandergrift WA 3rd, et al. In vitro effect of dovitinib (TKI258), a multi-target angiokinase inhibitor on aggressive meningioma cells. Cancer Invest. 2020;38:349–55.PubMedCrossRef Das A, Martinez Santos JL, Alshareef M, Porto GBF, Infinger LK, Vandergrift WA 3rd, et al. In vitro effect of dovitinib (TKI258), a multi-target angiokinase inhibitor on aggressive meningioma cells. Cancer Invest. 2020;38:349–55.PubMedCrossRef
69.
Zurück zum Zitat Zhou WH, Tang F, Xu J, Wu X, Yang SB, Feng ZY, et al. Low expression of Beclin 1, associated with high Bcl-xL, predicts a malignant phenotype and poor prognosis of gastric cancer. Autophagy. 2012;8:389–400.PubMedCrossRef Zhou WH, Tang F, Xu J, Wu X, Yang SB, Feng ZY, et al. Low expression of Beclin 1, associated with high Bcl-xL, predicts a malignant phenotype and poor prognosis of gastric cancer. Autophagy. 2012;8:389–400.PubMedCrossRef
70.
Zurück zum Zitat Zhang K, Jiao K, Xing Z, Zhang L, Yang J, Xie X, et al. Bcl-xL overexpression and its association with the progress of tongue carcinoma. Int J Clin Exp Pathol. 2014;7:7360–77.PubMedPubMedCentral Zhang K, Jiao K, Xing Z, Zhang L, Yang J, Xie X, et al. Bcl-xL overexpression and its association with the progress of tongue carcinoma. Int J Clin Exp Pathol. 2014;7:7360–77.PubMedPubMedCentral
71.
Zurück zum Zitat Adams CM, Mitra R, Vogel AN, Liu J, Gong JZ, Eischen CM. Targeting BCL-W and BCL-XL as a therapeutic strategy for Hodgkin lymphoma. Leukemia. 2020;34:947–52.PubMedCrossRef Adams CM, Mitra R, Vogel AN, Liu J, Gong JZ, Eischen CM. Targeting BCL-W and BCL-XL as a therapeutic strategy for Hodgkin lymphoma. Leukemia. 2020;34:947–52.PubMedCrossRef
72.
Zurück zum Zitat Petiti J, Lo Iacono M, Rosso V, Andreani G, Jovanovski A, Podestà M, et al. Bcl-xL represents a therapeutic target in Philadelphia negative myeloproliferative neoplasms. J Cell Mol Med. 2020;24:10978–86.PubMedPubMedCentralCrossRef Petiti J, Lo Iacono M, Rosso V, Andreani G, Jovanovski A, Podestà M, et al. Bcl-xL represents a therapeutic target in Philadelphia negative myeloproliferative neoplasms. J Cell Mol Med. 2020;24:10978–86.PubMedPubMedCentralCrossRef
73.
Zurück zum Zitat Xerri L, Parc P, Brousset P, Schlaifer D, Hassoun J, Reed JC, et al. Predominant expression of the long isoform of Bcl-x (Bcl-xL) in human lymphomas. Br J Haematol. 1996;92:900–6.PubMedCrossRef Xerri L, Parc P, Brousset P, Schlaifer D, Hassoun J, Reed JC, et al. Predominant expression of the long isoform of Bcl-x (Bcl-xL) in human lymphomas. Br J Haematol. 1996;92:900–6.PubMedCrossRef
74.
Zurück zum Zitat Basta-Jovanović G, Radonjic V, Stolic I, Nenadovic M, Brasanac D, Jovanovic D, et al. Significance of proto-oncogene Bcl-X(S/L) expression in Wilms tumor. Ren Fail. 2005;27:13–8.PubMedCrossRef Basta-Jovanović G, Radonjic V, Stolic I, Nenadovic M, Brasanac D, Jovanovic D, et al. Significance of proto-oncogene Bcl-X(S/L) expression in Wilms tumor. Ren Fail. 2005;27:13–8.PubMedCrossRef
75.
76.
Zurück zum Zitat Choi S, Chen Z, Tang LH, Fang Y, Shin SJ, Panarelli NC, et al. Bcl-xL promotes metastasis independent of its anti-apoptotic activity. Nat Commun. 2016;7:10384.PubMedPubMedCentralCrossRef Choi S, Chen Z, Tang LH, Fang Y, Shin SJ, Panarelli NC, et al. Bcl-xL promotes metastasis independent of its anti-apoptotic activity. Nat Commun. 2016;7:10384.PubMedPubMedCentralCrossRef
77.
Zurück zum Zitat Trisciuoglio D, Tupone MG, Desideri M, Di Martile M, Gabellini C, Buglioni S, et al. BCL-X(L) overexpression promotes tumor progression-associated properties. Cell Death Dis. 2017;8:3216.PubMedPubMedCentralCrossRef Trisciuoglio D, Tupone MG, Desideri M, Di Martile M, Gabellini C, Buglioni S, et al. BCL-X(L) overexpression promotes tumor progression-associated properties. Cell Death Dis. 2017;8:3216.PubMedPubMedCentralCrossRef
78.
Zurück zum Zitat de Jong Y, Monderer D, Brandinelli E, Monchanin M, van den Akker BE, van Oosterwijk JG, et al. Bcl-xl as the most promising Bcl-2 family member in targeted treatment of chondrosarcoma. Oncogenesis. 2018;7:74.PubMedPubMedCentralCrossRef de Jong Y, Monderer D, Brandinelli E, Monchanin M, van den Akker BE, van Oosterwijk JG, et al. Bcl-xl as the most promising Bcl-2 family member in targeted treatment of chondrosarcoma. Oncogenesis. 2018;7:74.PubMedPubMedCentralCrossRef
79.
Zurück zum Zitat Heisey DAR, Lochmann TL, Floros KV, Coon CM, Powell KM, Jacob S, et al. The Ewing Family of tumors relies on BCL-2 and BCL-X(L) to escape PARP inhibitor toxicity. Clin Cancer Res. 2019;25:1664–75.PubMedCrossRef Heisey DAR, Lochmann TL, Floros KV, Coon CM, Powell KM, Jacob S, et al. The Ewing Family of tumors relies on BCL-2 and BCL-X(L) to escape PARP inhibitor toxicity. Clin Cancer Res. 2019;25:1664–75.PubMedCrossRef
80.
Zurück zum Zitat Simonin K, N'Diaye M, Lheureux S, Loussouarn C, Dutoit S, Briand M, et al. Platinum compounds sensitize ovarian carcinoma cells to ABT-737 by modulation of the Mcl-1/Noxa axis. Apoptosis. 2013;18:492–508.PubMedCrossRef Simonin K, N'Diaye M, Lheureux S, Loussouarn C, Dutoit S, Briand M, et al. Platinum compounds sensitize ovarian carcinoma cells to ABT-737 by modulation of the Mcl-1/Noxa axis. Apoptosis. 2013;18:492–508.PubMedCrossRef
81.
Zurück zum Zitat Cheng J, Qian D, Ding X, Song T, Cai M, Dan X, et al. High PGAM5 expression induces chemoresistance by enhancing Bcl-xL-mediated anti-apoptotic signaling and predicts poor prognosis in hepatocellular carcinoma patients. Cell Death Dis. 2018;9:991.PubMedPubMedCentralCrossRef Cheng J, Qian D, Ding X, Song T, Cai M, Dan X, et al. High PGAM5 expression induces chemoresistance by enhancing Bcl-xL-mediated anti-apoptotic signaling and predicts poor prognosis in hepatocellular carcinoma patients. Cell Death Dis. 2018;9:991.PubMedPubMedCentralCrossRef
82.
Zurück zum Zitat Kuo KL, Liu SH, Lin WC, Hsu FS, Chow PM, Chang YW, et al. Trifluoperazine, an antipsychotic drug, effectively reduces drug resistance in cisplatin-resistant urothelial carcinoma cells via suppressing Bcl-xL: an in vitro and in vivo study. Int J Mol Sci. 2019;20. Kuo KL, Liu SH, Lin WC, Hsu FS, Chow PM, Chang YW, et al. Trifluoperazine, an antipsychotic drug, effectively reduces drug resistance in cisplatin-resistant urothelial carcinoma cells via suppressing Bcl-xL: an in vitro and in vivo study. Int J Mol Sci. 2019;20.
83.
Zurück zum Zitat Nix P, Cawkwell L, Patmore H, Greenman J, Stafford N. Bcl-2 expression predicts radiotherapy failure in laryngeal cancer. Br J Cancer. 2005;92:2185–9.PubMedPubMedCentralCrossRef Nix P, Cawkwell L, Patmore H, Greenman J, Stafford N. Bcl-2 expression predicts radiotherapy failure in laryngeal cancer. Br J Cancer. 2005;92:2185–9.PubMedPubMedCentralCrossRef
84.
Zurück zum Zitat Zhang Z, Jin F, Lian X, Li M, Wang G, Lan B, et al. Genistein promotes ionizing radiation-induced cell death by reducing cytoplasmic Bcl-xL levels in non-small cell lung cancer. Sci Rep. 2018;8:328.PubMedPubMedCentralCrossRef Zhang Z, Jin F, Lian X, Li M, Wang G, Lan B, et al. Genistein promotes ionizing radiation-induced cell death by reducing cytoplasmic Bcl-xL levels in non-small cell lung cancer. Sci Rep. 2018;8:328.PubMedPubMedCentralCrossRef
85.
Zurück zum Zitat Su ZZ, Lebedeva IV, Sarkar D, Emdad L, Gupta P, Kitada S, et al. Ionizing radiation enhances therapeutic activity of mda-7/IL-24: overcoming radiation- and mda-7/IL-24-resistance in prostate cancer cells overexpressing the antiapoptotic proteins bcl-xL or bcl-2. Oncogene. 2006;25:2339–48.PubMedCrossRef Su ZZ, Lebedeva IV, Sarkar D, Emdad L, Gupta P, Kitada S, et al. Ionizing radiation enhances therapeutic activity of mda-7/IL-24: overcoming radiation- and mda-7/IL-24-resistance in prostate cancer cells overexpressing the antiapoptotic proteins bcl-xL or bcl-2. Oncogene. 2006;25:2339–48.PubMedCrossRef
86.
Zurück zum Zitat Wang ZX, Yang JS, Pan X, Wang JR, Li J, Yin YM, et al. Functional and biological analysis of Bcl-xL expression in human osteosarcoma. Bone. 2010;47:445–54.PubMedCrossRef Wang ZX, Yang JS, Pan X, Wang JR, Li J, Yin YM, et al. Functional and biological analysis of Bcl-xL expression in human osteosarcoma. Bone. 2010;47:445–54.PubMedCrossRef
87.
Zurück zum Zitat Jackson MR, Ashton M, Koessinger AL, Dick C, Verheij M, Chalmers AJ. Mesothelioma cells depend on the antiapoptotic protein Bcl-xL for survival and are sensitized to ionizing radiation by BH3-Mimetics. Int J Radiat Oncol Biol Phys. 2020;106:867–77.PubMedCrossRef Jackson MR, Ashton M, Koessinger AL, Dick C, Verheij M, Chalmers AJ. Mesothelioma cells depend on the antiapoptotic protein Bcl-xL for survival and are sensitized to ionizing radiation by BH3-Mimetics. Int J Radiat Oncol Biol Phys. 2020;106:867–77.PubMedCrossRef
88.
Zurück zum Zitat Lee EF, Fairlie WD. The Structural Biology of Bcl-x(L). Int J Mol Sci. 2019;20. Lee EF, Fairlie WD. The Structural Biology of Bcl-x(L). Int J Mol Sci. 2019;20.
89.
Zurück zum Zitat Edlich F, Banerjee S, Suzuki M, Cleland MM, Arnoult D, Wang C, et al. Bcl-x(L) retrotranslocates Bax from the mitochondria into the cytosol. Cell. 2011;145:104–16.PubMedPubMedCentralCrossRef Edlich F, Banerjee S, Suzuki M, Cleland MM, Arnoult D, Wang C, et al. Bcl-x(L) retrotranslocates Bax from the mitochondria into the cytosol. Cell. 2011;145:104–16.PubMedPubMedCentralCrossRef
90.
Zurück zum Zitat Llambi F, Moldoveanu T, Tait SW, Bouchier-Hayes L, Temirov J, McCormick LL, et al. A unified model of mammalian BCL-2 protein family interactions at the mitochondria. Mol Cell. 2011;44:517–31.PubMedPubMedCentralCrossRef Llambi F, Moldoveanu T, Tait SW, Bouchier-Hayes L, Temirov J, McCormick LL, et al. A unified model of mammalian BCL-2 protein family interactions at the mitochondria. Mol Cell. 2011;44:517–31.PubMedPubMedCentralCrossRef
91.
Zurück zum Zitat Bogner C, Kale J, Pogmore J, Chi X, Shamas-Din A, Fradin C, et al. Allosteric regulation of BH3 proteins in Bcl-x(L) complexes enables switch-like activation of Bax. Mol Cell. 2020;77:901–912.e909.PubMedCrossRef Bogner C, Kale J, Pogmore J, Chi X, Shamas-Din A, Fradin C, et al. Allosteric regulation of BH3 proteins in Bcl-x(L) complexes enables switch-like activation of Bax. Mol Cell. 2020;77:901–912.e909.PubMedCrossRef
92.
Zurück zum Zitat Aartsma-Rus A, van Vliet L, Hirschi M, Janson AA, Heemskerk H, de Winter CL, et al. Guidelines for antisense oligonucleotide design and insight into splice-modulating mechanisms. Mol Ther. 2009;17:548–53.PubMedCrossRef Aartsma-Rus A, van Vliet L, Hirschi M, Janson AA, Heemskerk H, de Winter CL, et al. Guidelines for antisense oligonucleotide design and insight into splice-modulating mechanisms. Mol Ther. 2009;17:548–53.PubMedCrossRef
93.
Zurück zum Zitat Monaco G, Decrock E, Arbel N, van Vliet AR, La Rovere RM, De Smedt H, et al. The BH4 domain of anti-apoptotic Bcl-XL, but not that of the related Bcl-2, limits the voltage-dependent anion channel 1 (VDAC1)-mediated transfer of pro-apoptotic Ca2+ signals to mitochondria. J Biol Chem. 2015;290:9150–61.PubMedPubMedCentralCrossRef Monaco G, Decrock E, Arbel N, van Vliet AR, La Rovere RM, De Smedt H, et al. The BH4 domain of anti-apoptotic Bcl-XL, but not that of the related Bcl-2, limits the voltage-dependent anion channel 1 (VDAC1)-mediated transfer of pro-apoptotic Ca2+ signals to mitochondria. J Biol Chem. 2015;290:9150–61.PubMedPubMedCentralCrossRef
94.
Zurück zum Zitat Chang BS, Kelekar A, Harris MH, Harlan JE, Fesik SW, Thompson CB. The BH3 domain of Bcl-x(S) is required for inhibition of the antiapoptotic function of Bcl-x(L). Mol Cell Biol. 1999;19:6673–81.PubMedPubMedCentralCrossRef Chang BS, Kelekar A, Harris MH, Harlan JE, Fesik SW, Thompson CB. The BH3 domain of Bcl-x(S) is required for inhibition of the antiapoptotic function of Bcl-x(L). Mol Cell Biol. 1999;19:6673–81.PubMedPubMedCentralCrossRef
95.
Zurück zum Zitat Plötz M, Gillissen B, Hossini AM, Daniel PT, Eberle J. Disruption of the VDAC2-Bak interaction by Bcl-x(S) mediates efficient induction of apoptosis in melanoma cells. Cell Death Differ. 2012;19:1928–38.PubMedPubMedCentralCrossRef Plötz M, Gillissen B, Hossini AM, Daniel PT, Eberle J. Disruption of the VDAC2-Bak interaction by Bcl-x(S) mediates efficient induction of apoptosis in melanoma cells. Cell Death Differ. 2012;19:1928–38.PubMedPubMedCentralCrossRef
96.
Zurück zum Zitat Peña-Blanco A, García-Sáez AJ. Bax, Bak and beyond - mitochondrial performance in apoptosis. FEBS J. 2018;285:416–31.PubMedCrossRef Peña-Blanco A, García-Sáez AJ. Bax, Bak and beyond - mitochondrial performance in apoptosis. FEBS J. 2018;285:416–31.PubMedCrossRef
97.
Zurück zum Zitat Wu L, Mao C, Ming X. Modulation of Bcl-x Alternative Splicing Induces Apoptosis of Human Hepatic Stellate Cells. Biomed Res Int. 2016;2016:7478650.PubMedPubMedCentral Wu L, Mao C, Ming X. Modulation of Bcl-x Alternative Splicing Induces Apoptosis of Human Hepatic Stellate Cells. Biomed Res Int. 2016;2016:7478650.PubMedPubMedCentral
98.
Zurück zum Zitat Zhao R, Hu M, Liang S, Wang B, Yu B, Yang G, et al. IE86 Inhibits the apoptosis and promotes the cell proliferation of glioma cells via the hnRNP A2/B1-mediated alternative splicing of Bcl-x. Int J Clin Exp Pathol. 2019;12:2775–85.PubMedPubMedCentral Zhao R, Hu M, Liang S, Wang B, Yu B, Yang G, et al. IE86 Inhibits the apoptosis and promotes the cell proliferation of glioma cells via the hnRNP A2/B1-mediated alternative splicing of Bcl-x. Int J Clin Exp Pathol. 2019;12:2775–85.PubMedPubMedCentral
99.
Zurück zum Zitat Yu S, Du M, Yin A, Mai Z, Wang Y, Zhao M, et al. Bcl-xL inhibits PINK1/Parkin-dependent mitophagy by preventing mitochondrial Parkin accumulation. Int J Biochem Cell Biol. 2020;122:105720.PubMedCrossRef Yu S, Du M, Yin A, Mai Z, Wang Y, Zhao M, et al. Bcl-xL inhibits PINK1/Parkin-dependent mitophagy by preventing mitochondrial Parkin accumulation. Int J Biochem Cell Biol. 2020;122:105720.PubMedCrossRef
100.
Zurück zum Zitat Zhou F, Yang Y, Xing D. Bcl-2 and Bcl-xL play important roles in the crosstalk between autophagy and apoptosis. FEBS J. 2011;278:403–13.PubMedCrossRef Zhou F, Yang Y, Xing D. Bcl-2 and Bcl-xL play important roles in the crosstalk between autophagy and apoptosis. FEBS J. 2011;278:403–13.PubMedCrossRef
102.
Zurück zum Zitat Lin HX, Qiu HJ, Zeng F, Rao HL, Yang GF, Kung HF, et al. Decreased expression of Beclin 1 correlates closely with Bcl-xL expression and poor prognosis of ovarian carcinoma. PLoS ONE. 2013;8:e60516.PubMedPubMedCentralCrossRef Lin HX, Qiu HJ, Zeng F, Rao HL, Yang GF, Kung HF, et al. Decreased expression of Beclin 1 correlates closely with Bcl-xL expression and poor prognosis of ovarian carcinoma. PLoS ONE. 2013;8:e60516.PubMedPubMedCentralCrossRef
104.
Zurück zum Zitat Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell. 2005;122:927–39.PubMedCrossRef Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell. 2005;122:927–39.PubMedCrossRef
105.
Zurück zum Zitat Huang X, Qi Q, Hua X, Li X, Zhang W, Sun H, et al. Beclin 1, an autophagy-related gene, augments apoptosis in U87 glioblastoma cells. Oncol Rep. 2014;31:1761–7.PubMedCrossRef Huang X, Qi Q, Hua X, Li X, Zhang W, Sun H, et al. Beclin 1, an autophagy-related gene, augments apoptosis in U87 glioblastoma cells. Oncol Rep. 2014;31:1761–7.PubMedCrossRef
106.
Zurück zum Zitat Wen J, Mai Z, Zhao M, Wang X, Chen T. Full anti-apoptotic function of Bcl-XL complexed with Beclin-1 verified by live-cell FRET assays. Biochem Biophys Res Commun. 2019;511:700–4.PubMedCrossRef Wen J, Mai Z, Zhao M, Wang X, Chen T. Full anti-apoptotic function of Bcl-XL complexed with Beclin-1 verified by live-cell FRET assays. Biochem Biophys Res Commun. 2019;511:700–4.PubMedCrossRef
107.
Zurück zum Zitat Lindqvist LM, Heinlein M, Huang DC, Vaux DL. Prosurvival Bcl-2 family members affect autophagy only indirectly, by inhibiting Bax and Bak. Proc Natl Acad Sci U S A. 2014;111:8512–7.PubMedPubMedCentralCrossRef Lindqvist LM, Heinlein M, Huang DC, Vaux DL. Prosurvival Bcl-2 family members affect autophagy only indirectly, by inhibiting Bax and Bak. Proc Natl Acad Sci U S A. 2014;111:8512–7.PubMedPubMedCentralCrossRef
108.
Zurück zum Zitat Koehler BC, Scherr AL, Lorenz S, Urbanik T, Kautz N, Elssner C, et al. Beyond cell death - antiapoptotic Bcl-2 proteins regulate migration and invasion of colorectal cancer cells in vitro. PLoS ONE. 2013;8:e76446.PubMedPubMedCentralCrossRef Koehler BC, Scherr AL, Lorenz S, Urbanik T, Kautz N, Elssner C, et al. Beyond cell death - antiapoptotic Bcl-2 proteins regulate migration and invasion of colorectal cancer cells in vitro. PLoS ONE. 2013;8:e76446.PubMedPubMedCentralCrossRef
109.
Zurück zum Zitat Yang J, Sun M, Zhang A, Lv C, De W, Wang Z. Adenovirus-mediated siRNA targeting Bcl-xL inhibits proliferation, reduces invasion and enhances radiosensitivity of human colorectal cancer cells. World J Surg Oncol. 2011;9:117.PubMedPubMedCentralCrossRef Yang J, Sun M, Zhang A, Lv C, De W, Wang Z. Adenovirus-mediated siRNA targeting Bcl-xL inhibits proliferation, reduces invasion and enhances radiosensitivity of human colorectal cancer cells. World J Surg Oncol. 2011;9:117.PubMedPubMedCentralCrossRef
110.
Zurück zum Zitat Carné Trécesson S, Souazé F, Basseville A, Bernard AC, Pécot J, Lopez J, et al. BCL-X(L) directly modulates RAS signalling to favour cancer cell stemness. Nat Commun. 2017;8:1123.PubMedPubMedCentralCrossRef Carné Trécesson S, Souazé F, Basseville A, Bernard AC, Pécot J, Lopez J, et al. BCL-X(L) directly modulates RAS signalling to favour cancer cell stemness. Nat Commun. 2017;8:1123.PubMedPubMedCentralCrossRef
111.
Zurück zum Zitat Gabellini C, Gómez-Abenza E, Ibáñez-Molero S, Tupone MG, Pérez-Oliva AB, de Oliveira S, et al. Interleukin 8 mediates bcl-xL-induced enhancement of human melanoma cell dissemination and angiogenesis in a zebrafish xenograft model. Int J Cancer. 2018;142:584–96.PubMedCrossRef Gabellini C, Gómez-Abenza E, Ibáñez-Molero S, Tupone MG, Pérez-Oliva AB, de Oliveira S, et al. Interleukin 8 mediates bcl-xL-induced enhancement of human melanoma cell dissemination and angiogenesis in a zebrafish xenograft model. Int J Cancer. 2018;142:584–96.PubMedCrossRef
112.
Zurück zum Zitat Bessou M, Lopez J, Gadet R, Deygas M, Popgeorgiev N, Poncet D, et al. The apoptosis inhibitor Bcl-xL controls breast cancer cell migration through mitochondria-dependent reactive oxygen species production. Oncogene. 2020;39:3056–74.PubMedCrossRef Bessou M, Lopez J, Gadet R, Deygas M, Popgeorgiev N, Poncet D, et al. The apoptosis inhibitor Bcl-xL controls breast cancer cell migration through mitochondria-dependent reactive oxygen species production. Oncogene. 2020;39:3056–74.PubMedCrossRef
113.
Zurück zum Zitat Grillot DA, Merino R, Núñez G. Bcl-XL displays restricted distribution during T cell development and inhibits multiple forms of apoptosis but not clonal deletion in transgenic mice. J Exp Med. 1995;182:1973–83.PubMedCrossRef Grillot DA, Merino R, Núñez G. Bcl-XL displays restricted distribution during T cell development and inhibits multiple forms of apoptosis but not clonal deletion in transgenic mice. J Exp Med. 1995;182:1973–83.PubMedCrossRef
114.
Zurück zum Zitat Amanna IJ, Dingwall JP, Hayes CE. Enforced bcl-xL gene expression restored splenic B lymphocyte development in BAFF-R mutant mice. J Immunol. 2003;170:4593–600.PubMedCrossRef Amanna IJ, Dingwall JP, Hayes CE. Enforced bcl-xL gene expression restored splenic B lymphocyte development in BAFF-R mutant mice. J Immunol. 2003;170:4593–600.PubMedCrossRef
115.
Zurück zum Zitat Kohlhapp FJ, Haribhai D, Mathew R, Duggan R, Ellis PA, Wang R, et al. Venetoclax increases intra-tumoral effector T cells and anti-tumor efficacy in combination with immune checkpoint blockade. Cancer Discov. 2020. Kohlhapp FJ, Haribhai D, Mathew R, Duggan R, Ellis PA, Wang R, et al. Venetoclax increases intra-tumoral effector T cells and anti-tumor efficacy in combination with immune checkpoint blockade. Cancer Discov. 2020.
116.
Zurück zum Zitat Chen S, Li X, Zhang W, Zi M, Xu Y. Inflammatory compound lipopolysaccharide promotes the survival of GM-CSF cultured dendritic cell via PI3 kinase-dependent upregulation of Bcl-x. Immunol Cell Biol. 2018;96:912–21.PubMedCrossRef Chen S, Li X, Zhang W, Zi M, Xu Y. Inflammatory compound lipopolysaccharide promotes the survival of GM-CSF cultured dendritic cell via PI3 kinase-dependent upregulation of Bcl-x. Immunol Cell Biol. 2018;96:912–21.PubMedCrossRef
117.
Zurück zum Zitat Issa F, Milward K, Goto R, Betts G, Wood KJ, Hester J. Transiently activated human regulatory T cells upregulate BCL-XL expression and acquire a functional advantage in vivo. Front Immunol. 2019;10:889.PubMedPubMedCentralCrossRef Issa F, Milward K, Goto R, Betts G, Wood KJ, Hester J. Transiently activated human regulatory T cells upregulate BCL-XL expression and acquire a functional advantage in vivo. Front Immunol. 2019;10:889.PubMedPubMedCentralCrossRef
118.
Zurück zum Zitat Wallin RP, Sundquist VS, Bråkenhielm E, Cao Y, Ljunggren HG, Grandien A. Angiostatic effects of NK cell-derived IFN-γ counteracted by tumour cell Bcl-xL expression. Scand J Immunol. 2014;79:90–7.PubMedCrossRef Wallin RP, Sundquist VS, Bråkenhielm E, Cao Y, Ljunggren HG, Grandien A. Angiostatic effects of NK cell-derived IFN-γ counteracted by tumour cell Bcl-xL expression. Scand J Immunol. 2014;79:90–7.PubMedCrossRef
119.
Zurück zum Zitat Carrington EM, Tarlinton DM, Gray DH, Huntington ND, Zhan Y, Lew AM. The life and death of immune cell types: the role of BCL-2 anti-apoptotic molecules. Immunol Cell Biol. 2017;95:870–7.PubMedCrossRef Carrington EM, Tarlinton DM, Gray DH, Huntington ND, Zhan Y, Lew AM. The life and death of immune cell types: the role of BCL-2 anti-apoptotic molecules. Immunol Cell Biol. 2017;95:870–7.PubMedCrossRef
120.
Zurück zum Zitat Andersen MH, Reker S, Kvistborg P, Becker JC, thor Straten P. Spontaneous immunity against Bcl-xL in cancer patients. J Immunol. 2005;175:2709–14.PubMedCrossRef Andersen MH, Reker S, Kvistborg P, Becker JC, thor Straten P. Spontaneous immunity against Bcl-xL in cancer patients. J Immunol. 2005;175:2709–14.PubMedCrossRef
121.
122.
Zurück zum Zitat Mohammad RM, Muqbil I, Lowe L, Yedjou C, Hsu HY, Lin LT, et al. Broad targeting of resistance to apoptosis in cancer. Semin Cancer Biol. 2015;35(Suppl):S78–s103.PubMedPubMedCentralCrossRef Mohammad RM, Muqbil I, Lowe L, Yedjou C, Hsu HY, Lin LT, et al. Broad targeting of resistance to apoptosis in cancer. Semin Cancer Biol. 2015;35(Suppl):S78–s103.PubMedPubMedCentralCrossRef
123.
Zurück zum Zitat Zhang J, Quan LN, Meng Q, Wang HY, Wang J, Yu P, et al. miR-548e sponged by ZFAS1 regulates metastasis and cisplatin resistance of OC by targeting CXCR4 and let-7a/BCL-XL/S signaling axis. Mol Ther Nucleic Acids. 2020;20:621–38.PubMedPubMedCentralCrossRef Zhang J, Quan LN, Meng Q, Wang HY, Wang J, Yu P, et al. miR-548e sponged by ZFAS1 regulates metastasis and cisplatin resistance of OC by targeting CXCR4 and let-7a/BCL-XL/S signaling axis. Mol Ther Nucleic Acids. 2020;20:621–38.PubMedPubMedCentralCrossRef
124.
Zurück zum Zitat Liu R, Page C, Beidler DR, Wicha MS, Núñez G. Overexpression of Bcl-x(L) promotes chemotherapy resistance of mammary tumors in a syngeneic mouse model. Am J Pathol. 1999;155:1861–7.PubMedPubMedCentralCrossRef Liu R, Page C, Beidler DR, Wicha MS, Núñez G. Overexpression of Bcl-x(L) promotes chemotherapy resistance of mammary tumors in a syngeneic mouse model. Am J Pathol. 1999;155:1861–7.PubMedPubMedCentralCrossRef
125.
Zurück zum Zitat Zeng Y, Xu X, Wang S, Zhang Z, Liu Y, Han K, et al. Ring finger protein 6 promotes breast cancer cell proliferation by stabilizing estrogen receptor alpha. Oncotarget. 2017;8:20103–12.PubMedPubMedCentralCrossRef Zeng Y, Xu X, Wang S, Zhang Z, Liu Y, Han K, et al. Ring finger protein 6 promotes breast cancer cell proliferation by stabilizing estrogen receptor alpha. Oncotarget. 2017;8:20103–12.PubMedPubMedCentralCrossRef
126.
Zurück zum Zitat Zoeller JJ, Vagodny A, Taneja K, Tan BY, O'Brien N, Slamon DJ, et al. Neutralization of BCL-2/X(L) enhances the cytotoxicity of T-DM1 In Vivo. Mol Cancer Ther. 2019;18:1115–26.PubMedPubMedCentralCrossRef Zoeller JJ, Vagodny A, Taneja K, Tan BY, O'Brien N, Slamon DJ, et al. Neutralization of BCL-2/X(L) enhances the cytotoxicity of T-DM1 In Vivo. Mol Cancer Ther. 2019;18:1115–26.PubMedPubMedCentralCrossRef
127.
Zurück zum Zitat Pan R, Hogdal LJ, Benito JM, Bucci D, Han L, Borthakur G, et al. Selective BCL-2 inhibition by ABT-199 causes on-target cell death in acute myeloid leukemia. Cancer Discov. 2014;4:362–75.PubMedCrossRef Pan R, Hogdal LJ, Benito JM, Bucci D, Han L, Borthakur G, et al. Selective BCL-2 inhibition by ABT-199 causes on-target cell death in acute myeloid leukemia. Cancer Discov. 2014;4:362–75.PubMedCrossRef
128.
Zurück zum Zitat Wolter KG, Verhaegen M, Fernández Y, Nikolovska-Coleska Z, Riblett M, de la Vega CM, et al. Therapeutic window for melanoma treatment provided by selective effects of the proteasome on Bcl-2 proteins. Cell Death Differ. 2007;14:1605–16.PubMedCrossRef Wolter KG, Verhaegen M, Fernández Y, Nikolovska-Coleska Z, Riblett M, de la Vega CM, et al. Therapeutic window for melanoma treatment provided by selective effects of the proteasome on Bcl-2 proteins. Cell Death Differ. 2007;14:1605–16.PubMedCrossRef
129.
Zurück zum Zitat Sumantran VN, Ealovega MW, Nuñez G, Clarke MF, Wicha MS. Overexpression of Bcl-XS sensitizes MCF-7 cells to chemotherapy-induced apoptosis. Cancer Res. 1995;55:2507–10.PubMed Sumantran VN, Ealovega MW, Nuñez G, Clarke MF, Wicha MS. Overexpression of Bcl-XS sensitizes MCF-7 cells to chemotherapy-induced apoptosis. Cancer Res. 1995;55:2507–10.PubMed
130.
Zurück zum Zitat Streffer JR, Rimner A, Rieger J, Naumann U, Rodemann HP, Weller M. BCL-2 family proteins modulate radiosensitivity in human malignant glioma cells. J Neurooncol. 2002;56:43–9.PubMedCrossRef Streffer JR, Rimner A, Rieger J, Naumann U, Rodemann HP, Weller M. BCL-2 family proteins modulate radiosensitivity in human malignant glioma cells. J Neurooncol. 2002;56:43–9.PubMedCrossRef
131.
Zurück zum Zitat Strik H, Deininger M, Streffer J, Grote E, Wickboldt J, Dichgans J, et al. BCL-2 family protein expression in initial and recurrent glioblastomas: modulation by radiochemotherapy. J Neurol Neurosurg Psychiatry. 1999;67:763–8.PubMedPubMedCentralCrossRef Strik H, Deininger M, Streffer J, Grote E, Wickboldt J, Dichgans J, et al. BCL-2 family protein expression in initial and recurrent glioblastomas: modulation by radiochemotherapy. J Neurol Neurosurg Psychiatry. 1999;67:763–8.PubMedPubMedCentralCrossRef
132.
Zurück zum Zitat Li JY, Li YY, Jin W, Yang Q, Shao ZM, Tian XS. ABT-737 reverses the acquired radioresistance of breast cancer cells by targeting Bcl-2 and Bcl-xL. J Exp Clin Cancer Res. 2012;31:102.PubMedPubMedCentralCrossRef Li JY, Li YY, Jin W, Yang Q, Shao ZM, Tian XS. ABT-737 reverses the acquired radioresistance of breast cancer cells by targeting Bcl-2 and Bcl-xL. J Exp Clin Cancer Res. 2012;31:102.PubMedPubMedCentralCrossRef
133.
Zurück zum Zitat Zhu L, Zhu B, Yang L, Zhao X, Jiang H, Ma F. RelB regulates Bcl-xl expression and the irradiation-induced apoptosis of murine prostate cancer cells. Biomed Rep. 2014;2:354–8.PubMedPubMedCentralCrossRef Zhu L, Zhu B, Yang L, Zhao X, Jiang H, Ma F. RelB regulates Bcl-xl expression and the irradiation-induced apoptosis of murine prostate cancer cells. Biomed Rep. 2014;2:354–8.PubMedPubMedCentralCrossRef
134.
Zurück zum Zitat Ho JN, Kang GY, Lee SS, Kim J, Bae IH, Hwang SG, et al. Bcl-XL and STAT3 mediate malignant actions of gamma-irradiation in lung cancer cells. Cancer Sci. 2010;101:1417–23.PubMedCrossRef Ho JN, Kang GY, Lee SS, Kim J, Bae IH, Hwang SG, et al. Bcl-XL and STAT3 mediate malignant actions of gamma-irradiation in lung cancer cells. Cancer Sci. 2010;101:1417–23.PubMedCrossRef
135.
Zurück zum Zitat Jung CH, Kim EM, Song JY, Park JK, Um HD. Mitochondrial superoxide dismutase 2 mediates γ-irradiation-induced cancer cell invasion. Exp Mol Med. 2019;51:1–10.PubMed Jung CH, Kim EM, Song JY, Park JK, Um HD. Mitochondrial superoxide dismutase 2 mediates γ-irradiation-induced cancer cell invasion. Exp Mol Med. 2019;51:1–10.PubMed
136.
Zurück zum Zitat Borrás C, Mas-Bargues C, Román-Domínguez A, Sanz-Ros J, Gimeno-Mallench L, Inglés M, et al. BCL-xL, a Mitochondrial Protein Involved in Successful Aging: From C. elegans to Human Centenarians. Int J Mol Sci. 2020:21. Borrás C, Mas-Bargues C, Román-Domínguez A, Sanz-Ros J, Gimeno-Mallench L, Inglés M, et al. BCL-xL, a Mitochondrial Protein Involved in Successful Aging: From C. elegans to Human Centenarians. Int J Mol Sci. 2020:21.
137.
Zurück zum Zitat Pan J, Li D, Xu Y, Zhang J, Wang Y, Chen M, et al. Inhibition of Bcl-2/xl with ABT-263 selectively kills senescent Type II pneumocytes and reverses persistent pulmonary fibrosis induced by ionizing radiation in mice. Int J Radiat Oncol Biol Phys. 2017;99:353–61.PubMedPubMedCentralCrossRef Pan J, Li D, Xu Y, Zhang J, Wang Y, Chen M, et al. Inhibition of Bcl-2/xl with ABT-263 selectively kills senescent Type II pneumocytes and reverses persistent pulmonary fibrosis induced by ionizing radiation in mice. Int J Radiat Oncol Biol Phys. 2017;99:353–61.PubMedPubMedCentralCrossRef
138.
Zurück zum Zitat Brinkmann K, Waring P, Glaser SP, Wimmer V, Cottle DL, Tham MS, et al. BCL-XL exerts a protective role against anemia caused by radiation-induced kidney damage. EMBO J. 2020:e105561. Brinkmann K, Waring P, Glaser SP, Wimmer V, Cottle DL, Tham MS, et al. BCL-XL exerts a protective role against anemia caused by radiation-induced kidney damage. EMBO J. 2020:e105561.
140.
Zurück zum Zitat Charleston JS, Schnell FJ, Dworzak J, Donoghue C, Lewis S, Chen L, et al. Eteplirsen treatment for Duchenne muscular dystrophy: Exon skipping and dystrophin production. Neurology. 2018;90:e2146–54.PubMedCrossRef Charleston JS, Schnell FJ, Dworzak J, Donoghue C, Lewis S, Chen L, et al. Eteplirsen treatment for Duchenne muscular dystrophy: Exon skipping and dystrophin production. Neurology. 2018;90:e2146–54.PubMedCrossRef
141.
Zurück zum Zitat Michelson D, Ciafaloni E, Ashwal S, Lewis E, Narayanaswami P, Oskoui M, et al. Evidence in focus: Nusinersen use in spinal muscular atrophy: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology. 2018;91:923–33.PubMedCrossRef Michelson D, Ciafaloni E, Ashwal S, Lewis E, Narayanaswami P, Oskoui M, et al. Evidence in focus: Nusinersen use in spinal muscular atrophy: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology. 2018;91:923–33.PubMedCrossRef
142.
Zurück zum Zitat Li Z, Li Q, Han L, Tian N, Liang Q, Li Y, et al. Pro-apoptotic effects of splice-switching oligonucleotides targeting Bcl-x pre-mRNA in human glioma cell lines. Oncol Rep. 2016;35:1013–9.PubMedCrossRef Li Z, Li Q, Han L, Tian N, Liang Q, Li Y, et al. Pro-apoptotic effects of splice-switching oligonucleotides targeting Bcl-x pre-mRNA in human glioma cell lines. Oncol Rep. 2016;35:1013–9.PubMedCrossRef
143.
144.
Zurück zum Zitat Zhang N, Peairs JJ, Yang P, Tyrrell J, Roberts J, Kole R, et al. The importance of Bcl-xL in the survival of human RPE cells. Invest Ophthalmol Vis Sci. 2007;48:3846–53.PubMedCrossRef Zhang N, Peairs JJ, Yang P, Tyrrell J, Roberts J, Kole R, et al. The importance of Bcl-xL in the survival of human RPE cells. Invest Ophthalmol Vis Sci. 2007;48:3846–53.PubMedCrossRef
145.
Zurück zum Zitat Taylor JK, Zhang QQ, Wyatt JR, Dean NM. Induction of endogenous Bcl-xS through the control of Bcl-x pre-mRNA splicing by antisense oligonucleotides. Nat Biotechnol. 1999;17:1097–100.PubMedCrossRef Taylor JK, Zhang QQ, Wyatt JR, Dean NM. Induction of endogenous Bcl-xS through the control of Bcl-x pre-mRNA splicing by antisense oligonucleotides. Nat Biotechnol. 1999;17:1097–100.PubMedCrossRef
146.
Zurück zum Zitat Mercatante DR, Bortner CD, Cidlowski JA, Kole R. Modification of alternative splicing of Bcl-x pre-mRNA in prostate and breast cancer cells. analysis of apoptosis and cell death. J Biol Chem. 2001;276:16411–7.PubMedCrossRef Mercatante DR, Bortner CD, Cidlowski JA, Kole R. Modification of alternative splicing of Bcl-x pre-mRNA in prostate and breast cancer cells. analysis of apoptosis and cell death. J Biol Chem. 2001;276:16411–7.PubMedCrossRef
147.
Zurück zum Zitat Mercatante DR, Mohler JL, Kole R. Cellular response to an antisense-mediated shift of Bcl-x pre-mRNA splicing and antineoplastic agents. J Biol Chem. 2002;277:49374–82.PubMedCrossRef Mercatante DR, Mohler JL, Kole R. Cellular response to an antisense-mediated shift of Bcl-x pre-mRNA splicing and antineoplastic agents. J Biol Chem. 2002;277:49374–82.PubMedCrossRef
148.
Zurück zum Zitat Subbotina E, Koganti SR, Hodgson-Zingman DM, Zingman LV. Morpholino-driven gene editing: A new horizon for disease treatment and prevention. Clin Pharmacol Ther. 2016;99:21–5.PubMedCrossRef Subbotina E, Koganti SR, Hodgson-Zingman DM, Zingman LV. Morpholino-driven gene editing: A new horizon for disease treatment and prevention. Clin Pharmacol Ther. 2016;99:21–5.PubMedCrossRef
149.
Zurück zum Zitat Corrionero A, Miñana B, Valcárcel J. Reduced fidelity of branch point recognition and alternative splicing induced by the anti-tumor drug spliceostatin A. Genes Dev. 2011;25:445–59.PubMedPubMedCentralCrossRef Corrionero A, Miñana B, Valcárcel J. Reduced fidelity of branch point recognition and alternative splicing induced by the anti-tumor drug spliceostatin A. Genes Dev. 2011;25:445–59.PubMedPubMedCentralCrossRef
150.
Zurück zum Zitat Han T, Goralski M, Gaskill N, Capota E, Kim J, Ting TC, et al. Anticancer sulfonamides target splicing by inducing RBM39 degradation via recruitment to DCAF15. Science. 2017;356. Han T, Goralski M, Gaskill N, Capota E, Kim J, Ting TC, et al. Anticancer sulfonamides target splicing by inducing RBM39 degradation via recruitment to DCAF15. Science. 2017;356.
151.
Zurück zum Zitat Makhafola TJ, Mbele M, Yacqub-Usman K, Hendren A, Haigh DB, Blackley Z, et al. Apoptosis in cancer cells is induced by alternative splicing of hnRNPA2/B1 through splicing of Bcl-x, a mechanism that can be stimulated by an extract of the South African Medicinal Plant, Cotyledon orbiculata. Front Oncol. 2020;10:547392.PubMedPubMedCentralCrossRef Makhafola TJ, Mbele M, Yacqub-Usman K, Hendren A, Haigh DB, Blackley Z, et al. Apoptosis in cancer cells is induced by alternative splicing of hnRNPA2/B1 through splicing of Bcl-x, a mechanism that can be stimulated by an extract of the South African Medicinal Plant, Cotyledon orbiculata. Front Oncol. 2020;10:547392.PubMedPubMedCentralCrossRef
152.
Zurück zum Zitat Aird D, Teng T, Huang CL, Pazolli E, Banka D, Cheung-Ong K, et al. Sensitivity to splicing modulation of BCL2 family genes defines cancer therapeutic strategies for splicing modulators. Nat Commun. 2019;10:137.PubMedPubMedCentralCrossRef Aird D, Teng T, Huang CL, Pazolli E, Banka D, Cheung-Ong K, et al. Sensitivity to splicing modulation of BCL2 family genes defines cancer therapeutic strategies for splicing modulators. Nat Commun. 2019;10:137.PubMedPubMedCentralCrossRef
153.
Zurück zum Zitat Sun Q, Yogosawa S, Iizumi Y, Sakai T, Sowa Y. The alkaloid emetine sensitizes ovarian carcinoma cells to cisplatin through downregulation of bcl-xL. Int J Oncol. 2015;46:389–94.PubMedCrossRef Sun Q, Yogosawa S, Iizumi Y, Sakai T, Sowa Y. The alkaloid emetine sensitizes ovarian carcinoma cells to cisplatin through downregulation of bcl-xL. Int J Oncol. 2015;46:389–94.PubMedCrossRef
154.
Zurück zum Zitat Chang JG, Yang DM, Chang WH, Chow LP, Chan WL, Lin HH, et al. Small molecule amiloride modulates oncogenic RNA alternative splicing to devitalize human cancer cells. PLoS One. 2011;6:e18643.PubMedPubMedCentralCrossRef Chang JG, Yang DM, Chang WH, Chow LP, Chan WL, Lin HH, et al. Small molecule amiloride modulates oncogenic RNA alternative splicing to devitalize human cancer cells. PLoS One. 2011;6:e18643.PubMedPubMedCentralCrossRef
155.
Zurück zum Zitat Lee CC, Chang WH, Chang YS, Yang JM, Chang CS, Hsu KC, et al. Alternative splicing in human cancer cells is modulated by the amiloride derivative 3,5-diamino-6-chloro-N-(N-(2,6-dichlorobenzoyl)carbamimidoyl)pyrazine-2-carboxide. Mol Oncol. 2019;13:1744–62.PubMedPubMedCentralCrossRef Lee CC, Chang WH, Chang YS, Yang JM, Chang CS, Hsu KC, et al. Alternative splicing in human cancer cells is modulated by the amiloride derivative 3,5-diamino-6-chloro-N-(N-(2,6-dichlorobenzoyl)carbamimidoyl)pyrazine-2-carboxide. Mol Oncol. 2019;13:1744–62.PubMedPubMedCentralCrossRef
156.
Zurück zum Zitat Sun Q, Li S, Li J, Fu Q, Wang Z, Li B, et al. Homoharringtonine regulates the alternative splicing of Bcl-x and caspase 9 through a protein phosphatase 1-dependent mechanism. BMC Complement Altern Med. 2018;18:164.PubMedPubMedCentralCrossRef Sun Q, Li S, Li J, Fu Q, Wang Z, Li B, et al. Homoharringtonine regulates the alternative splicing of Bcl-x and caspase 9 through a protein phosphatase 1-dependent mechanism. BMC Complement Altern Med. 2018;18:164.PubMedPubMedCentralCrossRef
157.
158.
Zurück zum Zitat Opydo-Chanek M, Gonzalo O, Marzo I. Multifaceted anticancer activity of BH3 mimetics: current evidence and future prospects. Biochem Pharmacol. 2017;136:12–23.PubMedCrossRef Opydo-Chanek M, Gonzalo O, Marzo I. Multifaceted anticancer activity of BH3 mimetics: current evidence and future prospects. Biochem Pharmacol. 2017;136:12–23.PubMedCrossRef
159.
Zurück zum Zitat Tao ZF, Hasvold L, Wang L, Wang X, Petros AM, Park CH, et al. Discovery of a potent and selective BCL-XL inhibitor with in vivo activity. ACS Med Chem Lett. 2014;5:1088–93.PubMedPubMedCentralCrossRef Tao ZF, Hasvold L, Wang L, Wang X, Petros AM, Park CH, et al. Discovery of a potent and selective BCL-XL inhibitor with in vivo activity. ACS Med Chem Lett. 2014;5:1088–93.PubMedPubMedCentralCrossRef
160.
Zurück zum Zitat Wang L, Doherty GA, Judd AS, Tao ZF, Hansen TM, Frey RR, et al. Discovery of A-1331852, a first-in-class, potent, and orally-bioavailable BCL-X(L) inhibitor. ACS Med Chem Lett. 2020;11:1829–36.PubMedPubMedCentralCrossRef Wang L, Doherty GA, Judd AS, Tao ZF, Hansen TM, Frey RR, et al. Discovery of A-1331852, a first-in-class, potent, and orally-bioavailable BCL-X(L) inhibitor. ACS Med Chem Lett. 2020;11:1829–36.PubMedPubMedCentralCrossRef
161.
Zurück zum Zitat Lessene G, Czabotar PE, Sleebs BE, Zobel K, Lowes KN, Adams JM, et al. Structure-guided design of a selective BCL-X(L) inhibitor. Nat Chem Biol. 2013;9:390–7.PubMedCrossRef Lessene G, Czabotar PE, Sleebs BE, Zobel K, Lowes KN, Adams JM, et al. Structure-guided design of a selective BCL-X(L) inhibitor. Nat Chem Biol. 2013;9:390–7.PubMedCrossRef
162.
Zurück zum Zitat Khan S, Zhang X, Lv D, Zhang Q, He Y, Zhang P, et al. A selective BCL-X(L) PROTAC degrader achieves safe and potent antitumor activity. Nat Med. 2019;25:1938–47.PubMedPubMedCentralCrossRef Khan S, Zhang X, Lv D, Zhang Q, He Y, Zhang P, et al. A selective BCL-X(L) PROTAC degrader achieves safe and potent antitumor activity. Nat Med. 2019;25:1938–47.PubMedPubMedCentralCrossRef
163.
Zurück zum Zitat Zhang X, Thummuri D, He Y, Liu X, Zhang P, Zhou D, et al. Utilizing PROTAC technology to address the on-target platelet toxicity associated with inhibition of BCL-X(L). Chem Commun (Camb). 2019;55:14765–8.CrossRef Zhang X, Thummuri D, He Y, Liu X, Zhang P, Zhou D, et al. Utilizing PROTAC technology to address the on-target platelet toxicity associated with inhibition of BCL-X(L). Chem Commun (Camb). 2019;55:14765–8.CrossRef
164.
Zurück zum Zitat Balachander SB, Criscione SW, Byth KF, Cidado J, Adam A, Lewis P, et al. AZD4320, a dual inhibitor of Bcl-2 and Bcl-x(L), induces tumor regression in hematologic cancer models without dose-limiting thrombocytopenia. Clin Cancer Res. 2020;26:6535–49.PubMedCrossRef Balachander SB, Criscione SW, Byth KF, Cidado J, Adam A, Lewis P, et al. AZD4320, a dual inhibitor of Bcl-2 and Bcl-x(L), induces tumor regression in hematologic cancer models without dose-limiting thrombocytopenia. Clin Cancer Res. 2020;26:6535–49.PubMedCrossRef
165.
Zurück zum Zitat Chen J, Zhou H, Aguilar A, Liu L, Bai L, McEachern D, et al. Structure-based discovery of BM-957 as a potent small-molecule inhibitor of Bcl-2 and Bcl-xL capable of achieving complete tumor regression. J Med Chem. 2012;55:8502–14.PubMedPubMedCentralCrossRef Chen J, Zhou H, Aguilar A, Liu L, Bai L, McEachern D, et al. Structure-based discovery of BM-957 as a potent small-molecule inhibitor of Bcl-2 and Bcl-xL capable of achieving complete tumor regression. J Med Chem. 2012;55:8502–14.PubMedPubMedCentralCrossRef
166.
Zurück zum Zitat Bai L, Chen J, McEachern D, Liu L, Zhou H, Aguilar A, et al. BM-1197: a novel and specific Bcl-2/Bcl-xL inhibitor inducing complete and long-lasting tumor regression in vivo. PLoS One. 2014;9:e99404.PubMedPubMedCentralCrossRef Bai L, Chen J, McEachern D, Liu L, Zhou H, Aguilar A, et al. BM-1197: a novel and specific Bcl-2/Bcl-xL inhibitor inducing complete and long-lasting tumor regression in vivo. PLoS One. 2014;9:e99404.PubMedPubMedCentralCrossRef
167.
Zurück zum Zitat Loriot Y, Mordant P, Dugue D, Geneste O, Gombos A, Opolon P, et al. Radiosensitization by a novel Bcl-2 and Bcl-XL inhibitor S44563 in small-cell lung cancer. Cell Death Dis. 2014;5:e1423.PubMedPubMedCentralCrossRef Loriot Y, Mordant P, Dugue D, Geneste O, Gombos A, Opolon P, et al. Radiosensitization by a novel Bcl-2 and Bcl-XL inhibitor S44563 in small-cell lung cancer. Cell Death Dis. 2014;5:e1423.PubMedPubMedCentralCrossRef
168.
Zurück zum Zitat Yi H, Qiu MZ, Yuan L, Luo Q, Pan W, Zhou S, et al. Bcl-2/Bcl-xl inhibitor APG-1252-M1 is a promising therapeutic strategy for gastric carcinoma. Cancer Med. 2020;9:4197–206.PubMedPubMedCentralCrossRef Yi H, Qiu MZ, Yuan L, Luo Q, Pan W, Zhou S, et al. Bcl-2/Bcl-xl inhibitor APG-1252-M1 is a promising therapeutic strategy for gastric carcinoma. Cancer Med. 2020;9:4197–206.PubMedPubMedCentralCrossRef
169.
Zurück zum Zitat Wang X, Zhang C, Yan X, Lan B, Wang J, Wei C, et al. A novel bioavailable BH3 mimetic efficiently inhibits colon cancer via cascade effects of mitochondria. Clin Cancer Res. 2016;22:1445–58.PubMedCrossRef Wang X, Zhang C, Yan X, Lan B, Wang J, Wei C, et al. A novel bioavailable BH3 mimetic efficiently inhibits colon cancer via cascade effects of mitochondria. Clin Cancer Res. 2016;22:1445–58.PubMedCrossRef
170.
Zurück zum Zitat Pan R, Ruvolo VR, Wei J, Konopleva M, Reed JC, Pellecchia M, et al. Inhibition of Mcl-1 with the pan-Bcl-2 family inhibitor (-)BI97D6 overcomes ABT-737 resistance in acute myeloid leukemia. Blood. 2015;126:363–72.PubMedPubMedCentralCrossRef Pan R, Ruvolo VR, Wei J, Konopleva M, Reed JC, Pellecchia M, et al. Inhibition of Mcl-1 with the pan-Bcl-2 family inhibitor (-)BI97D6 overcomes ABT-737 resistance in acute myeloid leukemia. Blood. 2015;126:363–72.PubMedPubMedCentralCrossRef
171.
Zurück zum Zitat Kivioja JL, Thanasopoulou A, Kumar A, Kontro M, Yadav B, Majumder MM, et al. Dasatinib and navitoclax act synergistically to target NUP98-NSD1(+)/FLT3-ITD(+) acute myeloid leukemia. Leukemia. 2019;33:1360–72.PubMedCrossRef Kivioja JL, Thanasopoulou A, Kumar A, Kontro M, Yadav B, Majumder MM, et al. Dasatinib and navitoclax act synergistically to target NUP98-NSD1(+)/FLT3-ITD(+) acute myeloid leukemia. Leukemia. 2019;33:1360–72.PubMedCrossRef
172.
Zurück zum Zitat Kazi A, Sun J, Doi K, Sung SS, Takahashi Y, Yin H, et al. The BH3 alpha-helical mimic BH3-M6 disrupts Bcl-X(L), Bcl-2, and MCL-1 protein-protein interactions with Bax, Bak, Bad, or Bim and induces apoptosis in a Bax- and Bim-dependent manner. J Biol Chem. 2011;286:9382–92.PubMedCrossRef Kazi A, Sun J, Doi K, Sung SS, Takahashi Y, Yin H, et al. The BH3 alpha-helical mimic BH3-M6 disrupts Bcl-X(L), Bcl-2, and MCL-1 protein-protein interactions with Bax, Bak, Bad, or Bim and induces apoptosis in a Bax- and Bim-dependent manner. J Biol Chem. 2011;286:9382–92.PubMedCrossRef
173.
Zurück zum Zitat Ahn CH, Lee WW, Jung YC, Shin JA, Hong KO, Choi S, et al. Antitumor effect of TW-37, a BH3 mimetic in human oral cancer. Lab Anim Res. 2019;35:27.PubMedPubMedCentralCrossRef Ahn CH, Lee WW, Jung YC, Shin JA, Hong KO, Choi S, et al. Antitumor effect of TW-37, a BH3 mimetic in human oral cancer. Lab Anim Res. 2019;35:27.PubMedPubMedCentralCrossRef
174.
Zurück zum Zitat Wei J, Stebbins JL, Kitada S, Dash R, Placzek W, Rega MF, et al. BI-97C1, an optically pure Apogossypol derivative as pan-active inhibitor of antiapoptotic B-cell lymphoma/leukemia-2 (Bcl-2) family proteins. J Med Chem. 2010;53:4166–76.PubMedPubMedCentralCrossRef Wei J, Stebbins JL, Kitada S, Dash R, Placzek W, Rega MF, et al. BI-97C1, an optically pure Apogossypol derivative as pan-active inhibitor of antiapoptotic B-cell lymphoma/leukemia-2 (Bcl-2) family proteins. J Med Chem. 2010;53:4166–76.PubMedPubMedCentralCrossRef
175.
Zurück zum Zitat Gavathiotis E, Suzuki M, Davis ML, Pitter K, Bird GH, Katz SG, et al. BAX activation is initiated at a novel interaction site. Nature. 2008;455:1076–81.PubMedPubMedCentralCrossRef Gavathiotis E, Suzuki M, Davis ML, Pitter K, Bird GH, Katz SG, et al. BAX activation is initiated at a novel interaction site. Nature. 2008;455:1076–81.PubMedPubMedCentralCrossRef
176.
Zurück zum Zitat Cournoyer S, Addioui A, Belounis A, Beaunoyer M, Nyalendo C, Le Gall R, et al. GX15-070 (Obatoclax), a Bcl-2 family proteins inhibitor engenders apoptosis and pro-survival autophagy and increases Chemosensitivity in neuroblastoma. BMC Cancer. 2019;19:1018.PubMedPubMedCentralCrossRef Cournoyer S, Addioui A, Belounis A, Beaunoyer M, Nyalendo C, Le Gall R, et al. GX15-070 (Obatoclax), a Bcl-2 family proteins inhibitor engenders apoptosis and pro-survival autophagy and increases Chemosensitivity in neuroblastoma. BMC Cancer. 2019;19:1018.PubMedPubMedCentralCrossRef
177.
Zurück zum Zitat Zhang L, Zhou Y, Chen K, Shi P, Li Y, Deng M, et al. The pan-Bcl2 Inhibitor AT101 Activates the Intrinsic Apoptotic Pathway and Causes DNA Damage in Acute Myeloid Leukemia Stem-Like Cells. Target Oncol. 2017;12:677–87.PubMedCrossRef Zhang L, Zhou Y, Chen K, Shi P, Li Y, Deng M, et al. The pan-Bcl2 Inhibitor AT101 Activates the Intrinsic Apoptotic Pathway and Causes DNA Damage in Acute Myeloid Leukemia Stem-Like Cells. Target Oncol. 2017;12:677–87.PubMedCrossRef
178.
Zurück zum Zitat Casara P, Davidson J, Claperon A, Le Toumelin-Braizat G, Vogler M, Bruno A, et al. S55746 is a novel orally active BCL-2 selective and potent inhibitor that impairs hematological tumor growth. Oncotarget. 2018;9:20075–88.PubMedPubMedCentralCrossRef Casara P, Davidson J, Claperon A, Le Toumelin-Braizat G, Vogler M, Bruno A, et al. S55746 is a novel orally active BCL-2 selective and potent inhibitor that impairs hematological tumor growth. Oncotarget. 2018;9:20075–88.PubMedPubMedCentralCrossRef
179.
Zurück zum Zitat Bruncko M, Wang L, Sheppard GS, Phillips DC, Tahir SK, Xue J, et al. Structure-guided design of a series of MCL-1 inhibitors with high affinity and selectivity. J Med Chem. 2015;58:2180–94.PubMedCrossRef Bruncko M, Wang L, Sheppard GS, Phillips DC, Tahir SK, Xue J, et al. Structure-guided design of a series of MCL-1 inhibitors with high affinity and selectivity. J Med Chem. 2015;58:2180–94.PubMedCrossRef
180.
Zurück zum Zitat Abulwerdi F, Liao C, Liu M, Azmi AS, Aboukameel A, Mady AS, et al. A novel small-molecule inhibitor of mcl-1 blocks pancreatic cancer growth in vitro and in vivo. Mol Cancer Ther. 2014;13:565–75.PubMedCrossRef Abulwerdi F, Liao C, Liu M, Azmi AS, Aboukameel A, Mady AS, et al. A novel small-molecule inhibitor of mcl-1 blocks pancreatic cancer growth in vitro and in vivo. Mol Cancer Ther. 2014;13:565–75.PubMedCrossRef
181.
Zurück zum Zitat Ramsey HE, Fischer MA, Lee T, Gorska AE, Arrate MP, Fuller L, et al. A novel MCL1 inhibitor combined with venetoclax rescues venetoclax-resistant acute myelogenous leukemia. Cancer Discov. 2018;8:1566–81.PubMedPubMedCentralCrossRef Ramsey HE, Fischer MA, Lee T, Gorska AE, Arrate MP, Fuller L, et al. A novel MCL1 inhibitor combined with venetoclax rescues venetoclax-resistant acute myelogenous leukemia. Cancer Discov. 2018;8:1566–81.PubMedPubMedCentralCrossRef
182.
Zurück zum Zitat Szlávik Z, Ondi L, Csékei M, Paczal A, Szabó ZB, Radics G, et al. Structure-guided discovery of a selective Mcl-1 inhibitor with cellular activity. J Med Chem. 2019;62:6913–24.PubMedCrossRef Szlávik Z, Ondi L, Csékei M, Paczal A, Szabó ZB, Radics G, et al. Structure-guided discovery of a selective Mcl-1 inhibitor with cellular activity. J Med Chem. 2019;62:6913–24.PubMedCrossRef
183.
Zurück zum Zitat Yi X, Sarkar A, Kismali G, Aslan B, Ayres M, Iles LR, et al. AMG-176, an Mcl-1 antagonist, shows preclinical efficacy in chronic lymphocytic leukemia. Clin Cancer Res. 2020;26:3856–67.PubMedPubMedCentralCrossRef Yi X, Sarkar A, Kismali G, Aslan B, Ayres M, Iles LR, et al. AMG-176, an Mcl-1 antagonist, shows preclinical efficacy in chronic lymphocytic leukemia. Clin Cancer Res. 2020;26:3856–67.PubMedPubMedCentralCrossRef
184.
Zurück zum Zitat Tron AE, Belmonte MA, Adam A, Aquila BM, Boise LH, Chiarparin E, et al. Discovery of Mcl-1-specific inhibitor AZD5991 and preclinical activity in multiple myeloma and acute myeloid leukemia. Nat Commun. 2018;9:5341.PubMedPubMedCentralCrossRef Tron AE, Belmonte MA, Adam A, Aquila BM, Boise LH, Chiarparin E, et al. Discovery of Mcl-1-specific inhibitor AZD5991 and preclinical activity in multiple myeloma and acute myeloid leukemia. Nat Commun. 2018;9:5341.PubMedPubMedCentralCrossRef
185.
Zurück zum Zitat Zhang Z, Wu G, Xie F, Song T, Chang X. 3-Thiomorpholin-8-oxo-8H-acenaphtho [1,2-b]pyrrole-9-carbonitrile (S1) based molecules as potent, dual inhibitors of B-cell lymphoma 2 (Bcl-2) and myeloid cell leukemia sequence 1 (Mcl-1): structure-based design and structure-activity relationship studies. J Med Chem. 2011;54:1101–5.PubMedCrossRef Zhang Z, Wu G, Xie F, Song T, Chang X. 3-Thiomorpholin-8-oxo-8H-acenaphtho [1,2-b]pyrrole-9-carbonitrile (S1) based molecules as potent, dual inhibitors of B-cell lymphoma 2 (Bcl-2) and myeloid cell leukemia sequence 1 (Mcl-1): structure-based design and structure-activity relationship studies. J Med Chem. 2011;54:1101–5.PubMedCrossRef
186.
Zurück zum Zitat Wang Z, Guo Z, Song T, Zhang X, He N, Liu P, et al. Proteome-wide identification of on- and off-targets of Bcl-2 inhibitors in native biological systems by using affinity-based probes (AfBPs). Chembiochem. 2018;19:2312–20.PubMedCrossRef Wang Z, Guo Z, Song T, Zhang X, He N, Liu P, et al. Proteome-wide identification of on- and off-targets of Bcl-2 inhibitors in native biological systems by using affinity-based probes (AfBPs). Chembiochem. 2018;19:2312–20.PubMedCrossRef
187.
Zurück zum Zitat Shen HP, Wu WJ, Ko JL, Wu TF, Yang SF, Wu CH, et al. Effects of ABT-737 combined with irradiation treatment on uterine cervical cancer cells. Oncol Lett. 2019;18:4328–36.PubMedPubMedCentral Shen HP, Wu WJ, Ko JL, Wu TF, Yang SF, Wu CH, et al. Effects of ABT-737 combined with irradiation treatment on uterine cervical cancer cells. Oncol Lett. 2019;18:4328–36.PubMedPubMedCentral
188.
Zurück zum Zitat Tahir SK, Smith ML, Hessler P, Rapp LR, Idler KB, Park CH, et al. Potential mechanisms of resistance to venetoclax and strategies to circumvent it. BMC Cancer. 2017;17:399.PubMedPubMedCentralCrossRef Tahir SK, Smith ML, Hessler P, Rapp LR, Idler KB, Park CH, et al. Potential mechanisms of resistance to venetoclax and strategies to circumvent it. BMC Cancer. 2017;17:399.PubMedPubMedCentralCrossRef
189.
Zurück zum Zitat Mérino D, Khaw SL, Glaser SP, Anderson DJ, Belmont LD, Wong C, et al. Bcl-2, Bcl-x(L), and Bcl-w are not equivalent targets of ABT-737 and navitoclax (ABT-263) in lymphoid and leukemic cells. Blood. 2012;119:5807–16.PubMedPubMedCentralCrossRef Mérino D, Khaw SL, Glaser SP, Anderson DJ, Belmont LD, Wong C, et al. Bcl-2, Bcl-x(L), and Bcl-w are not equivalent targets of ABT-737 and navitoclax (ABT-263) in lymphoid and leukemic cells. Blood. 2012;119:5807–16.PubMedPubMedCentralCrossRef
190.
Zurück zum Zitat Gandhi L, Camidge DR, Ribeiro de Oliveira M, Bonomi P, Gandara D, Khaira D, et al. Phase I study of Navitoclax (ABT-263), a novel Bcl-2 family inhibitor, in patients with small-cell lung cancer and other solid tumors. J Clin Oncol. 2011;29:909–16.PubMedPubMedCentralCrossRef Gandhi L, Camidge DR, Ribeiro de Oliveira M, Bonomi P, Gandara D, Khaira D, et al. Phase I study of Navitoclax (ABT-263), a novel Bcl-2 family inhibitor, in patients with small-cell lung cancer and other solid tumors. J Clin Oncol. 2011;29:909–16.PubMedPubMedCentralCrossRef
191.
Zurück zum Zitat Pécot J, Maillet L, Le Pen J, Vuillier C, Trécesson SC, Fétiveau A, et al. Tight sequestration of BH3 Proteins by BCL-xL at subcellular membranes contributes to apoptotic resistance. Cell Rep. 2016;17:3347–58.PubMedCrossRef Pécot J, Maillet L, Le Pen J, Vuillier C, Trécesson SC, Fétiveau A, et al. Tight sequestration of BH3 Proteins by BCL-xL at subcellular membranes contributes to apoptotic resistance. Cell Rep. 2016;17:3347–58.PubMedCrossRef
Metadaten
Titel
Aberrant Bcl-x splicing in cancer: from molecular mechanism to therapeutic modulation
verfasst von
Zhihui Dou
Dapeng Zhao
Xiaohua Chen
Caipeng Xu
Xiaodong Jin
Xuetian Zhang
Yupei Wang
Xiaodong Xie
Qiang Li
Cuixia Di
Hong Zhang
Publikationsdatum
01.12.2021
Verlag
BioMed Central
Erschienen in
Journal of Experimental & Clinical Cancer Research / Ausgabe 1/2021
Elektronische ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-021-02001-w

Weitere Artikel der Ausgabe 1/2021

Journal of Experimental & Clinical Cancer Research 1/2021 Zur Ausgabe

Labor, CT-Anthropometrie zeigen Risiko für Pankreaskrebs

13.05.2024 Pankreaskarzinom Nachrichten

Gerade bei aggressiven Malignomen wie dem duktalen Adenokarzinom des Pankreas könnte Früherkennung die Therapiechancen verbessern. Noch jedoch klafft hier eine Lücke. Ein Studienteam hat einen Weg gesucht, sie zu schließen.

Viel pflanzliche Nahrung, seltener Prostata-Ca.-Progression

12.05.2024 Prostatakarzinom Nachrichten

Ein hoher Anteil pflanzlicher Nahrung trägt möglicherweise dazu bei, das Progressionsrisiko von Männern mit Prostatakarzinomen zu senken. In einer US-Studie war das Risiko bei ausgeprägter pflanzlicher Ernährung in etwa halbiert.

Alter verschlechtert Prognose bei Endometriumkarzinom

11.05.2024 Endometriumkarzinom Nachrichten

Ein höheres Alter bei der Diagnose eines Endometriumkarzinoms ist mit aggressiveren Tumorcharakteristika assoziiert, scheint aber auch unabhängig von bekannten Risikofaktoren die Prognose der Erkrankung zu verschlimmern.

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.