Skip to main content
Erschienen in: Molecular Brain 1/2016

Open Access 01.12.2016 | Research

Acid Sensing Ion Channels (ASICs) in NS20Y cells – potential role in neuronal differentiation

verfasst von: Zaven O’Bryant, Tiandong Leng, Mingli Liu, Koichi Inoue, Kiara T. Vann, Zhi-gang Xiong

Erschienen in: Molecular Brain | Ausgabe 1/2016

Abstract

Cultured neuronal cell lines can express properties of mature neurons if properly differentiated. Although the precise mechanisms underlying neuronal differentiation are not fully understood, the expression and activation of ion channels, particularly those of Ca2+-permeable channels, have been suggested to play a role. In this study, we explored the presence and characterized the properties of acid-sensing ion channels (ASICs) in NS20Y cells, a neuronal cell line previously used for the study of neuronal differentiation. In addition, the potential role of ASICs in cell differentiation was explored. Reverse Transcription Polymerase Chain Reaction and Western blot revealed the presence of ASIC1 subunits in these cells. Fast drops of extracellular pH activated transient inward currents which were blocked, in a dose dependent manner, by amiloride, a non-selective ASIC blocker, and by Psalmotoxin-1 (PcTX1), a specific inhibitor for homomeric ASIC1a and heteromeric ASIC1a/2b channels. Incubation of cells with PcTX1 significantly reduced the differentiation of NS20Y cells induced by cpt-cAMP, as evidenced by decreased neurite length, dendritic complexity, decreased expression of functional voltage gated Na+ channels. Consistent with ASIC1a inhibition, ASIC1a knockdown with small interference RNA significantly attenuates cpt-cAMP-induced increase of neurite outgrowth. In summary, we described the presence of functional ASICs in NS20Y cells and demonstrate that ASIC1a plays a role in the differentiation of these cells.

Background

Neuronal differentiation is essential for the development of the nervous system. A hallmark characteristic of differentiation is the sprouting of neurites which later become axons and dendrites. Major changes in membrane proteins are observed during the differentiation, maturation, and development of neurons, for example increased expression of acid-sensing ion channels (ASICs) [1]. Although the precise mechanisms underlying neuronal differentiation are not fully understood, expression and activation of ion channels, particularly those which are Ca2+-permeable, have been suggested to play an important role in the process [24].
ASICs are proton-gated cation channels belonging to the degenerin/epithelial Na+ channel (DEG/ENaC) superfamily. There are at least four genes that encode six alternatively spliced transcripts: ASIC1a, ASIC1b, ASIC2a, ASIC2b, ASIC3 and ASIC4. ASIC1a, a primary subunit highly expressed in the central and peripheral neurons, is highly sensitive to decrease in extracellular pH [5]. Studies using knockout mice have suggested that activation of ASIC1a contributes to synaptic plasticity, learning and memory [6]. It is unclear however whether ASICs play any role in neuronal differentiation. In this study, we first explored the presence and characterized the properties of ASICs in NS20Y cells, a neuronal cell line that has been previously used to study neuronal differentiation. Next, we determined whether ASIC inhibition affects the differentiation of these cells. Our data provides strong evidence that functional ASIC1a channels are expressed in NS20Y cells and that activation of these channels may play a role in neuronal differentiation.

Methods

Cell culture

NS20Y cells, derived from the mouse neuroblastoma, were cultured in Dulbecco’s Modified Eagle’s Medium (Invitrogen), supplemented with 10 % FBS, 100 units/ml penicillin, and 100 μg/ml streptomycin. Cells were plated at 10 - 20 % confluence on 35 mm dishes coated with poly-L-ornithine and maintained at 37 °C in a humidified incubator with 5 % CO2 - 95 % atmosphere. For differentiation, cells were treated with 1 mM cpt-cAMP for 72 h or 1 mM cpt-cAMP and 10 nM PcTX1 by adding reagents directly to cell media. The culture medium was not changed during the 72 h treatment. The pH during experiments were 7.62 in control, 7.63 in cpt-cAMP, and 7.64 in cpt-cAMP + PcTX1 treated medium.

Evaluation of neuronal differentiation

Cells in 35 mm dishes were examined at 400X magnification and photographed using phase contrast microscopy (Nikon). Cells were washed three times with extracellular solution (ECF) before photographs were taken. Neurite length and cell complexity were measured using Nikon Image Software (NIS) (Nikon Instruments, Inc., Melville, NY, USA). For each experiment, at least 5 random fields were selected for evaluation. Number of primary dendrites and total neurite length were quantified [7]. In these experiments neurites are defined as any process that extends from the soma. Neurite length (in μm) was quantified by using a free hand line tool measuring the distance from the neurite tip to where the neurite joins the soma [7]. Exclusion criteria included: 1) cell clusters typically greater than or equal to two, 2) where the total neurite length cannot be ascertained because neurites extend out of the field of view, 3) neurites that appear to have formed neurite-neurite or neurite-somatic connections, and 4) cases of extensively branched or overlapped neurites [7].
Sholl analysis is a widely used method in neurobiology to quantify the complexity of dendritic arbors [8]. The Sholl analysis of NS20Y cells was conducted by plotting the number of neurite intersections against the radial distance from the soma [7].

Electrophysiology

Whole cell patch clamp recordings were performed as described previously [9]. Patch pipettes were pulled by a two-step puller (PP83; Narishige, Tokyo, Japan) from thin walled borosilicate glass (1.5 mm diameter, World Precision Instruments, Sarasota, FL). The pipettes had a resistance of 3–4 MΩ when filled with intracellular solution: 140 mM CsF, 10 mM HEPES, 11 mM EGTA, 2 mM tetraethylammonium chloride, 1 mM CaCl2, 2 mM MgCl2 and 4 mM MgATP, pH 7.3 (adjusted with CsOH), 290–300 mOsm adjusted with sucrose. Extracellular solution contained: 140 mM NaCl, 5.4 KCl, 2 mM CaCl2, 1 mM MgCl2, 10 mM HEPES, 10 mM glucose, pH 7.4, 320–330 mOsm. When needed, 300 nM tetrodotoxin was used in ECF to block the Na+ currents. PcTX1 (Peptide International) was dissolved in ddH2O at 20 μM before adding to extracellular solutions. Amiloride was dissolved in dimethyl sulfoxide (DMSO) at 100 mM before adding to extracellular solutions to obtain final working concentrations. Tetrakis-(2-Pyridylmethyl) ethylenediamine (TPEN) and Zinc Chloride were dissolved in ddH2O before adding to extracellular solutions. Unless described otherwise, all chemicals were purchased from Sigma.
Whole cell patch clamp recordings were done with an Axopatch 200B amplifier and Digidata 1320 DAC unit. Unless indicated otherwise, cells were clamped at a holding potential of −60 mV. ASIC currents were elicited by pH drops from 7.4 to acidic pH values as indicated. Currents were activated at least 1 min apart to achieve a complete recovery from desensitization. A multi-barrel perfusion system (SF-77 Warner Instruments, Hamden, CT) was used to achieve a rapid exchange of extracellular solutions. To generate a current–voltage (I–V) relationship, voltage steps were initiated from −100 and +100 mV from a holding potential of −60 mV were applied at 1 s interval. The data were analyzed with pClamp and Sigma Plot software.

Western blot

Cells were treated with lysis buffer (50 mmol/L Tris–HCl, 150 mmol/L NaCl, 1 % Triton X-100, protease and phosphatase inhibitor cocktail) and collected by scraping into individual aliquots. The samples were put on ice for 30 min, centrifuged at 12,000 g at 4 °C for 30 min, and then supernatants were collected. Protein concentration was measured using the Bio-Rad protein assay kit (Bio-Rad, Hercules, CA, USA). Thereafter, the proteins were mixed with Laemmli sample buffer and boiled at 95 °C for 5 min. Proteins were separated by 10 % SDS-PAGE, followed by electrotransfer to polyvinylidene difluoride membranes. Blots were probed with antibodies against ASIC1 (rabbit anti-mouse/human, 1:1,000; Gift from Dr. Xiangming Zha, University of South Alabama, Mobile, AL, USA) or beta-actin (1:2,000; Abcam, Cambridge, MA, USA), detected using horseradish peroxidase-conjugated secondary antibody (1:1,000; Cell Signaling, Danvers, MA, USA), and visualized by ECL (Amersham Biosciences Piscataway, NJ) and Blue Autoradiography film (MedSupply Partners, Atlanta, GA). The intensity of the protein bands were quantified using NIH Image J software.

Reverse Transcription – Polymerase Chain Reaction (RT-PCR)

RT-PCR was used to examine the expression of individual ASIC subunits, as described in our previous studies [10]. Total RNAs were isolated from NS20Y cells with Trizol reagent (Invitrogen), according to the manufacturer’s protocol. Equal amount of total RNA was reverse transcribed and PCR amplified with Superscript II (Invitrogen) using specific primers for individual ASIC subunit. ASIC1a forward5′-TCCTATGAGCGGCTGTCTCT-3′, ASIC1a, reverse 5′-TGCTTTTCATCAGCCATCTG-3′, ASIC1b forward 5′-GGCCTTTGTCATAGCACTGGGTGC -3′, ASIC1b reverse 5′-TTCCCATACCGCGTGAAGACCAC -3′, ASIC2a forward 5′-CGCCAACACCTCTACTCTCC-3′, ASIC2a reverse 5′-TGCCATCCTCGCCTGAGTTA-3′, ASIC2b forward 5′-CCTTGGCTTGCTGTTGTCCT-3′ ASIC2b reverse 5′-TGCCATCCTCGCCTGAGTTA-3′, ASIC3 forward 5′-GTCTGGACCCTGCTGAACAT-3′, ASIC3 reverse 5′-GGCTCTGGATCAAAGTCGGG-3′, ASIC4 forward 5′-GGGCTAGCATCCTCACCTTG-3′, ASIC4 reverse (5′-GGCCCAGTTTCATGGGTACT-3′. RT positive (+) samples was run with the reverse transcriptase, while RT negative (−) samples were run without reverse transcriptase. The RT-PCR products were electrophoresed on 1.5 % agarose gel.

ASIC1a shRNA transfection

Short hairpin ASIC1a (shASIC1a) and control shRNA were purchased from SuperArray Bioscience Corporation (Frederick, MD), each vector contains the shRNA under control of U1 promoter and the GFP gene, for the enrichment of transiently transfected cells. NS20Y cells were transfected with 5 μg of each specific ASIC1a shRNA or control shRNA using Lipofectamine™ reagent in serum free OptiMEM-1 medium (Invitrogen, Carlsbad, CA) per 35 mm dish according to the manufacture’s instruction. After transfection, cells were grown for further 72 h in growth medium as indicated in each experiment before utilization.

Statistical analysis

Data were expressed as mean ± SEM. Where applicable, multiple groups were compared using analysis of variance (ANOVA). Two groups were compared using Student’s t-test (paired and unpaired where appropriate). Values of p < 0.05 were considered statistically significant.

Results

Detection of ASIC transcript and protein in NS20Y cells

Using RT-PCR, the presence of ASIC transcripts in NS20Y cells was investigated. The mRNA expression of all ASIC subunits including ASIC1a, 1b, 2a, 2b, 3 and 4 were examined. RT-PCR results clearly show the presence of ASIC1a and ASIC1b transcripts at the expected sizes (299 bp and 399 bp) without detection of other subunits (Fig. 1a). We further examined the expression of ASIC1a protein by Western blot. Chinese Hamster Ovarian (CHO) cells and CHO cells with stable ASIC1a expression (CHO-ASIC1a) were used as negative and positive controls. Western blots showed clear immunoreactivity to the ASIC1a in NS20Y cells at the expected molecular weights (Fig. 1b). Taken together, these findings indicate that ASIC1a is expressed in NS20Y cells.

Characterization of the ASIC currents in NS20Y cells

Using patch-clamp recording, we then studied the acid-activated currents and examined the effect of various pharmacologic agents known to modulate ASICs. ASIC currents were induced by an extracellular pH drop from 7.4 to 6.0 [9]. As shown in Fig. 2, drop of extracellular pH from 7.4 to 6.0 induced transient inward currents. Amiloride, a commonly used nonspecific inhibitor of ASICs [1114], blocked the acid activated currents in NS20Y cells in a dose-dependent manner with a half-maximal inhibitory concentration (IC50) of 11.04 μM (n = 5) (Fig. 2a).
Psalmotoxin-1 (PcTX1), isolated from the venom of tarantula Psalmopoeus cambridgei, potently and specifically inhibits the proton-gated currents mediated by homomeric ASIC1a expressed in heterologous systems [15]. In addition, PcTX1 also inhibits the current mediated by heteromeric ASIC1a/2b channels [11]. We tested the effect of PcTX1 on ASIC currents in NS20Y cells. As shown in (Fig. 2b), after several minutes of perfusion, PcTX1 (10 nM) produced a significant inhibition of ASIC currents in NS20Y cells (p < 0.05, paired student’s t-test). In 9 cells tested, an average inhibition of 66.9 ± 14.8 % of the current amplitude was achieved. Since our RT-PCR data did not show clear expression of ASIC2b (Fig. 1), this result suggested that the acid-activated current in NS20Y cells is largely mediated by the homomeric ASIC1a channels.
Zinc modulates ASIC currents, but different ASIC subunit stoichiometry responds differently to zinc; as such, zinc may either potentiate or inhibit the acid-activated currents [16, 17]. For example, at nanomolar concentrations, zinc inhibits ASIC1a containing channels with an IC50 of ~10 nM [16]. While at high micromolar concentrations, zinc potentiates ASIC2a containing channels [17]. Zinc chelator tetrakis-(2-Pyridylmethyl) ethylenediamine (TPEN) potentiates ASIC1a current, by removing zinc mediated inhibition. Application of 100 µM TPEN significantly increased the amplitude of ASIC currents in NS20Y cells, further supporting the presence of ASIC1a containing channels (p < 0.01, paired student’s t-test, n = 7, Fig. 2c). We found that addition of 100 μM zinc caused no potentiation but an inhibition of ASIC currents in NS20Y cells (p < 0.01, paired Student’s t-test, n = 7, Fig. 2d), which is consistent with the presence of ASIC1a containing channels.

ASIC blockade inhibits neuritogenesis

To explore the potential role of ASICs in neuronal differentiation, the effect of ASIC inhibition on cpt-cAMP induced neuritogenesis of NS20Y cells was studied. Treatment of NS20Y cells with 1 mM cpt-cAMP for 72-h has been shown to induce clear differentiation [18, 19]. Differentiation was analyzed morphologically by extension and branching of neurites, and by directly counting the number of primary dendrites (explained in detail in Methods). While control cells are lack of extensive branches (Fig. 3a, upper panel), cells treated with 1 mM cpt-cAMP for 72 h show significantly increased neurite number, length, and arborization (Fig. 3a, middle panel), co-incubation of 10 nM PcTX1 with 1 mM cpt-cAMP for 48 and 72 h significantly decreased the number of neurite branching and neurite length compared to 1 mM cpt-cAMP treatment alone (n = 264, p < 0.05, Fig. 3a, b, c). PcTX1 alone has no significant effect on neurite growth (p = 0.38, n = 268, data not shown).
The Sholl analysis method has been used extensively in neuronal cultures for the studies of dendritic complexity [20, 21]. We applied this technique in cultures of NS20Y cells (Fig. 3a). Cells treated with 1 mM cpt-cAMP show neurites that significantly extend from the soma and contain more branches than control cells at distances between 50 – 90 μm (p < 0.05) (total of 90 cells measured from 3 independent experiments, two-way ANOVA) (Fig. 3c), while cells co-treated with 1 mM cpt-cAMP and 10 nM PcTX1 have neurites that are not significantly different from control (p = 0.24) (total of 90 cells measured from 3 independent experiments) at the same distances.
PcTX1 is generally accepted to be a specific inhibitor of ASIC1a however there are reports that suggest inhibition of ASIC1a/2b heteromeric channels [11, 15]. To provide additional evidence that ASIC1a is involved in ctp-cAMP-induced differentiation of NS20Y cells, we determined whether knocking down the expression of ASIC1a with small hairpin interference RNA (shRNA) has an effect on ctp-cAMP-mediated neurite extension. After transfection with plasmid containing control-shRNA-GFP or ASIC1a-shRNA-GFP, cells were treated with 1 mM ctp-cAMP for 72 h. Transfection efficiency was confirmed by a decrease of ASIC1a expression as determined by Western blot (Fig. 4a). In cells treated with control shRNA, ctp-cAMP treatment was able to induce clear neurite growth (Fig. 4b), as described above. However, in cells transfected with ASIC1a-shRNA, average neurite length was significantly decreased compared to that in cells transfected with control-shRNA (Fig. 4b, p < 0.05, n = 25-44).

ASIC1a expression and current density were increased in differentiated NS20Y cells

ASIC protein expression and current density after treatment with cpt-cAMP were also examined. Western blots show an increase in ASIC1a expression after treatment with cpt-cAMP for 72 h (Fig. 5a, b). (p < 0.05, n = 12). The whole cell patch-clamp recording shows that treatment with 1 mM cpt-cAMP significantly increases the density of ASIC current (p < 0.05, n = 12, Fig. 5c, d). These findings are consistent with other reports showing that ASIC expression increases with neuronal maturation [1].

Inhibition of ASIC1a reduces the amplitude of voltage gated Na+ current

Voltage gated sodium channels have been known to be exclusive to excitable cells, especially those of neuronal origin [22]. Over the course of neuronal differentiation developing neurons begin to express a wide variety of Na+ channels [23]. Here, we found that the amplitude of TTX-sensitive voltage gated Na+ current increases with 1 mM cpt-cAMP treatment. The increase of the Na+ current by cpt-cAMP is however attenuated by co-treatment with 10 nM PcTX1 (Fig. 6a, b, c, d) (**p < 0.01) (n = 12–14 cells). The ratios of cells exhibiting the Na+ current are 12/15, 14/14 and 12/14 in control, cpt-cAMP and cpt-cAMP + PcTx-1 treated cells, respectively.

Discussion

This is the first report, to our knowledge, of the presence of functional ASICs in NS20Y, a mouse neuroblastoma cell line. More importantly, we show that blocking the activity of ASICs inhibits neurite growth/neuronal differentiation. Cyclic-AMP is commonly used to differentiate NS20Y and other clonal cell lines [19, 24]. The use of cyclic-AMPs induces increases in the activities of tyrosine hydroxylase, choline acetyltransferase, the content of poly(A)+ cytoplasmic RNA, and causes changes in nuclear non-histone proteins [7, 18, 25]. These molecular changes can be tracked by measuring changes in expression of differentially regulated molecules such as neuropeptides [7]. As expected, treatment with cpt-cAMP resulted in an increased neurite extension, dendritic complexity and increase in Na+ current.
To explore a potential role of ASICs in the differentiation of NS20Y cells, we first determined whether NS20Y cells express ASICs. RT-PCR detected the presence of both ASIC1a and ASIC1b transcripts and Western blot confirmed the presence of ASIC1 protein. The presence of ASIC1a subunit was expected as it is fairly ubiquitous in the central and peripheral neuronal tissues [2628]. While the presence of ASIC1b in NS20Y cells was surprising, it was not unaccounted for as this cell line has heterogeneous origins, composition, and is mainly found in the peripheral nervous system [14, 24].
Acid-sensing ion channels were further characterized using the whole-cell patch clamp technique. In all cells examined, lowering the extracellular pH from 7.4 to pH 6.0 evoked a transient inward current at a holding potential of −60 mV. The properties of acid-activated currents in NS20Y cells resemble ASIC currents in cultured primary CNS neurons (human, mouse, and rat) [9, 29, 30]. For example, ASICs in NS20Y were pharmacologically blocked by the non-specific inhibitor amiloride, and the specific inhibitor PcTX1. The concentration response data of amiloride in NS20Y cells is consistent with previously established IC50 for amiloride blockade of ASICs in CNS neurons [9, 30]. In addition, ASIC currents were inhibited by zinc but potentiated by zinc chelation. Zinc inhibition is consistent with the presence of ASIC1a containing channels [16, 17]. It is plausible that homomeric ASIC1b and heteromeric ASIC1a/1b formations may occur, these configurations of ASICs are not sensitive to PcTX1, which is not the case for the current in NS20Y cells where application of PcTX1 inhibited ~70 % of the current. Although PcTX1 also inhibits the current mediated by heteromeric ASIC1a/ASIC2b channels [11, 15], our RT-PCR result did not show clear expression of 2b transcript. Taking together, our data suggest that homomeric ASIC1a channels are predominantly responsible for acid induced currents in NS20Y cells.
Having established the presence of functional ASICs in NS20Y cells, we explored the potential role of these channels in neuronal neuritogenesis. Neuritogenesis was defined as the extension and branching of neurites (length and complexity), similar to other reports in the field [7, 19]. These parameters were quantified by counting the number of neurites/cell and their length from soma to furthest tip. We noted that while control cells remained small and lacked of extensive branches, cells treated with 1 mM cpt-cAMP increased neurite number, length, overall soma size, and arborization. When PcTX1 was used to inhibit the ASIC1a channels cells treated with cpt-cAMP failed to exhibit the same increase of neurite growth. Similarly, knock-down the expression of ASIC1a resulted in a suppression of cpt-cAMP induced neurite extension. Together, these data suggest that ASIC1a may play an important role in neuronal differentiation of NS20Y cells.
ASIC1a has been suggested to play a role in synaptic plasticity, learning and memory [6], and in acidosis-mediated cell death [9, 31]. Since Ca2+ permeability/signaling plays a pervasive role in neuronal maturation, dendritic arborization, and axon outgrowth [18, 32, 33], it is plausible that ASIC1a activation may play a role in neuritogenesis and neuronal differentiation. ASICs are spatially distributed and co-localize with postsynaptic density protein-95 (PSD-95) at the soma, along dendritic shafts and spines and importantly at the synapses, suggesting the possible involvement of ASIC in normal synaptic transmission and plasticity [6]. Indeed, when ASICs are removed from the synapse, long term potentiation (LTP), the molecular model for learning memory, is impaired [6]. Previous studies have shown that expression of ASIC1a modulates the density of dendritic spines [34], which may partially explain its role in synaptic plasticity. Our current study suggests that ASIC1a may also play a role in neuronal differentiation and maturation, which may, at least partially, account for its role in synaptic transmission.
NS20Y is a cholinergic cell line which resembles many properties of neurons when differentiated; however, it cannot represent all properties of native neurons and therefore has limitations in neuronal differentiation investigation. Future studies will explore the role of ASIC1a in differentiation/maturation of native neurons.

Abbreviations

ASICs, acid sensing ion channels; CHO, Chinese Hamster ovarian; CHO-ASIC1a, Chinese Hamster ovarian transfected with ASIC1a; cpt-cAMP, 8 - (4-Chlorophenylthio)-adenosine-3′,5′-cyclic monophosphate, sodium salt; DEG/ENaC, degenerin/epithelial Na+ channel; ECF, extracellular fluid; LTP, long term potentiation; PcTX1, psalmotoxin 1; RT-PCR, reverse transcription polymerase chain reaction; TPEN, tetrakis-(2-Pyridylmethyl) ethylenediamine

Acknowledgements

We thank Dr. An Zhou for the cell line, NS20Y, Dr. Fengxia Yan for assistance in statistical analysis, Dr. Yan Huang and Zhao Zhen for technical assistance.

Funding

This study was supported by NIH grants R01NS066027, S21MD000101 and U54NS08932 (ZGX), Research Supplements to Promote Diversity (ZO), and Masters of Clinical Research T-32 Training Grant (5T32HL103104-04) (ZO). The funding sources had no input in the design of the study and collection, analysis, and interpretation of data and writing the manuscript.

Availability of data and materials

All data and materials are presented within the article.

Authors’ contributions

Conceived and designed the experiments: ZO and ZGX; performed experiments: ZO, TL, ML, KI, and KTV; analyzed data: ZO, TL, ML, and ZGX; wrote the paper: ZO, TL, and ZGX. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Neurologie & Psychiatrie

Kombi-Abonnement

Mit e.Med Neurologie & Psychiatrie erhalten Sie Zugang zu CME-Fortbildungen der Fachgebiete, den Premium-Inhalten der dazugehörigen Fachzeitschriften, inklusive einer gedruckten Zeitschrift Ihrer Wahl.

e.Med Neurologie

Kombi-Abonnement

Mit e.Med Neurologie erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes, den Premium-Inhalten der neurologischen Fachzeitschriften, inklusive einer gedruckten Neurologie-Zeitschrift Ihrer Wahl.

Literatur
1.
Zurück zum Zitat Li M, Kratzer E, Inoue K, Simon RP, Xiong Z-G. Developmental change in the electrophysiological and pharmacological properties of acid-sensing ion channels in CNS neurons. J Physiol. 2010;588:3883–900.CrossRefPubMedPubMedCentral Li M, Kratzer E, Inoue K, Simon RP, Xiong Z-G. Developmental change in the electrophysiological and pharmacological properties of acid-sensing ion channels in CNS neurons. J Physiol. 2010;588:3883–900.CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Gu X, Olson EC, Spitzer NC. Spontaneous neuronal calcium spikes and waves during early differentiation. J Neurosci. 1994;14:6325–35.PubMed Gu X, Olson EC, Spitzer NC. Spontaneous neuronal calcium spikes and waves during early differentiation. J Neurosci. 1994;14:6325–35.PubMed
3.
Zurück zum Zitat Holliday J, Spitzer NC. Spontaneous calcium influx and its roles in differentiation of spinal neurons in culture. Dev Biol. 1990;141:13–23.CrossRefPubMed Holliday J, Spitzer NC. Spontaneous calcium influx and its roles in differentiation of spinal neurons in culture. Dev Biol. 1990;141:13–23.CrossRefPubMed
4.
Zurück zum Zitat Rosenberg SS, Spitzer NC. Calcium signaling in neuronal development. Cold Spring Harb Perspect Biol. 2011;3. Rosenberg SS, Spitzer NC. Calcium signaling in neuronal development. Cold Spring Harb Perspect Biol. 2011;3.
5.
Zurück zum Zitat Xiong ZG, Pignataro G, Li M, Chang SY, Simon RP. Acid-sensing ion channels (ASICs) as pharmacological targets for neurodegenerative diseases. Curr Opin Pharmacol. 2008;8:25–32.CrossRefPubMed Xiong ZG, Pignataro G, Li M, Chang SY, Simon RP. Acid-sensing ion channels (ASICs) as pharmacological targets for neurodegenerative diseases. Curr Opin Pharmacol. 2008;8:25–32.CrossRefPubMed
6.
Zurück zum Zitat Wemmie JA, Chen J, Askwith CC, Hruska-Hageman AM, Price MP, Nolan BC, et al. The acid-activated ion channel ASIC contributes to synaptic plasticity, learning, and. Wemmie JA, Chen J, Askwith CC, Hruska-Hageman AM, Price MP, Nolan BC, et al. The acid-activated ion channel ASIC contributes to synaptic plasticity, learning, and.
7.
Zurück zum Zitat Saito Y, Maruyama K, Saido TC, Kawashima S. Overexpression of a neuropeptide nociceptin/orphanin FQ precursor gene, N23K/N27K, induces neurite outgrowth in mouse NS20Y cells. J Neurosci Res. 1997;48:397–406.CrossRefPubMed Saito Y, Maruyama K, Saido TC, Kawashima S. Overexpression of a neuropeptide nociceptin/orphanin FQ precursor gene, N23K/N27K, induces neurite outgrowth in mouse NS20Y cells. J Neurosci Res. 1997;48:397–406.CrossRefPubMed
8.
Zurück zum Zitat Sholl DA. Dendritic organization in the neurons of the visual and motor cortices of the cat. J Anat. 1953;87:387–406.PubMedPubMedCentral Sholl DA. Dendritic organization in the neurons of the visual and motor cortices of the cat. J Anat. 1953;87:387–406.PubMedPubMedCentral
9.
Zurück zum Zitat Xiong ZG, Zhu XM, Chu XP, Minami M, Hey J, Wei WL, et al. Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels. Cell. 2004;118:687–98.CrossRefPubMed Xiong ZG, Zhu XM, Chu XP, Minami M, Hey J, Wei WL, et al. Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels. Cell. 2004;118:687–98.CrossRefPubMed
10.
Zurück zum Zitat Li MH, Liu SQ, Inoue K, Lan J, Simon RP, Xiong ZG. Acid-sensing ion channels in mouse olfactory bulb M/T neurons. J Gen Physiol. 2014;143:719–31.CrossRefPubMedPubMedCentral Li MH, Liu SQ, Inoue K, Lan J, Simon RP, Xiong ZG. Acid-sensing ion channels in mouse olfactory bulb M/T neurons. J Gen Physiol. 2014;143:719–31.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Sherwood TW, Lee KG, Gormley MG, Askwith CC. Heteromeric Acid-Sensing Ion Channels (ASICs) composed of ASIC2b and ASIC1a display novel channel properties and contribute to acidosis-induced neuronal death. J Neurosci. 2011;31:9723–34.CrossRefPubMedPubMedCentral Sherwood TW, Lee KG, Gormley MG, Askwith CC. Heteromeric Acid-Sensing Ion Channels (ASICs) composed of ASIC2b and ASIC1a display novel channel properties and contribute to acidosis-induced neuronal death. J Neurosci. 2011;31:9723–34.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Waldmann R, Lazdunski M. H(+)-gated cation channels: neuronal acid sensors in the NaC/DEG family of ion channels. Curr Opin Neurobiol. 1998;8:418–24.CrossRefPubMed Waldmann R, Lazdunski M. H(+)-gated cation channels: neuronal acid sensors in the NaC/DEG family of ion channels. Curr Opin Neurobiol. 1998;8:418–24.CrossRefPubMed
13.
Zurück zum Zitat Benson CJ, Eckert SP, McCleskey EW. Acid-evoked currents in cardiac sensory neurons: a possible mediator of myocardial ischemic sensation. Circ Res. 1999;84:921–8.CrossRefPubMed Benson CJ, Eckert SP, McCleskey EW. Acid-evoked currents in cardiac sensory neurons: a possible mediator of myocardial ischemic sensation. Circ Res. 1999;84:921–8.CrossRefPubMed
15.
Zurück zum Zitat Salinas M, Rash LD, Baron A, Lambeau G, Escoubas P, Lazdunski M. The receptor site of the spider toxin PcTx1 on the proton-gated cation channel ASIC1a. J Physiol. 2012;570:339–54.CrossRef Salinas M, Rash LD, Baron A, Lambeau G, Escoubas P, Lazdunski M. The receptor site of the spider toxin PcTx1 on the proton-gated cation channel ASIC1a. J Physiol. 2012;570:339–54.CrossRef
16.
Zurück zum Zitat Chu XP, Wemmie JA, Wang WZ, Zhu XM, Saugstad JA, Price MP, et al. Subunit-dependent high-affinity zinc inhibition of acid-sensing ion channels. J Neurosci. 2004;24:8678–89.CrossRefPubMedPubMedCentral Chu XP, Wemmie JA, Wang WZ, Zhu XM, Saugstad JA, Price MP, et al. Subunit-dependent high-affinity zinc inhibition of acid-sensing ion channels. J Neurosci. 2004;24:8678–89.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Baron A, Schaefer L, Lingueglia E, Champigny G, Lazdunski M. Zn2+ and H+ Are coactivators of acid-sensing ion channels. J Biol Chem. 2001;276:35367.CrossRef Baron A, Schaefer L, Lingueglia E, Champigny G, Lazdunski M. Zn2+ and H+ Are coactivators of acid-sensing ion channels. J Biol Chem. 2001;276:35367.CrossRef
18.
Zurück zum Zitat Saito Y, Maruyama K, Kawano H, Hagino-Yamagishi K, Kawamura K, Saido TC, et al. Molecular cloning and characterization of a novel form of neuropeptide gene as a developmentally regulated molecule. J Biol Chem. 1996;271:15615–22.CrossRefPubMed Saito Y, Maruyama K, Kawano H, Hagino-Yamagishi K, Kawamura K, Saido TC, et al. Molecular cloning and characterization of a novel form of neuropeptide gene as a developmentally regulated molecule. J Biol Chem. 1996;271:15615–22.CrossRefPubMed
19.
Zurück zum Zitat Sirianni MJ, Fujimoto KI, Nelson CS, Pellegrino MJ, Allen RG. Cyclic AMP analogs induce synthesis, processing, and secretion of prepro nociceptin/orphanin FQ-derived peptides by NS20Y neuroblastoma cells. DNA Cell Biol. 1999;18:51–8.CrossRefPubMed Sirianni MJ, Fujimoto KI, Nelson CS, Pellegrino MJ, Allen RG. Cyclic AMP analogs induce synthesis, processing, and secretion of prepro nociceptin/orphanin FQ-derived peptides by NS20Y neuroblastoma cells. DNA Cell Biol. 1999;18:51–8.CrossRefPubMed
20.
21.
Zurück zum Zitat Williams PA, Votruba M, Oliphant H, Frizzati A, Littlewood E, Votruba M, et al. Retinal ganglion cell dendritic degeneration in a mouse model of Alzheimer’s disease. Neurobiol Aging. 2014. Williams PA, Votruba M, Oliphant H, Frizzati A, Littlewood E, Votruba M, et al. Retinal ganglion cell dendritic degeneration in a mouse model of Alzheimer’s disease. Neurobiol Aging. 2014.
23.
Zurück zum Zitat Renganathan M, Cummins TR, Waxman SG. Contribution of Nav1.8 sodium channels to action potential electrogenesis in DRG neurons. J Neurophysiol. 2001;86:629–40.PubMed Renganathan M, Cummins TR, Waxman SG. Contribution of Nav1.8 sodium channels to action potential electrogenesis in DRG neurons. J Neurophysiol. 2001;86:629–40.PubMed
25.
Zurück zum Zitat Grouse D, Schrier K, Letendre H, Zubari Y, Nelson G. Neuroblastoma differentiation involves both the disappearance of old and the appearance of new poly(A)’ messenger RNA sequences in polyribosomes. J Biol Chem. 1980;255:3871–7.PubMed Grouse D, Schrier K, Letendre H, Zubari Y, Nelson G. Neuroblastoma differentiation involves both the disappearance of old and the appearance of new poly(A)’ messenger RNA sequences in polyribosomes. J Biol Chem. 1980;255:3871–7.PubMed
26.
Zurück zum Zitat Alvarez de la Rosa D, Zhang P, Shao D, White F, Canessa CM. Functional implications of the localization and activity of acid-sensitive channels in rat peripheral nervous system. Proc Natl Acad Sci U S A. 2002;99:2326–31.CrossRefPubMedPubMedCentral Alvarez de la Rosa D, Zhang P, Shao D, White F, Canessa CM. Functional implications of the localization and activity of acid-sensitive channels in rat peripheral nervous system. Proc Natl Acad Sci U S A. 2002;99:2326–31.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Garcia-Anoveros J, Derfler B, Neville-Golden J, Hyman BT, Corey DP. BNaC1 and BNaC2 constitute a new family of human neuronal sodium channels related to degenerins and epithelial sodium channels. Proc Natl Acad Sci. 1997;94:1459–64.CrossRefPubMedPubMedCentral Garcia-Anoveros J, Derfler B, Neville-Golden J, Hyman BT, Corey DP. BNaC1 and BNaC2 constitute a new family of human neuronal sodium channels related to degenerins and epithelial sodium channels. Proc Natl Acad Sci. 1997;94:1459–64.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Waldmann R, Champigny G, Bassilana F, Heurteaux C, Lazdunski M. A proton-gated cation channel involved in acid-sensing. Nature. 1997;386:173–7.CrossRefPubMed Waldmann R, Champigny G, Bassilana F, Heurteaux C, Lazdunski M. A proton-gated cation channel involved in acid-sensing. Nature. 1997;386:173–7.CrossRefPubMed
29.
Zurück zum Zitat Gao J, Wu LJ, Xu L, Xu TL. Properties of the proton-evoked currents and their modulation by Ca2+ and Zn2+ in the acutely dissociated hippocampus CA1 neurons. Brain Res. 2004;1017:197–207.CrossRefPubMed Gao J, Wu LJ, Xu L, Xu TL. Properties of the proton-evoked currents and their modulation by Ca2+ and Zn2+ in the acutely dissociated hippocampus CA1 neurons. Brain Res. 2004;1017:197–207.CrossRefPubMed
30.
Zurück zum Zitat Li M, Inoue K, Branigan D, Kratzer E, Hansen JC, Chen JW, et al. Acid-sensing ion channels in acidosis-induced injury of human brain neurons. J Cereb Blood Flow Metab. 2010;30:1247–60.CrossRefPubMedPubMedCentral Li M, Inoue K, Branigan D, Kratzer E, Hansen JC, Chen JW, et al. Acid-sensing ion channels in acidosis-induced injury of human brain neurons. J Cereb Blood Flow Metab. 2010;30:1247–60.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Yermolaieva O, Leonard AS, Schnizler MK, Abboud FM, Welsh MJ. Extracellular acidosis increases neuronal cell calcium by activating acid-sensing ion channel 1a. Proc Natl Acad Sci. 2003;101:6752–7.CrossRef Yermolaieva O, Leonard AS, Schnizler MK, Abboud FM, Welsh MJ. Extracellular acidosis increases neuronal cell calcium by activating acid-sensing ion channel 1a. Proc Natl Acad Sci. 2003;101:6752–7.CrossRef
32.
Zurück zum Zitat Rosenberg SS, Spitzer NC. Calcium signaling in neuronal development. PLoS One. 2011;6. Rosenberg SS, Spitzer NC. Calcium signaling in neuronal development. PLoS One. 2011;6.
33.
Zurück zum Zitat Saito Y, Maruyama K, Saido TC, Kawashima S. N23K, a gene transiently up-regulated during neural differentiation, encodes a precursor protein for a newly identified neuropeptide nociceptin. Biochem Biophys Res Commun. 1995;217:539–45.CrossRefPubMed Saito Y, Maruyama K, Saido TC, Kawashima S. N23K, a gene transiently up-regulated during neural differentiation, encodes a precursor protein for a newly identified neuropeptide nociceptin. Biochem Biophys Res Commun. 1995;217:539–45.CrossRefPubMed
34.
Zurück zum Zitat Xm Z, Wemmie JA, Green SH, Welsh MJ. Acid-sensing ion channel 1a is a postsynaptic proton receptor that affects the density of dendritic spines. Proc Natl Acad Sci. 2006;103:16556–61.CrossRef Xm Z, Wemmie JA, Green SH, Welsh MJ. Acid-sensing ion channel 1a is a postsynaptic proton receptor that affects the density of dendritic spines. Proc Natl Acad Sci. 2006;103:16556–61.CrossRef
Metadaten
Titel
Acid Sensing Ion Channels (ASICs) in NS20Y cells – potential role in neuronal differentiation
verfasst von
Zaven O’Bryant
Tiandong Leng
Mingli Liu
Koichi Inoue
Kiara T. Vann
Zhi-gang Xiong
Publikationsdatum
01.12.2016
Verlag
BioMed Central
Erschienen in
Molecular Brain / Ausgabe 1/2016
Elektronische ISSN: 1756-6606
DOI
https://doi.org/10.1186/s13041-016-0249-8

Weitere Artikel der Ausgabe 1/2016

Molecular Brain 1/2016 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Thrombektomie auch bei großen Infarkten von Vorteil

16.05.2024 Ischämischer Schlaganfall Nachrichten

Auch ein sehr ausgedehnter ischämischer Schlaganfall scheint an sich kein Grund zu sein, von einer mechanischen Thrombektomie abzusehen. Dafür spricht die LASTE-Studie, an der Patienten und Patientinnen mit einem ASPECTS von maximal 5 beteiligt waren.

Schwindelursache: Massagepistole lässt Otholiten tanzen

14.05.2024 Benigner Lagerungsschwindel Nachrichten

Wenn jüngere Menschen über ständig rezidivierenden Lagerungsschwindel klagen, könnte eine Massagepistole der Auslöser sein. In JAMA Otolaryngology warnt ein Team vor der Anwendung hochpotenter Geräte im Bereich des Nackens.

Schützt Olivenöl vor dem Tod durch Demenz?

10.05.2024 Morbus Alzheimer Nachrichten

Konsumieren Menschen täglich 7 Gramm Olivenöl, ist ihr Risiko, an einer Demenz zu sterben, um mehr als ein Viertel reduziert – und dies weitgehend unabhängig von ihrer sonstigen Ernährung. Dafür sprechen Auswertungen zweier großer US-Studien.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.