Skip to main content
Erschienen in: Magnetic Resonance Materials in Physics, Biology and Medicine 6/2014

01.12.2014 | Research Article

Absolute quantification of perfusion by dynamic susceptibility contrast MRI using Bookend and VASO steady-state CBV calibration: a comparison with pseudo-continuous ASL

verfasst von: Emelie Lindgren, Ronnie Wirestam, Karin Markenroth Bloch, André Ahlgren, Matthias J. P. van Osch, Danielle van Westen, Yulia Surova, Freddy Ståhlberg, Linda Knutsson

Erschienen in: Magnetic Resonance Materials in Physics, Biology and Medicine | Ausgabe 6/2014

Einloggen, um Zugang zu erhalten

Abstract

Objective

Dynamic susceptibility contrast MRI (DSC-MRI) tends to return elevated estimates of cerebral blood flow (CBF) and cerebral blood volume (CBV). In this study, subject-specific calibration factors (CFs), based on steady-state CBV measurements, were applied to rescale the absolute level of DSC-MRI CBF.

Materials and methods

Twenty healthy volunteers were scanned in a test–retest approach. Independent CBV measurements for calibration were accomplished using a T1-based contrast agent steady-state method (referred to as Bookend), as well as a blood-nulling vascular space occupancy (VASO) approach. Calibrated DSC-MRI was compared with pseudo-continuous arterial spin labeling (pCASL).

Results

For segmented grey matter (GM) regions of interests (ROIs), pCASL-based CBF was 63 ± 11 ml/(min 100 g) (mean ± SD). Nominal CBF from non-calibrated DSC-MRI was 277 ± 61 ml/(min 100 g), while calibrations resulted in 56 ± 23 ml/(min 100 g) (Bookend) and 52 ± 16 ml/(min 100 g) (VASO). Calibration tended to eliminate the overestimation, although the repeatability was generally moderate and the correlation between calibrated DSC-MRI and pCASL was low (r < 0.25). However, using GM instead of WM ROIs for extraction of CFs resulted in improved repeatability.

Conclusion

Both calibration approaches provided reasonable absolute levels of GM CBF, although the calibration methods suffered from low signal-to-noise ratio, resulting in weak repeatability and difficulties in showing high degrees of correlation with pCASL measurements.
Literatur
1.
Zurück zum Zitat Knutsson L, Ståhlberg F, Wirestam R (2010) Absolute quantification of perfusion using dynamic susceptibility contrast MRI: pitfalls and possibilities. Magn Reson Mater Phy 23:1–21CrossRef Knutsson L, Ståhlberg F, Wirestam R (2010) Absolute quantification of perfusion using dynamic susceptibility contrast MRI: pitfalls and possibilities. Magn Reson Mater Phy 23:1–21CrossRef
2.
Zurück zum Zitat Baron JC (2001) Perfusion thresholds in human cerebral ischemia: historical perspective and therapeutic implications. Cerebrovasc Dis 11:2–8PubMedCrossRef Baron JC (2001) Perfusion thresholds in human cerebral ischemia: historical perspective and therapeutic implications. Cerebrovasc Dis 11:2–8PubMedCrossRef
3.
Zurück zum Zitat Weber MA, Zoubaa S, Schlieter M, Jüttler E, Huttner HB, Geletneky K, Ittrich C, Lichy MP, Kroll A, Debus J, Giesel FL, Hartmann M, Essig M (2006) Diagnostic performance of spectroscopic and perfusion MRI for distinction of brain tumours. Neurology 66:1899–1906PubMedCrossRef Weber MA, Zoubaa S, Schlieter M, Jüttler E, Huttner HB, Geletneky K, Ittrich C, Lichy MP, Kroll A, Debus J, Giesel FL, Hartmann M, Essig M (2006) Diagnostic performance of spectroscopic and perfusion MRI for distinction of brain tumours. Neurology 66:1899–1906PubMedCrossRef
4.
Zurück zum Zitat Broich K, Hartmann A, Adam S, Biersack HJ (1989) Regional cerebral blood flow in dementia of Alzheimer’s type. J Neural Transm 1:41CrossRef Broich K, Hartmann A, Adam S, Biersack HJ (1989) Regional cerebral blood flow in dementia of Alzheimer’s type. J Neural Transm 1:41CrossRef
5.
Zurück zum Zitat Ishii K (2002) Clinical application of positron emission tomography for diagnosis of dementia. Ann Nucl Med 16:515–525PubMedCrossRef Ishii K (2002) Clinical application of positron emission tomography for diagnosis of dementia. Ann Nucl Med 16:515–525PubMedCrossRef
6.
Zurück zum Zitat Ohgami H, Nagayama H, Akiyoshi J, Tsuchiyama K, Komaki S, Takaki H, Mori H (2005) Contributing factors to changes of cerebral blood flow in major depressive disorder. J Affect Disord 87:57–63PubMedCrossRef Ohgami H, Nagayama H, Akiyoshi J, Tsuchiyama K, Komaki S, Takaki H, Mori H (2005) Contributing factors to changes of cerebral blood flow in major depressive disorder. J Affect Disord 87:57–63PubMedCrossRef
7.
Zurück zum Zitat Shin W, Cashen TA, Horowitz SW, Sawlani R, Carroll TJ (2006) Quantitative CBV measurement from static T1 changes in tissue and correction for intravascular water exchange. Magn Reson Med 56:138–145PubMedCrossRef Shin W, Cashen TA, Horowitz SW, Sawlani R, Carroll TJ (2006) Quantitative CBV measurement from static T1 changes in tissue and correction for intravascular water exchange. Magn Reson Med 56:138–145PubMedCrossRef
8.
Zurück zum Zitat Sakaie KE, Shin W, Curtin KR, McCarthy RM, Cashen TA, Carroll TJ (2005) Method for improving the accuracy of quantitative cerebral perfusion imaging. J Magn Reson Imaging 21:512–519PubMedCrossRef Sakaie KE, Shin W, Curtin KR, McCarthy RM, Cashen TA, Carroll TJ (2005) Method for improving the accuracy of quantitative cerebral perfusion imaging. J Magn Reson Imaging 21:512–519PubMedCrossRef
9.
Zurück zum Zitat Vakil P, Lee JJ, Mouannes-Srour JJ, Derdeyn CP, Carroll TJ (2013) Cerebrovascular occlusive disease: quantitative cerebral blood flow using dynamic susceptibility contrast MR imaging correlates with quantitative H2[15O] PET. Radiology 266:879–886PubMedCentralPubMedCrossRef Vakil P, Lee JJ, Mouannes-Srour JJ, Derdeyn CP, Carroll TJ (2013) Cerebrovascular occlusive disease: quantitative cerebral blood flow using dynamic susceptibility contrast MR imaging correlates with quantitative H2[15O] PET. Radiology 266:879–886PubMedCentralPubMedCrossRef
10.
Zurück zum Zitat Lu H, Law M, Johnson G, Ge Y, van Zijl PC, Helpern JA (2005) Novel approach to the measurement of absolute cerebral blood volume using vascular-space-occupancy magnetic resonance imaging. Magn Reson Med 54:1403–1411PubMedCrossRef Lu H, Law M, Johnson G, Ge Y, van Zijl PC, Helpern JA (2005) Novel approach to the measurement of absolute cerebral blood volume using vascular-space-occupancy magnetic resonance imaging. Magn Reson Med 54:1403–1411PubMedCrossRef
11.
Zurück zum Zitat Xu G, Rowley HA, Wu G, Alsop DC, Shankaranarayanan A, Dowling M, Christian BT, Oakes TR, Johnson SC (2010) Reliability and precision of pseudo-continuous arterial spin labeling perfusion MRI on 3.0 T and comparison with 15O-water PET in elderly subjects at risk for Alzheimer’s disease. NMR Biomed 23:286–293PubMedCentralPubMedCrossRef Xu G, Rowley HA, Wu G, Alsop DC, Shankaranarayanan A, Dowling M, Christian BT, Oakes TR, Johnson SC (2010) Reliability and precision of pseudo-continuous arterial spin labeling perfusion MRI on 3.0 T and comparison with 15O-water PET in elderly subjects at risk for Alzheimer’s disease. NMR Biomed 23:286–293PubMedCentralPubMedCrossRef
12.
Zurück zum Zitat Ye FQ, Berman KF, Ellmore T, Eposito G, van Horn JD, Yang Y, Duyn J, Smith AM, Frank JA, Weinberger DR, McLaughlin AC (2000) H 2 15 O PET validation of steady-state arterial spin tagging cerebral blood flow measurements in humans. Magn Reson Med 44:450–456PubMedCrossRef Ye FQ, Berman KF, Ellmore T, Eposito G, van Horn JD, Yang Y, Duyn J, Smith AM, Frank JA, Weinberger DR, McLaughlin AC (2000) H 2 15 O PET validation of steady-state arterial spin tagging cerebral blood flow measurements in humans. Magn Reson Med 44:450–456PubMedCrossRef
13.
Zurück zum Zitat Kuppusamy K, Lin W, Cizek GR, Haacke EM (1996) In vivo regional cerebral blood volume: quantitative assessment with 3D T1-weighted pre- and postcontrast MR imaging. Radiology 201:106–112PubMedCrossRef Kuppusamy K, Lin W, Cizek GR, Haacke EM (1996) In vivo regional cerebral blood volume: quantitative assessment with 3D T1-weighted pre- and postcontrast MR imaging. Radiology 201:106–112PubMedCrossRef
14.
Zurück zum Zitat Hazlewood CF, Chang DC, Nichols BL, Woessner DE (1974) Nuclear magnetic resonance transverse relaxation times of water protons in skeletal muscle. Biophys J 14:583–606PubMedCentralPubMedCrossRef Hazlewood CF, Chang DC, Nichols BL, Woessner DE (1974) Nuclear magnetic resonance transverse relaxation times of water protons in skeletal muscle. Biophys J 14:583–606PubMedCentralPubMedCrossRef
15.
Zurück zum Zitat Donahue KM, Weisskoff RM, Chesler DA, Kwong KK, Bogdanov AA Jr, Mandeville JB, Rosen BR (1996) Improving MR quantification of regional blood volume with intravascular T1 contrast agents: accuracy, precision, and water exchange. Magn Reson Med 36:858–867PubMedCrossRef Donahue KM, Weisskoff RM, Chesler DA, Kwong KK, Bogdanov AA Jr, Mandeville JB, Rosen BR (1996) Improving MR quantification of regional blood volume with intravascular T1 contrast agents: accuracy, precision, and water exchange. Magn Reson Med 36:858–867PubMedCrossRef
16.
Zurück zum Zitat Srour JM, Shin W, Shah S, Sen A, Carroll TJ (2011) SCALE-PWI: a pulse sequence for absolute quantitative cerebral perfusion imaging. J Cereb Blood Flow Metab 31:1272–1282PubMedCentralPubMedCrossRef Srour JM, Shin W, Shah S, Sen A, Carroll TJ (2011) SCALE-PWI: a pulse sequence for absolute quantitative cerebral perfusion imaging. J Cereb Blood Flow Metab 31:1272–1282PubMedCentralPubMedCrossRef
17.
Zurück zum Zitat Alsop DC, Detre JA (1996) Reduced transit-time sensitivity in noninvasive magnetic resonance imaging of human cerebral blood flow. J Cereb Blood Flow Metab 16:1236–1249PubMedCrossRef Alsop DC, Detre JA (1996) Reduced transit-time sensitivity in noninvasive magnetic resonance imaging of human cerebral blood flow. J Cereb Blood Flow Metab 16:1236–1249PubMedCrossRef
18.
Zurück zum Zitat Wang J, Alsop DC, Li L, Listerud J, Gonzalez-At JB, Schnall MD, Detre JA (2002) Comparison of quantitative perfusion imaging using arterial spin labeling at 1.5 and 4.0 Tesla. Magn Reson Med 48:242–254PubMedCrossRef Wang J, Alsop DC, Li L, Listerud J, Gonzalez-At JB, Schnall MD, Detre JA (2002) Comparison of quantitative perfusion imaging using arterial spin labeling at 1.5 and 4.0 Tesla. Magn Reson Med 48:242–254PubMedCrossRef
19.
Zurück zum Zitat Young S, Bystrov D, Netsch T, Bergmans R, van Muiswinkel A, Visser F, Springorum R, Gieseke J (2006) Automated planning of MRI neuro scans. In: Proceedings of the SPIE 6144 on medical imaging (image processing). San Diego, 61441M Young S, Bystrov D, Netsch T, Bergmans R, van Muiswinkel A, Visser F, Springorum R, Gieseke J (2006) Automated planning of MRI neuro scans. In: Proceedings of the SPIE 6144 on medical imaging (image processing). San Diego, 61441M
20.
Zurück zum Zitat Look DC, Locker DR (1970) Time saving in measurement of NMR and EPR relaxation times. Rev Sci Instrum 41:250–251CrossRef Look DC, Locker DR (1970) Time saving in measurement of NMR and EPR relaxation times. Rev Sci Instrum 41:250–251CrossRef
21.
Zurück zum Zitat Rempp KA, Brix G, Wenz F, Becker CR, Gückel F, Lorenz WJ (1994) Quantification of regional cerebral blood flow and volume with dynamic susceptibility contrast-enhanced MR imaging. Radiology 193:637–641PubMedCrossRef Rempp KA, Brix G, Wenz F, Becker CR, Gückel F, Lorenz WJ (1994) Quantification of regional cerebral blood flow and volume with dynamic susceptibility contrast-enhanced MR imaging. Radiology 193:637–641PubMedCrossRef
22.
Zurück zum Zitat Wu O, Østergaard L, Weisskoff RM, Benner T, Rosen BR, Sorensen AG (2003) Tracer arrival timing-insensitive technique for estimating flow in MR perfusion-weighted imaging using singular value decomposition with a block-circulant deconvolution matrix. Magn Reson Med 50:164–174PubMedCrossRef Wu O, Østergaard L, Weisskoff RM, Benner T, Rosen BR, Sorensen AG (2003) Tracer arrival timing-insensitive technique for estimating flow in MR perfusion-weighted imaging using singular value decomposition with a block-circulant deconvolution matrix. Magn Reson Med 50:164–174PubMedCrossRef
23.
Zurück zum Zitat Messroghli DR, Rudolph A, Abdel-Aty H, Wassmuth R, Kühne T, Dietz R, Schulz-Menger J (2010) An open-source software tool for the generation of relaxation time maps in magnetic resonance imaging. BMC Med Imaging 10:16PubMedCentralPubMedCrossRef Messroghli DR, Rudolph A, Abdel-Aty H, Wassmuth R, Kühne T, Dietz R, Schulz-Menger J (2010) An open-source software tool for the generation of relaxation time maps in magnetic resonance imaging. BMC Med Imaging 10:16PubMedCentralPubMedCrossRef
24.
Zurück zum Zitat Lu H, Clingman C, Golay X, van Zijl PC (2004) Determining the longitudinal relaxation time (T1) of blood at 3.0 Tesla. Magn Reson Med 52:679–682PubMedCrossRef Lu H, Clingman C, Golay X, van Zijl PC (2004) Determining the longitudinal relaxation time (T1) of blood at 3.0 Tesla. Magn Reson Med 52:679–682PubMedCrossRef
25.
Zurück zum Zitat Uh J, Lewis-Amezcua K, Varghese R, Lu H (2009) On the measurement of absolute cerebral blood volume (CBV) using vascular-space-occupancy (VASO) MRI. Magn Reson Med 61:659–667PubMedCentralPubMedCrossRef Uh J, Lewis-Amezcua K, Varghese R, Lu H (2009) On the measurement of absolute cerebral blood volume (CBV) using vascular-space-occupancy (VASO) MRI. Magn Reson Med 61:659–667PubMedCentralPubMedCrossRef
26.
Zurück zum Zitat van Osch MJ, Teeuwisse WM, van Walderveen MA, Hendrikse J, Kies DA, van Buchem MA (2009) Can arterial spin labeling detect white matter perfusion signal? Magn Reson Med 62:165–173PubMedCrossRef van Osch MJ, Teeuwisse WM, van Walderveen MA, Hendrikse J, Kies DA, van Buchem MA (2009) Can arterial spin labeling detect white matter perfusion signal? Magn Reson Med 62:165–173PubMedCrossRef
27.
Zurück zum Zitat Donahue MJ, Lu H, Jones CK, Edden RA, Pekar JJ, van Zijl PC (2006) Theoretical and experimental investigation of the VASO contrast mechanism. Magn Reson Med 56:1261–1273PubMedCrossRef Donahue MJ, Lu H, Jones CK, Edden RA, Pekar JJ, van Zijl PC (2006) Theoretical and experimental investigation of the VASO contrast mechanism. Magn Reson Med 56:1261–1273PubMedCrossRef
28.
Zurück zum Zitat Cavuşoğlu M, Pfeuffer J, Uğurbil K, Uludağ K (2009) Comparison of pulsed arterial spin labeling encoding schemes and absolute perfusion quantification. Magn Reson Imaging 27:1039–1045PubMedCrossRef Cavuşoğlu M, Pfeuffer J, Uğurbil K, Uludağ K (2009) Comparison of pulsed arterial spin labeling encoding schemes and absolute perfusion quantification. Magn Reson Imaging 27:1039–1045PubMedCrossRef
29.
Zurück zum Zitat Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 327:307–310CrossRef Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 327:307–310CrossRef
30.
Zurück zum Zitat Petersen ET, Mouridsen K, Golay X, all named co-authors of the Quasar test-retest study (2010) The QUASAR reproducibility study, Part II: results from a multi-center Arterial Spin Labeling test-retest study. Neuroimage 49:104–113 Petersen ET, Mouridsen K, Golay X, all named co-authors of the Quasar test-retest study (2010) The QUASAR reproducibility study, Part II: results from a multi-center Arterial Spin Labeling test-retest study. Neuroimage 49:104–113
31.
Zurück zum Zitat Leenders KL, Perani D, Lammertsma AA, Heather JD, Buckingham P, Healy MJR, Gibbs JM, Wise RJS, Hatazawa J, Herold S, Beaney RP, Brooks DJ, Spinks T, Rhodes C, Frackowiak RSJ, Jones T (1990) Cerebral blood flow, blood volume and oxygen utilization. Normal values and effect of age. Brain 113:27–47PubMedCrossRef Leenders KL, Perani D, Lammertsma AA, Heather JD, Buckingham P, Healy MJR, Gibbs JM, Wise RJS, Hatazawa J, Herold S, Beaney RP, Brooks DJ, Spinks T, Rhodes C, Frackowiak RSJ, Jones T (1990) Cerebral blood flow, blood volume and oxygen utilization. Normal values and effect of age. Brain 113:27–47PubMedCrossRef
32.
Zurück zum Zitat Meltzer CC, Cantwell MN, Greer PJ, Ben-Eliezer D, Smith G, Frank G, Kaye WH, Houck PR, Price JC (2000) Does cerebral blood flow decline in healthy aging? A PET study with partial-volume correction. J Nucl Med 41:1842–1848PubMed Meltzer CC, Cantwell MN, Greer PJ, Ben-Eliezer D, Smith G, Frank G, Kaye WH, Houck PR, Price JC (2000) Does cerebral blood flow decline in healthy aging? A PET study with partial-volume correction. J Nucl Med 41:1842–1848PubMed
33.
Zurück zum Zitat Ito H, Kanno I, Ibaraki M, Hatazawa J, Miura S (2003) Changes in human cerebral blood flow and cerebral blood volume during hypercapnia and hypocapnia measured by positron emission tomography. J Cereb Blood Flow Metab 23:665–670PubMedCrossRef Ito H, Kanno I, Ibaraki M, Hatazawa J, Miura S (2003) Changes in human cerebral blood flow and cerebral blood volume during hypercapnia and hypocapnia measured by positron emission tomography. J Cereb Blood Flow Metab 23:665–670PubMedCrossRef
34.
Zurück zum Zitat Yamaguchi T, Kanno I, Uemura K, Shishido F, Inugami A, Ogawa T, Murakami M, Suzuki K (1986) Reduction in regional cerebral metabolic rate of oxygen during human aging. Stroke 17:1220–1228PubMedCrossRef Yamaguchi T, Kanno I, Uemura K, Shishido F, Inugami A, Ogawa T, Murakami M, Suzuki K (1986) Reduction in regional cerebral metabolic rate of oxygen during human aging. Stroke 17:1220–1228PubMedCrossRef
35.
Zurück zum Zitat Larsson HBW, Fritz-Hansen T, Rostrup E, Søndergaard L, Ring P, Henriksen O (1996) Myocardial perfusion modeling using MRI. Magn Reson Med 35:716–726PubMedCrossRef Larsson HBW, Fritz-Hansen T, Rostrup E, Søndergaard L, Ring P, Henriksen O (1996) Myocardial perfusion modeling using MRI. Magn Reson Med 35:716–726PubMedCrossRef
36.
Zurück zum Zitat Shin W, Horowitz S, Ragin A, Chen Y, Walker M, Carroll TJ (2007) Quantitative cerebral perfusion using dynamic susceptibility contrast MRI: evaluation of reproducibility and age- and gender-dependence with fully automatic image postprocessing algorithm. Magn Reson Med 58:1232–1241PubMedCrossRef Shin W, Horowitz S, Ragin A, Chen Y, Walker M, Carroll TJ (2007) Quantitative cerebral perfusion using dynamic susceptibility contrast MRI: evaluation of reproducibility and age- and gender-dependence with fully automatic image postprocessing algorithm. Magn Reson Med 58:1232–1241PubMedCrossRef
37.
Zurück zum Zitat Crane DE, Donahue MJ, Chappell MA, Sideso E, Handa A, Kennedy J, Jezzard P, MacIntosh BJ (2013) Evaluating quantitative approaches to dynamic susceptibility contrast MRI among carotid endarterectomy patients. J Magn Reson Imaging 37:936–943PubMedCrossRef Crane DE, Donahue MJ, Chappell MA, Sideso E, Handa A, Kennedy J, Jezzard P, MacIntosh BJ (2013) Evaluating quantitative approaches to dynamic susceptibility contrast MRI among carotid endarterectomy patients. J Magn Reson Imaging 37:936–943PubMedCrossRef
Metadaten
Titel
Absolute quantification of perfusion by dynamic susceptibility contrast MRI using Bookend and VASO steady-state CBV calibration: a comparison with pseudo-continuous ASL
verfasst von
Emelie Lindgren
Ronnie Wirestam
Karin Markenroth Bloch
André Ahlgren
Matthias J. P. van Osch
Danielle van Westen
Yulia Surova
Freddy Ståhlberg
Linda Knutsson
Publikationsdatum
01.12.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
Magnetic Resonance Materials in Physics, Biology and Medicine / Ausgabe 6/2014
Print ISSN: 0968-5243
Elektronische ISSN: 1352-8661
DOI
https://doi.org/10.1007/s10334-014-0431-x

Weitere Artikel der Ausgabe 6/2014

Magnetic Resonance Materials in Physics, Biology and Medicine 6/2014 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.