Skip to main content
Erschienen in: Seminars in Immunopathology 4/2018

22.05.2018 | Review

Activating and inhibitory receptors expressed on innate lymphoid cells

verfasst von: Sophie Guia, Aurore Fenis, Eric Vivier, Emilie Narni-Mancinelli

Erschienen in: Seminars in Immunopathology | Ausgabe 4/2018

Einloggen, um Zugang zu erhalten

Abstract

Innate lymphoid cells (ILCs) are innate immune cells located in lymphoid and non-lymphoid tissues. They are particularly abundant at mucosal and barrier surfaces. Three major ILC subsets are present in humans and mice: group 1 ILCs (comprising natural killer (NK) cells and ILC1s), ILC2s, and ILC3s. ILCs are involved in the maintenance of homeostasis and the regulation of immunity. This review focuses on the extensive array of activating and inhibitory receptors expressed by ILCs for communication with other cell types and their environment in health and disease.
Literatur
2.
Zurück zum Zitat Spits H, Artis D, Colonna M, Diefenbach A, di Santo JP, Eberl G, Koyasu S, Locksley RM, McKenzie A, Mebius RE, Powrie F, Vivier E (2013) Innate lymphoid cells—a proposal for uniform nomenclature. Nature reviews. Immunology 13(2):145–149PubMed Spits H, Artis D, Colonna M, Diefenbach A, di Santo JP, Eberl G, Koyasu S, Locksley RM, McKenzie A, Mebius RE, Powrie F, Vivier E (2013) Innate lymphoid cells—a proposal for uniform nomenclature. Nature reviews. Immunology 13(2):145–149PubMed
3.
Zurück zum Zitat Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, Yokoyama WM, Ugolini S (2011) Innate or adaptive immunity? The example of natural killer cells. Science 331(6013):44–49PubMedPubMedCentralCrossRef Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, Yokoyama WM, Ugolini S (2011) Innate or adaptive immunity? The example of natural killer cells. Science 331(6013):44–49PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Spits H, Bernink JH, Lanier L (2016) NK cells and type 1 innate lymphoid cells: partners in host defense. Nat Immunol 17(7):758–764PubMedCrossRef Spits H, Bernink JH, Lanier L (2016) NK cells and type 1 innate lymphoid cells: partners in host defense. Nat Immunol 17(7):758–764PubMedCrossRef
5.
Zurück zum Zitat Gerbe F, Sidot E, Smyth DJ, Ohmoto M, Matsumoto I, Dardalhon V, Cesses P, Garnier L, Pouzolles M, Brulin B, Bruschi M, Harcus Y, Zimmermann VS, Taylor N, Maizels RM, Jay P (2016) Intestinal epithelial tuft cells initiate type 2 mucosal immunity to helminth parasites. Nature 529(7585):226–230PubMedCrossRef Gerbe F, Sidot E, Smyth DJ, Ohmoto M, Matsumoto I, Dardalhon V, Cesses P, Garnier L, Pouzolles M, Brulin B, Bruschi M, Harcus Y, Zimmermann VS, Taylor N, Maizels RM, Jay P (2016) Intestinal epithelial tuft cells initiate type 2 mucosal immunity to helminth parasites. Nature 529(7585):226–230PubMedCrossRef
6.
Zurück zum Zitat Howitt MR, Lavoie S, Michaud M, Blum AM, Tran SV, Weinstock JV, Gallini CA, Redding K, Margolskee RF, Osborne LC, Artis D, Garrett WS (2016) Tuft cells, taste-chemosensory cells, orchestrate parasite type 2 immunity in the gut. Science 351(6279):1329–1333PubMedPubMedCentralCrossRef Howitt MR, Lavoie S, Michaud M, Blum AM, Tran SV, Weinstock JV, Gallini CA, Redding K, Margolskee RF, Osborne LC, Artis D, Garrett WS (2016) Tuft cells, taste-chemosensory cells, orchestrate parasite type 2 immunity in the gut. Science 351(6279):1329–1333PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat von Moltke J, Ji M, Liang HE, Locksley RM (2016) Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit. Nature 529(7585):221–225CrossRef von Moltke J, Ji M, Liang HE, Locksley RM (2016) Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit. Nature 529(7585):221–225CrossRef
8.
Zurück zum Zitat Klose CSN, Flach M, Möhle L, Rogell L, Hoyler T, Ebert K, Fabiunke C, Pfeifer D, Sexl V, Fonseca-Pereira D, Domingues RG, Veiga-Fernandes H, Arnold SJ, Busslinger M, Dunay IR, Tanriver Y, Diefenbach A (2014) Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell 157(2):340–356PubMedCrossRef Klose CSN, Flach M, Möhle L, Rogell L, Hoyler T, Ebert K, Fabiunke C, Pfeifer D, Sexl V, Fonseca-Pereira D, Domingues RG, Veiga-Fernandes H, Arnold SJ, Busslinger M, Dunay IR, Tanriver Y, Diefenbach A (2014) Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell 157(2):340–356PubMedCrossRef
9.
Zurück zum Zitat Neill DR, Wong SH, Bellosi A, Flynn RJ, Daly M, Langford TKA, Bucks C, Kane CM, Fallon PG, Pannell R, Jolin HE, McKenzie ANJ (2010) Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 464(7293):1367–1370PubMedPubMedCentralCrossRef Neill DR, Wong SH, Bellosi A, Flynn RJ, Daly M, Langford TKA, Bucks C, Kane CM, Fallon PG, Pannell R, Jolin HE, McKenzie ANJ (2010) Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 464(7293):1367–1370PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Motomura Y, Morita H, Moro K, Nakae S, Artis D, Endo TA, Kuroki Y, Ohara O, Koyasu S, Kubo M (2014) Basophil-derived interleukin-4 controls the function of natural helper cells, a member of ILC2s, in lung inflammation. Immunity 40(5):758–771PubMedCrossRef Motomura Y, Morita H, Moro K, Nakae S, Artis D, Endo TA, Kuroki Y, Ohara O, Koyasu S, Kubo M (2014) Basophil-derived interleukin-4 controls the function of natural helper cells, a member of ILC2s, in lung inflammation. Immunity 40(5):758–771PubMedCrossRef
11.
Zurück zum Zitat Roediger B, Kyle R, Yip KH, Sumaria N, Guy TV, Kim BS, Mitchell AJ, Tay SS, Jain R, Forbes-Blom E, Chen X, Tong PL, Bolton HA, Artis D, Paul WE, de St Groth BF, Grimbaldeston MA, le Gros G, Weninger W (2013) Cutaneous immunosurveillance and regulation of inflammation by group 2 innate lymphoid cells. Nat Immunol 14(6):564–573PubMedPubMedCentralCrossRef Roediger B, Kyle R, Yip KH, Sumaria N, Guy TV, Kim BS, Mitchell AJ, Tay SS, Jain R, Forbes-Blom E, Chen X, Tong PL, Bolton HA, Artis D, Paul WE, de St Groth BF, Grimbaldeston MA, le Gros G, Weninger W (2013) Cutaneous immunosurveillance and regulation of inflammation by group 2 innate lymphoid cells. Nat Immunol 14(6):564–573PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Hughes T, Becknell B, Freud AG, McClory S, Briercheck E, Yu J, Mao C, Giovenzana C, Nuovo G, Wei L, Zhang X, Gavrilin MA, Wewers MD, Caligiuri MA (2010) Interleukin-1beta selectively expands and sustains interleukin-22+ immature human natural killer cells in secondary lymphoid tissue. Immunity 32(6):803–814PubMedPubMedCentralCrossRef Hughes T, Becknell B, Freud AG, McClory S, Briercheck E, Yu J, Mao C, Giovenzana C, Nuovo G, Wei L, Zhang X, Gavrilin MA, Wewers MD, Caligiuri MA (2010) Interleukin-1beta selectively expands and sustains interleukin-22+ immature human natural killer cells in secondary lymphoid tissue. Immunity 32(6):803–814PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Zheng Y, Valdez PA, Danilenko DM, Hu Y, Sa SM, Gong Q, Abbas AR, Modrusan Z, Ghilardi N, de Sauvage FJ, Ouyang W (2008) Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat Med 14(3):282–289PubMedCrossRef Zheng Y, Valdez PA, Danilenko DM, Hu Y, Sa SM, Gong Q, Abbas AR, Modrusan Z, Ghilardi N, de Sauvage FJ, Ouyang W (2008) Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat Med 14(3):282–289PubMedCrossRef
14.
Zurück zum Zitat Doherty TA, Khorram N, Lund S, Mehta AK, Croft M, Broide DH (2013) Lung type 2 innate lymphoid cells express cysteinyl leukotriene receptor 1, which regulates TH2 cytokine production. J Allergy Clin Immunol 132(1):205–213PubMedPubMedCentralCrossRef Doherty TA, Khorram N, Lund S, Mehta AK, Croft M, Broide DH (2013) Lung type 2 innate lymphoid cells express cysteinyl leukotriene receptor 1, which regulates TH2 cytokine production. J Allergy Clin Immunol 132(1):205–213PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Kim BS, Siracusa MC, Saenz SA, Noti M, Monticelli LA, Sonnenberg GF, Hepworth MR, van Voorhees A, Comeau MR, Artis D (2013) TSLP elicits IL-33-independent innate lymphoid cell responses to promote skin inflammation. Sci Transl Med 5(170):170ra16PubMedPubMedCentralCrossRef Kim BS, Siracusa MC, Saenz SA, Noti M, Monticelli LA, Sonnenberg GF, Hepworth MR, van Voorhees A, Comeau MR, Artis D (2013) TSLP elicits IL-33-independent innate lymphoid cell responses to promote skin inflammation. Sci Transl Med 5(170):170ra16PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Wojno ED et al (2015) The prostaglandin D(2) receptor CRTH2 regulates accumulation of group 2 innate lymphoid cells in the inflamed lung. Mucosal Immunol 8(6):1313–1323PubMedCrossRef Wojno ED et al (2015) The prostaglandin D(2) receptor CRTH2 regulates accumulation of group 2 innate lymphoid cells in the inflamed lung. Mucosal Immunol 8(6):1313–1323PubMedCrossRef
17.
Zurück zum Zitat Klose CS, Artis D (2016) Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis. Nat Immunol 17(7):765–774PubMedCrossRef Klose CS, Artis D (2016) Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis. Nat Immunol 17(7):765–774PubMedCrossRef
18.
Zurück zum Zitat Narni-Mancinelli E, Ugolini S, Vivier E (2013) Tuning the threshold of natural killer cell responses. Curr Opin Immunol 25(1):53–58PubMedCrossRef Narni-Mancinelli E, Ugolini S, Vivier E (2013) Tuning the threshold of natural killer cell responses. Curr Opin Immunol 25(1):53–58PubMedCrossRef
19.
Zurück zum Zitat Vivier E, Nunes JA, Vely F (2004) Natural killer cell signaling pathways. Science 306(5701):1517–1519PubMedCrossRef Vivier E, Nunes JA, Vely F (2004) Natural killer cell signaling pathways. Science 306(5701):1517–1519PubMedCrossRef
20.
Zurück zum Zitat Moretta A, Bottino C, Vitale M, Pende D, Cantoni C, Mingari MC, Biassoni R, Moretta L (2001) Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis. Annu Rev Immunol 19:197–223PubMedCrossRef Moretta A, Bottino C, Vitale M, Pende D, Cantoni C, Mingari MC, Biassoni R, Moretta L (2001) Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis. Annu Rev Immunol 19:197–223PubMedCrossRef
21.
Zurück zum Zitat Pegram HJ, Andrews DM, Smyth MJ, Darcy PK, Kershaw MH (2011) Activating and inhibitory receptors of natural killer cells. Immunol Cell Biol 89(2):216–224PubMedCrossRef Pegram HJ, Andrews DM, Smyth MJ, Darcy PK, Kershaw MH (2011) Activating and inhibitory receptors of natural killer cells. Immunol Cell Biol 89(2):216–224PubMedCrossRef
22.
Zurück zum Zitat Tomasello E et al (2000) Signaling pathways engaged by NK cell receptors: double concerto for activating receptors, inhibitory receptors and NK cells. Semin Immunol 12(2):139–147PubMedCrossRef Tomasello E et al (2000) Signaling pathways engaged by NK cell receptors: double concerto for activating receptors, inhibitory receptors and NK cells. Semin Immunol 12(2):139–147PubMedCrossRef
24.
Zurück zum Zitat Aguilar OA et al (2017) A viral immunoevasin controls innate immunity by targeting the prototypical natural killer cell receptor family. Cell 169(1):58–71 e14PubMedCrossRef Aguilar OA et al (2017) A viral immunoevasin controls innate immunity by targeting the prototypical natural killer cell receptor family. Cell 169(1):58–71 e14PubMedCrossRef
25.
Zurück zum Zitat Arnon TI et al (2001) Recognition of viral hemagglutinins by NKp44 but not by NKp30. Eur J Immunol 31(9):2680–2689PubMedCrossRef Arnon TI et al (2001) Recognition of viral hemagglutinins by NKp44 but not by NKp30. Eur J Immunol 31(9):2680–2689PubMedCrossRef
26.
Zurück zum Zitat Jarahian M, Watzl C, Fournier P, Arnold A, Djandji D, Zahedi S, Cerwenka A, Paschen A, Schirrmacher V, Momburg F (2009) Activation of natural killer cells by Newcastle disease virus hemagglutinin-neuraminidase. J Virol 83(16):8108–8121PubMedPubMedCentralCrossRef Jarahian M, Watzl C, Fournier P, Arnold A, Djandji D, Zahedi S, Cerwenka A, Paschen A, Schirrmacher V, Momburg F (2009) Activation of natural killer cells by Newcastle disease virus hemagglutinin-neuraminidase. J Virol 83(16):8108–8121PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Mandelboim O, Lieberman N, Lev M, Paul L, Arnon TI, Bushkin Y, Davis DM, Strominger JL, Yewdell JW, Porgador A (2001) Recognition of haemagglutinins on virus-infected cells by NKp46 activates lysis by human NK cells. Nature 409(6823):1055–1060PubMedCrossRef Mandelboim O, Lieberman N, Lev M, Paul L, Arnon TI, Bushkin Y, Davis DM, Strominger JL, Yewdell JW, Porgador A (2001) Recognition of haemagglutinins on virus-infected cells by NKp46 activates lysis by human NK cells. Nature 409(6823):1055–1060PubMedCrossRef
28.
Zurück zum Zitat Chisholm SE, Reyburn HT (2006) Recognition of vaccinia virus-infected cells by human natural killer cells depends on natural cytotoxicity receptors. J Virol 80(5):2225–2233PubMedPubMedCentralCrossRef Chisholm SE, Reyburn HT (2006) Recognition of vaccinia virus-infected cells by human natural killer cells depends on natural cytotoxicity receptors. J Virol 80(5):2225–2233PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Jarahian M, Fiedler M, Cohnen A, Djandji D, Hämmerling GJ, Gati C, Cerwenka A, Turner PC, Moyer RW, Watzl C, Hengel H, Momburg F (2011) Modulation of NKp30- and NKp46-mediated natural killer cell responses by poxviral hemagglutinin. PLoS Pathog 7(8):e1002195PubMedPubMedCentralCrossRef Jarahian M, Fiedler M, Cohnen A, Djandji D, Hämmerling GJ, Gati C, Cerwenka A, Turner PC, Moyer RW, Watzl C, Hengel H, Momburg F (2011) Modulation of NKp30- and NKp46-mediated natural killer cell responses by poxviral hemagglutinin. PLoS Pathog 7(8):e1002195PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Achdout H, Meningher T, Hirsh S, Glasner A, Bar-On Y, Gur C, Porgador A, Mendelson M, Mandelboim M, Mandelboim O (2010) Killing of avian and swine influenza virus by natural killer cells. J Virol 84(8):3993–4001PubMedPubMedCentralCrossRef Achdout H, Meningher T, Hirsh S, Glasner A, Bar-On Y, Gur C, Porgador A, Mendelson M, Mandelboim M, Mandelboim O (2010) Killing of avian and swine influenza virus by natural killer cells. J Virol 84(8):3993–4001PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Mendelson M, Tekoah Y, Zilka A, Gershoni-Yahalom O, Gazit R, Achdout H, Bovin NV, Meningher T, Mandelboim M, Mandelboim O, David A, Porgador A (2010) NKp46 O-glycan sequences that are involved in the interaction with hemagglutinin type 1 of influenza virus. J Virol 84(8):3789–3797PubMedPubMedCentralCrossRef Mendelson M, Tekoah Y, Zilka A, Gershoni-Yahalom O, Gazit R, Achdout H, Bovin NV, Meningher T, Mandelboim M, Mandelboim O, David A, Porgador A (2010) NKp46 O-glycan sequences that are involved in the interaction with hemagglutinin type 1 of influenza virus. J Virol 84(8):3789–3797PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Mao H, Tu W, Liu Y, Qin G, Zheng J, Chan PL, Lam KT, Peiris JSM, Lau YL (2010) Inhibition of human natural killer cell activity by influenza virions and hemagglutinin. J Virol 84(9):4148–4157PubMedPubMedCentralCrossRef Mao H, Tu W, Liu Y, Qin G, Zheng J, Chan PL, Lam KT, Peiris JSM, Lau YL (2010) Inhibition of human natural killer cell activity by influenza virions and hemagglutinin. J Virol 84(9):4148–4157PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Gazit R, Gruda R, Elboim M, Arnon TI, Katz G, Achdout H, Hanna J, Qimron U, Landau G, Greenbaum E, Zakay-Rones Z, Porgador A, Mandelboim O (2006) Lethal influenza infection in the absence of the natural killer cell receptor gene Ncr1. Nat Immunol 7(5):517–523PubMedCrossRef Gazit R, Gruda R, Elboim M, Arnon TI, Katz G, Achdout H, Hanna J, Qimron U, Landau G, Greenbaum E, Zakay-Rones Z, Porgador A, Mandelboim O (2006) Lethal influenza infection in the absence of the natural killer cell receptor gene Ncr1. Nat Immunol 7(5):517–523PubMedCrossRef
34.
Zurück zum Zitat Ho JW, Hershkovitz O, Peiris M, Zilka A, Bar-Ilan A, Nal B, Chu K, Kudelko M, Kam YW, Achdout H, Mandelboim M, Altmeyer R, Mandelboim O, Bruzzone R, Porgador A (2008) H5-type influenza virus hemagglutinin is functionally recognized by the natural killer-activating receptor NKp44. J Virol 82(4):2028–2032PubMedCrossRef Ho JW, Hershkovitz O, Peiris M, Zilka A, Bar-Ilan A, Nal B, Chu K, Kudelko M, Kam YW, Achdout H, Mandelboim M, Altmeyer R, Mandelboim O, Bruzzone R, Porgador A (2008) H5-type influenza virus hemagglutinin is functionally recognized by the natural killer-activating receptor NKp44. J Virol 82(4):2028–2032PubMedCrossRef
35.
Zurück zum Zitat Hershkovitz O, Rosental B, Rosenberg LA, Navarro-Sanchez ME, Jivov S, Zilka A, Gershoni-Yahalom O, Brient-Litzler E, Bedouelle H, Ho JW, Campbell KS, Rager-Zisman B, Despres P, Porgador A (2009) NKp44 receptor mediates interaction of the envelope glycoproteins from the West Nile and dengue viruses with NK cells. J Immunol 183(4):2610–2621PubMedCrossRef Hershkovitz O, Rosental B, Rosenberg LA, Navarro-Sanchez ME, Jivov S, Zilka A, Gershoni-Yahalom O, Brient-Litzler E, Bedouelle H, Ho JW, Campbell KS, Rager-Zisman B, Despres P, Porgador A (2009) NKp44 receptor mediates interaction of the envelope glycoproteins from the West Nile and dengue viruses with NK cells. J Immunol 183(4):2610–2621PubMedCrossRef
36.
Zurück zum Zitat Arnon TI, Achdout H, Levi O, Markel G, Saleh N, Katz G, Gazit R, Gonen-Gross T, Hanna J, Nahari E, Porgador A, Honigman A, Plachter B, Mevorach D, Wolf DG, Mandelboim O (2005) Inhibition of the NKp30 activating receptor by pp65 of human cytomegalovirus. Nat Immunol 6(5):515–523PubMedCrossRef Arnon TI, Achdout H, Levi O, Markel G, Saleh N, Katz G, Gazit R, Gonen-Gross T, Hanna J, Nahari E, Porgador A, Honigman A, Plachter B, Mevorach D, Wolf DG, Mandelboim O (2005) Inhibition of the NKp30 activating receptor by pp65 of human cytomegalovirus. Nat Immunol 6(5):515–523PubMedCrossRef
37.
Zurück zum Zitat Muller TF et al (2002) Pattern and persistence of the epitope-specific IgM response against human cytomegalovirus in renal transplant patients. J Clin Virol 24(1–2):45–56PubMedCrossRef Muller TF et al (2002) Pattern and persistence of the epitope-specific IgM response against human cytomegalovirus in renal transplant patients. J Clin Virol 24(1–2):45–56PubMedCrossRef
38.
Zurück zum Zitat Bar-On Y, Charpak-Amikam Y, Glasner A, Isaacson B, Duev-Cohen A, Tsukerman P, Varvak A, Mandelboim M, Mandelboim O (2017) NKp46 recognizes the sigma1 protein of reovirus: implications for reovirus-based cancer therapy. J Virol 91:e01045–e01017PubMedPubMedCentralCrossRef Bar-On Y, Charpak-Amikam Y, Glasner A, Isaacson B, Duev-Cohen A, Tsukerman P, Varvak A, Mandelboim M, Mandelboim O (2017) NKp46 recognizes the sigma1 protein of reovirus: implications for reovirus-based cancer therapy. J Virol 91:e01045–e01017PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Esin S, Batoni G, Pardini M, Favilli F, Bottai D, Maisetta G, Florio W, Vanacore R, Wigzell H, Campa M (2004) Functional characterization of human natural killer cells responding to Mycobacterium bovis bacille Calmette-Guerin. Immunology 112(1):143–152PubMedPubMedCentralCrossRef Esin S, Batoni G, Pardini M, Favilli F, Bottai D, Maisetta G, Florio W, Vanacore R, Wigzell H, Campa M (2004) Functional characterization of human natural killer cells responding to Mycobacterium bovis bacille Calmette-Guerin. Immunology 112(1):143–152PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Esin S, Batoni G, Counoupas C, Stringaro A, Brancatisano FL, Colone M, Maisetta G, Florio W, Arancia G, Campa M (2008) Direct binding of human NK cell natural cytotoxicity receptor NKp44 to the surfaces of mycobacteria and other bacteria. Infect Immun 76(4):1719–1727PubMedPubMedCentralCrossRef Esin S, Batoni G, Counoupas C, Stringaro A, Brancatisano FL, Colone M, Maisetta G, Florio W, Arancia G, Campa M (2008) Direct binding of human NK cell natural cytotoxicity receptor NKp44 to the surfaces of mycobacteria and other bacteria. Infect Immun 76(4):1719–1727PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Esin S, Counoupas C, Aulicino A, Brancatisano FL, Maisetta G, Bottai D, di Luca M, Florio W, Campa M, Batoni G (2013) Interaction of Mycobacterium tuberculosis cell wall components with the human natural killer cell receptors NKp44 and Toll-like receptor 2. Scand J Immunol 77(6):460–469PubMedCrossRef Esin S, Counoupas C, Aulicino A, Brancatisano FL, Maisetta G, Bottai D, di Luca M, Florio W, Campa M, Batoni G (2013) Interaction of Mycobacterium tuberculosis cell wall components with the human natural killer cell receptors NKp44 and Toll-like receptor 2. Scand J Immunol 77(6):460–469PubMedCrossRef
42.
Zurück zum Zitat Chaushu S, Wilensky A, Gur C, Shapira L, Elboim M, Halftek G, Polak D, Achdout H, Bachrach G, Mandelboim O (2012) Direct recognition of Fusobacterium nucleatum by the NK cell natural cytotoxicity receptor NKp46 aggravates periodontal disease. PLoS Pathog 8(3):e1002601PubMedPubMedCentralCrossRef Chaushu S, Wilensky A, Gur C, Shapira L, Elboim M, Halftek G, Polak D, Achdout H, Bachrach G, Mandelboim O (2012) Direct recognition of Fusobacterium nucleatum by the NK cell natural cytotoxicity receptor NKp46 aggravates periodontal disease. PLoS Pathog 8(3):e1002601PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Mavoungou E, Held J, Mewono L, Kremsner PG (2007) A Duffy binding-like domain is involved in the NKp30-mediated recognition of Plasmodium falciparum-parasitized erythrocytes by natural killer cells. J Infect Dis 195(10):1521–1531PubMedCrossRef Mavoungou E, Held J, Mewono L, Kremsner PG (2007) A Duffy binding-like domain is involved in the NKp30-mediated recognition of Plasmodium falciparum-parasitized erythrocytes by natural killer cells. J Infect Dis 195(10):1521–1531PubMedCrossRef
44.
Zurück zum Zitat Baratin M, Roetynck S, Lepolard C, Falk C, Sawadogo S, Uematsu S, Akira S, Ryffel B, Tiraby JG, Alexopoulou L, Kirschning CJ, Gysin J, Vivier E, Ugolini S (2005) Natural killer cell and macrophage cooperation in MyD88-dependent innate responses to Plasmodium falciparum. Proc Natl Acad Sci U S A 102(41):14747–14752PubMedPubMedCentralCrossRef Baratin M, Roetynck S, Lepolard C, Falk C, Sawadogo S, Uematsu S, Akira S, Ryffel B, Tiraby JG, Alexopoulou L, Kirschning CJ, Gysin J, Vivier E, Ugolini S (2005) Natural killer cell and macrophage cooperation in MyD88-dependent innate responses to Plasmodium falciparum. Proc Natl Acad Sci U S A 102(41):14747–14752PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Baratin M, Roetynck S, Pouvelle B, Lemmers C, Viebig NK, Johansson S, Bierling P, Scherf A, Gysin J, Vivier E, Ugolini S (2007) Dissection of the role of PfEMP1 and ICAM-1 in the sensing of Plasmodium falciparum-infected erythrocytes by natural killer cells. PLoS One 2(2):e228PubMedPubMedCentralCrossRef Baratin M, Roetynck S, Pouvelle B, Lemmers C, Viebig NK, Johansson S, Bierling P, Scherf A, Gysin J, Vivier E, Ugolini S (2007) Dissection of the role of PfEMP1 and ICAM-1 in the sensing of Plasmodium falciparum-infected erythrocytes by natural killer cells. PLoS One 2(2):e228PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Ziegler S, Weiss E, Schmitt AL, Schlegel J, Burgert A, Terpitz U, Sauer M, Moretta L, Sivori S, Leonhardt I, Kurzai O, Einsele H, Loeffler J (2017) CD56 is a pathogen recognition receptor on human natural killer cells. Sci Rep 7(1):6138PubMedPubMedCentralCrossRef Ziegler S, Weiss E, Schmitt AL, Schlegel J, Burgert A, Terpitz U, Sauer M, Moretta L, Sivori S, Leonhardt I, Kurzai O, Einsele H, Loeffler J (2017) CD56 is a pathogen recognition receptor on human natural killer cells. Sci Rep 7(1):6138PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Bryceson YT, March ME, Ljunggren HG, Long EO (2006) Activation, coactivation, and costimulation of resting human natural killer cells. Immunol Rev 214:73–91PubMedCrossRef Bryceson YT, March ME, Ljunggren HG, Long EO (2006) Activation, coactivation, and costimulation of resting human natural killer cells. Immunol Rev 214:73–91PubMedCrossRef
48.
Zurück zum Zitat Pende D, Parolini S, Pessino A, Sivori S, Augugliaro R, Morelli L, Marcenaro E, Accame L, Malaspina A, Biassoni R, Bottino C, Moretta L, Moretta A (1999) Identification and molecular characterization of NKp30, a novel triggering receptor involved in natural cytotoxicity mediated by human natural killer cells. J Exp Med 190(10):1505–1516PubMedPubMedCentralCrossRef Pende D, Parolini S, Pessino A, Sivori S, Augugliaro R, Morelli L, Marcenaro E, Accame L, Malaspina A, Biassoni R, Bottino C, Moretta L, Moretta A (1999) Identification and molecular characterization of NKp30, a novel triggering receptor involved in natural cytotoxicity mediated by human natural killer cells. J Exp Med 190(10):1505–1516PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Garcia-Beltran WF, Hölzemer A, Martrus G, Chung AW, Pacheco Y, Simoneau CR, Rucevic M, Lamothe-Molina PA, Pertel T, Kim TE, Dugan H, Alter G, Dechanet-Merville J, Jost S, Carrington M, Altfeld M (2016) Open conformers of HLA-F are high-affinity ligands of the activating NK-cell receptor KIR3DS1. Nat Immunol 17(9):1067–1074PubMedPubMedCentralCrossRef Garcia-Beltran WF, Hölzemer A, Martrus G, Chung AW, Pacheco Y, Simoneau CR, Rucevic M, Lamothe-Molina PA, Pertel T, Kim TE, Dugan H, Alter G, Dechanet-Merville J, Jost S, Carrington M, Altfeld M (2016) Open conformers of HLA-F are high-affinity ligands of the activating NK-cell receptor KIR3DS1. Nat Immunol 17(9):1067–1074PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Crinier A et al (2017) Innate lymphoid cells. Med Sci 33(5):534–542 Crinier A et al (2017) Innate lymphoid cells. Med Sci 33(5):534–542
51.
52.
Zurück zum Zitat Simoni Y, Fehlings M, Kløverpris HN, McGovern N, Koo SL, Loh CY, Lim S, Kurioka A, Fergusson JR, Tang CL, Kam MH, Dennis K, Lim TKH, Fui ACY, Hoong CW, Chan JKY, Curotto de Lafaille M, Narayanan S, Baig S, Shabeer M, Toh SAES, Tan HKK, Anicete R, Tan EH, Takano A, Klenerman P, Leslie A, Tan DSW, Tan IB, Ginhoux F, Newell EW (2017) Human innate lymphoid cell subsets possess tissue-type based heterogeneity in phenotype and frequency. Immunity 46(1):148–161PubMedCrossRef Simoni Y, Fehlings M, Kløverpris HN, McGovern N, Koo SL, Loh CY, Lim S, Kurioka A, Fergusson JR, Tang CL, Kam MH, Dennis K, Lim TKH, Fui ACY, Hoong CW, Chan JKY, Curotto de Lafaille M, Narayanan S, Baig S, Shabeer M, Toh SAES, Tan HKK, Anicete R, Tan EH, Takano A, Klenerman P, Leslie A, Tan DSW, Tan IB, Ginhoux F, Newell EW (2017) Human innate lymphoid cell subsets possess tissue-type based heterogeneity in phenotype and frequency. Immunity 46(1):148–161PubMedCrossRef
53.
Zurück zum Zitat Wu N, Veillette A (2016) SLAM family receptors in normal immunity and immune pathologies. Curr Opin Immunol 38:45–51PubMedCrossRef Wu N, Veillette A (2016) SLAM family receptors in normal immunity and immune pathologies. Curr Opin Immunol 38:45–51PubMedCrossRef
54.
Zurück zum Zitat Bryceson YT, Ljunggren HG, Long EO (2009) Minimal requirement for induction of natural cytotoxicity and intersection of activation signals by inhibitory receptors. Blood 114(13):2657–2666PubMedPubMedCentralCrossRef Bryceson YT, Ljunggren HG, Long EO (2009) Minimal requirement for induction of natural cytotoxicity and intersection of activation signals by inhibitory receptors. Blood 114(13):2657–2666PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Garg A, Barnes PF, Porgador A, Roy S, Wu S, Nanda JS, Griffith DE, Girard WM, Rawal N, Shetty S, Vankayalapati R (2006) Vimentin expressed on Mycobacterium tuberculosis-infected human monocytes is involved in binding to the NKp46 receptor. J Immunol 177(9):6192–6198PubMedCrossRef Garg A, Barnes PF, Porgador A, Roy S, Wu S, Nanda JS, Griffith DE, Girard WM, Rawal N, Shetty S, Vankayalapati R (2006) Vimentin expressed on Mycobacterium tuberculosis-infected human monocytes is involved in binding to the NKp46 receptor. J Immunol 177(9):6192–6198PubMedCrossRef
56.
Zurück zum Zitat Narni-Mancinelli E, Gauthier L, Baratin M, Guia S, Fenis A, Deghmane AE, Rossi B, Fourquet P, Escalière B, Kerdiles YM, Ugolini S, Taha MK, Vivier E (2017) Complement factor P is a ligand for the natural killer cell-activating receptor NKp46. Sci Immunol 2(10):eaam9628PubMedPubMedCentralCrossRef Narni-Mancinelli E, Gauthier L, Baratin M, Guia S, Fenis A, Deghmane AE, Rossi B, Fourquet P, Escalière B, Kerdiles YM, Ugolini S, Taha MK, Vivier E (2017) Complement factor P is a ligand for the natural killer cell-activating receptor NKp46. Sci Immunol 2(10):eaam9628PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Gur C, Enk J, Kassem SA, Suissa Y, Magenheim J, Stolovich-Rain M, Nir T, Achdout H, Glaser B, Shapiro J, Naparstek Y, Porgador A, Dor Y, Mandelboim O (2011) Recognition and killing of human and murine pancreatic beta cells by the NK receptor NKp46. J Immunol 187(6):3096–3103PubMedCrossRef Gur C, Enk J, Kassem SA, Suissa Y, Magenheim J, Stolovich-Rain M, Nir T, Achdout H, Glaser B, Shapiro J, Naparstek Y, Porgador A, Dor Y, Mandelboim O (2011) Recognition and killing of human and murine pancreatic beta cells by the NK receptor NKp46. J Immunol 187(6):3096–3103PubMedCrossRef
58.
Zurück zum Zitat Ferlazzo G, Tsang ML, Moretta L, Melioli G, Steinman RM, Münz C (2002) Human dendritic cells activate resting natural killer (NK) cells and are recognized via the NKp30 receptor by activated NK cells. J Exp Med 195(3):343–351PubMedPubMedCentralCrossRef Ferlazzo G, Tsang ML, Moretta L, Melioli G, Steinman RM, Münz C (2002) Human dendritic cells activate resting natural killer (NK) cells and are recognized via the NKp30 receptor by activated NK cells. J Exp Med 195(3):343–351PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Bloushtain N, Qimron U, Bar-Ilan A, Hershkovitz O, Gazit R, Fima E, Korc M, Vlodavsky I, Bovin NV, Porgador A (2004) Membrane-associated heparan sulfate proteoglycans are involved in the recognition of cellular targets by NKp30 and NKp46. J Immunol 173(4):2392–2401PubMedCrossRef Bloushtain N, Qimron U, Bar-Ilan A, Hershkovitz O, Gazit R, Fima E, Korc M, Vlodavsky I, Bovin NV, Porgador A (2004) Membrane-associated heparan sulfate proteoglycans are involved in the recognition of cellular targets by NKp30 and NKp46. J Immunol 173(4):2392–2401PubMedCrossRef
60.
Zurück zum Zitat Hecht ML, Rosental B, Horlacher T, Hershkovitz O, de Paz JL, Noti C, Schauer S, Porgador A, Seeberger PH (2009) Natural cytotoxicity receptors NKp30, NKp44 and NKp46 bind to different heparan sulfate/heparin sequences. J Proteome Res 8(2):712–720PubMedCrossRef Hecht ML, Rosental B, Horlacher T, Hershkovitz O, de Paz JL, Noti C, Schauer S, Porgador A, Seeberger PH (2009) Natural cytotoxicity receptors NKp30, NKp44 and NKp46 bind to different heparan sulfate/heparin sequences. J Proteome Res 8(2):712–720PubMedCrossRef
61.
Zurück zum Zitat Hershkovitz O, Jarahian M, Zilka A, Bar-Ilan A, Landau G, Jivov S, Tekoah Y, Glicklis R, Gallagher JT, Hoffmann SC, Zer H, Mandelboim O, Watzl C, Momburg F, Porgador A (2008) Altered glycosylation of recombinant NKp30 hampers binding to heparan sulfate: a lesson for the use of recombinant immunoreceptors as an immunological tool. Glycobiology 18(1):28–41PubMedCrossRef Hershkovitz O, Jarahian M, Zilka A, Bar-Ilan A, Landau G, Jivov S, Tekoah Y, Glicklis R, Gallagher JT, Hoffmann SC, Zer H, Mandelboim O, Watzl C, Momburg F, Porgador A (2008) Altered glycosylation of recombinant NKp30 hampers binding to heparan sulfate: a lesson for the use of recombinant immunoreceptors as an immunological tool. Glycobiology 18(1):28–41PubMedCrossRef
62.
Zurück zum Zitat Brusilovsky M, Radinsky O, Cohen L, Yossef R, Shemesh A, Braiman A, Mandelboim O, Campbell KS, Porgador A (2015) Regulation of natural cytotoxicity receptors by heparan sulfate proteoglycans in -cis: a lesson from NKp44. Eur J Immunol 45(4):1180–1191PubMedPubMedCentralCrossRef Brusilovsky M, Radinsky O, Cohen L, Yossef R, Shemesh A, Braiman A, Mandelboim O, Campbell KS, Porgador A (2015) Regulation of natural cytotoxicity receptors by heparan sulfate proteoglycans in -cis: a lesson from NKp44. Eur J Immunol 45(4):1180–1191PubMedPubMedCentralCrossRef
63.
Zurück zum Zitat Warren HS, Jones AL, Freeman C, Bettadapura J, Parish CR (2005) Evidence that the cellular ligand for the human NK cell activation receptor NKp30 is not a heparan sulfate glycosaminoglycan. J Immunol 175(1):207–212PubMedCrossRef Warren HS, Jones AL, Freeman C, Bettadapura J, Parish CR (2005) Evidence that the cellular ligand for the human NK cell activation receptor NKp30 is not a heparan sulfate glycosaminoglycan. J Immunol 175(1):207–212PubMedCrossRef
64.
Zurück zum Zitat Brandt CS, Baratin M, Yi EC, Kennedy J, Gao Z, Fox B, Haldeman B, Ostrander CD, Kaifu T, Chabannon C, Moretta A, West R, Xu WF, Vivier E, Levin SD (2009) The B7 family member B7-H6 is a tumor cell ligand for the activating natural killer cell receptor NKp30 in humans. J Exp Med 206(7):1495–1503PubMedPubMedCentralCrossRef Brandt CS, Baratin M, Yi EC, Kennedy J, Gao Z, Fox B, Haldeman B, Ostrander CD, Kaifu T, Chabannon C, Moretta A, West R, Xu WF, Vivier E, Levin SD (2009) The B7 family member B7-H6 is a tumor cell ligand for the activating natural killer cell receptor NKp30 in humans. J Exp Med 206(7):1495–1503PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Xu X, Li Y, Gauthier L, Chen Q, Vivier E, Mariuzza RA (2015) Expression, crystallization and X-ray diffraction analysis of a complex between B7-H6, a tumor cell ligand for the natural cytotoxicity receptor NKp30, and an inhibitory antibody. Acta Crystallogr F Struct Biol Commun 71(Pt 6):697–701PubMedPubMedCentralCrossRef Xu X, Li Y, Gauthier L, Chen Q, Vivier E, Mariuzza RA (2015) Expression, crystallization and X-ray diffraction analysis of a complex between B7-H6, a tumor cell ligand for the natural cytotoxicity receptor NKp30, and an inhibitory antibody. Acta Crystallogr F Struct Biol Commun 71(Pt 6):697–701PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Hartmann J, Tran TV, Kaudeer J, Oberle K, Herrmann J, Quagliano I, Abel T, Cohnen A, Gatterdam V, Jacobs A, Wollscheid B, Tampé R, Watzl C, Diefenbach A, Koch J (2012) The stalk domain and the glycosylation status of the activating natural killer cell receptor NKp30 are important for ligand binding. J Biol Chem 287(37):31527–31539PubMedPubMedCentralCrossRef Hartmann J, Tran TV, Kaudeer J, Oberle K, Herrmann J, Quagliano I, Abel T, Cohnen A, Gatterdam V, Jacobs A, Wollscheid B, Tampé R, Watzl C, Diefenbach A, Koch J (2012) The stalk domain and the glycosylation status of the activating natural killer cell receptor NKp30 are important for ligand binding. J Biol Chem 287(37):31527–31539PubMedPubMedCentralCrossRef
67.
Zurück zum Zitat Matta J, Baratin M, Chiche L, Forel JM, Cognet C, Thomas G, Farnarier C, Piperoglou C, Papazian L, Chaussabel D, Ugolini S, Vely F, Vivier E (2013) Induction of B7-H6, a ligand for the natural killer cell-activating receptor NKp30, in inflammatory conditions. Blood 122(3):394–404PubMedCrossRef Matta J, Baratin M, Chiche L, Forel JM, Cognet C, Thomas G, Farnarier C, Piperoglou C, Papazian L, Chaussabel D, Ugolini S, Vely F, Vivier E (2013) Induction of B7-H6, a ligand for the natural killer cell-activating receptor NKp30, in inflammatory conditions. Blood 122(3):394–404PubMedCrossRef
68.
Zurück zum Zitat Schlecker E, Fiegler N, Arnold A, Altevogt P, Rose-John S, Moldenhauer G, Sucker A, Paschen A, von Strandmann EP, Textor S, Cerwenka A (2014) Metalloprotease-mediated tumor cell shedding of B7-H6, the ligand of the natural killer cell-activating receptor NKp30. Cancer Res 74(13):3429–3440PubMedCrossRef Schlecker E, Fiegler N, Arnold A, Altevogt P, Rose-John S, Moldenhauer G, Sucker A, Paschen A, von Strandmann EP, Textor S, Cerwenka A (2014) Metalloprotease-mediated tumor cell shedding of B7-H6, the ligand of the natural killer cell-activating receptor NKp30. Cancer Res 74(13):3429–3440PubMedCrossRef
69.
Zurück zum Zitat Pesce S, Tabellini G, Cantoni C, Patrizi O, Coltrini D, Rampinelli F, Matta J, Vivier E, Moretta A, Parolini S, Marcenaro E (2015) B7-H6-mediated downregulation of NKp30 in NK cells contributes to ovarian carcinoma immune escape. Oncoimmunology 4(4):e1001224PubMedPubMedCentralCrossRef Pesce S, Tabellini G, Cantoni C, Patrizi O, Coltrini D, Rampinelli F, Matta J, Vivier E, Moretta A, Parolini S, Marcenaro E (2015) B7-H6-mediated downregulation of NKp30 in NK cells contributes to ovarian carcinoma immune escape. Oncoimmunology 4(4):e1001224PubMedPubMedCentralCrossRef
70.
Zurück zum Zitat Pogge von Strandmann E, Simhadri VR, von Tresckow B, Sasse S, Reiners KS, Hansen HP, Rothe A, Böll B, Simhadri VL, Borchmann P, McKinnon PJ, Hallek M, Engert A (2007) Human leukocyte antigen-B-associated transcript 3 is released from tumor cells and engages the NKp30 receptor on natural killer cells. Immunity 27(6):965–974PubMedCrossRef Pogge von Strandmann E, Simhadri VR, von Tresckow B, Sasse S, Reiners KS, Hansen HP, Rothe A, Böll B, Simhadri VL, Borchmann P, McKinnon PJ, Hallek M, Engert A (2007) Human leukocyte antigen-B-associated transcript 3 is released from tumor cells and engages the NKp30 receptor on natural killer cells. Immunity 27(6):965–974PubMedCrossRef
71.
Zurück zum Zitat Wu W, Song W, Li S, Ouyang S, Fok KL, Diao R, Miao S, Chan HC, Wang L (2012) Regulation of apoptosis by Bat3-enhanced YWK-II/APLP2 protein stability. J Cell Sci 125(Pt 18):4219–4229PubMedCrossRef Wu W, Song W, Li S, Ouyang S, Fok KL, Diao R, Miao S, Chan HC, Wang L (2012) Regulation of apoptosis by Bat3-enhanced YWK-II/APLP2 protein stability. J Cell Sci 125(Pt 18):4219–4229PubMedCrossRef
72.
Zurück zum Zitat Rosental B, Brusilovsky M, Hadad U, Oz D, Appel MY, Afergan F, Yossef R, Rosenberg LA, Aharoni A, Cerwenka A, Campbell KS, Braiman A, Porgador A (2011) Proliferating cell nuclear antigen is a novel inhibitory ligand for the natural cytotoxicity receptor NKp44. J Immunol 187(11):5693–5702PubMedCrossRef Rosental B, Brusilovsky M, Hadad U, Oz D, Appel MY, Afergan F, Yossef R, Rosenberg LA, Aharoni A, Cerwenka A, Campbell KS, Braiman A, Porgador A (2011) Proliferating cell nuclear antigen is a novel inhibitory ligand for the natural cytotoxicity receptor NKp44. J Immunol 187(11):5693–5702PubMedCrossRef
73.
Zurück zum Zitat Horton NC, Mathew SO, Mathew PA (2013) Novel interaction between proliferating cell nuclear antigen and HLA I on the surface of tumor cells inhibits NK cell function through NKp44. PLoS One 8(3):e59552PubMedPubMedCentralCrossRef Horton NC, Mathew SO, Mathew PA (2013) Novel interaction between proliferating cell nuclear antigen and HLA I on the surface of tumor cells inhibits NK cell function through NKp44. PLoS One 8(3):e59552PubMedPubMedCentralCrossRef
74.
Zurück zum Zitat Korgun ET, Celik-Ozenci C, Acar N, Cayli S, Desoye G, Demir R (2006) Location of cell cycle regulators cyclin B1, cyclin A, PCNA, Ki67 and cell cycle inhibitors p21, p27 and p57 in human first trimester placenta and deciduas. Histochem Cell Biol 125(6):615–624PubMedCrossRef Korgun ET, Celik-Ozenci C, Acar N, Cayli S, Desoye G, Demir R (2006) Location of cell cycle regulators cyclin B1, cyclin A, PCNA, Ki67 and cell cycle inhibitors p21, p27 and p57 in human first trimester placenta and deciduas. Histochem Cell Biol 125(6):615–624PubMedCrossRef
75.
Zurück zum Zitat Baychelier F, Sennepin A, Ermonval M, Dorgham K, Debre P, Vieillard V (2013) Identification of a cellular ligand for the natural cytotoxicity receptor NKp44. Blood 122(17):2935–2942PubMedCrossRef Baychelier F, Sennepin A, Ermonval M, Dorgham K, Debre P, Vieillard V (2013) Identification of a cellular ligand for the natural cytotoxicity receptor NKp44. Blood 122(17):2935–2942PubMedCrossRef
76.
Zurück zum Zitat Vieillard V, Habib RE, Brochard P, Delache B, Bovendo HF, Calvo J, Morin J, Picq I, Martinon F, Vaslin B, le Grand R, Debré P (2008) CCR5 or CXCR4 use influences the relationship between CD4 cell depletion, NKp44L expression and NK cytotoxicity in SHIV-infected macaques. AIDS 22(2):185–192PubMedCrossRef Vieillard V, Habib RE, Brochard P, Delache B, Bovendo HF, Calvo J, Morin J, Picq I, Martinon F, Vaslin B, le Grand R, Debré P (2008) CCR5 or CXCR4 use influences the relationship between CD4 cell depletion, NKp44L expression and NK cytotoxicity in SHIV-infected macaques. AIDS 22(2):185–192PubMedCrossRef
77.
Zurück zum Zitat Vieillard V, Strominger JL, Debre P (2005) NK cytotoxicity against CD4+ T cells during HIV-1 infection: a gp41 peptide induces the expression of an NKp44 ligand. Proc Natl Acad Sci U S A 102(31):10981–10986PubMedPubMedCentralCrossRef Vieillard V, Strominger JL, Debre P (2005) NK cytotoxicity against CD4+ T cells during HIV-1 infection: a gp41 peptide induces the expression of an NKp44 ligand. Proc Natl Acad Sci U S A 102(31):10981–10986PubMedPubMedCentralCrossRef
78.
Zurück zum Zitat Barrow AD et al. (2017) Natural killer cells control tumor growth by sensing a growth factor. Cell Barrow AD et al. (2017) Natural killer cells control tumor growth by sensing a growth factor. Cell
79.
Zurück zum Zitat Akatsuka A, Ito M, Yamauchi C, Ochiai A, Yamamoto K, Matsumoto N (2010) Tumor cells of non-hematopoietic and hematopoietic origins express activation-induced C-type lectin, the ligand for killer cell lectin-like receptor F1. Int Immunol 22(9):783–790PubMedCrossRef Akatsuka A, Ito M, Yamauchi C, Ochiai A, Yamamoto K, Matsumoto N (2010) Tumor cells of non-hematopoietic and hematopoietic origins express activation-induced C-type lectin, the ligand for killer cell lectin-like receptor F1. Int Immunol 22(9):783–790PubMedCrossRef
80.
Zurück zum Zitat Welte S, Kuttruff S, Waldhauer I, Steinle A (2006) Mutual activation of natural killer cells and monocytes mediated by NKp80-AICL interaction. Nat Immunol 7(12):1334–1342PubMedCrossRef Welte S, Kuttruff S, Waldhauer I, Steinle A (2006) Mutual activation of natural killer cells and monocytes mediated by NKp80-AICL interaction. Nat Immunol 7(12):1334–1342PubMedCrossRef
81.
Zurück zum Zitat Anderson AC, Joller N, Kuchroo VK (2016) Lag-3, Tim-3, and TIGIT: co-inhibitory receptors with specialized functions in immune regulation. Immunity 44(5):989–1004PubMedPubMedCentralCrossRef Anderson AC, Joller N, Kuchroo VK (2016) Lag-3, Tim-3, and TIGIT: co-inhibitory receptors with specialized functions in immune regulation. Immunity 44(5):989–1004PubMedPubMedCentralCrossRef
82.
Zurück zum Zitat Casado JG, Pawelec G, Morgado S, Sanchez-Correa B, Delgado E, Gayoso I, Duran E, Solana R, Tarazona R (2009) Expression of adhesion molecules and ligands for activating and costimulatory receptors involved in cell-mediated cytotoxicity in a large panel of human melanoma cell lines. Cancer Immunol Immunother 58(9):1517–1526PubMedCrossRef Casado JG, Pawelec G, Morgado S, Sanchez-Correa B, Delgado E, Gayoso I, Duran E, Solana R, Tarazona R (2009) Expression of adhesion molecules and ligands for activating and costimulatory receptors involved in cell-mediated cytotoxicity in a large panel of human melanoma cell lines. Cancer Immunol Immunother 58(9):1517–1526PubMedCrossRef
83.
Zurück zum Zitat Stanietsky N, Simic H, Arapovic J, Toporik A, Levy O, Novik A, Levine Z, Beiman M, Dassa L, Achdout H, Stern-Ginossar N, Tsukerman P, Jonjic S, Mandelboim O (2009) The interaction of TIGIT with PVR and PVRL2 inhibits human NK cell cytotoxicity. Proc Natl Acad Sci U S A 106(42):17858–17863PubMedPubMedCentralCrossRef Stanietsky N, Simic H, Arapovic J, Toporik A, Levy O, Novik A, Levine Z, Beiman M, Dassa L, Achdout H, Stern-Ginossar N, Tsukerman P, Jonjic S, Mandelboim O (2009) The interaction of TIGIT with PVR and PVRL2 inhibits human NK cell cytotoxicity. Proc Natl Acad Sci U S A 106(42):17858–17863PubMedPubMedCentralCrossRef
84.
Zurück zum Zitat Stengel KF, Harden-Bowles K, Yu X, Rouge L, Yin J, Comps-Agrar L, Wiesmann C, Bazan JF, Eaton DL, Grogan JL (2012) Structure of TIGIT immunoreceptor bound to poliovirus receptor reveals a cell-cell adhesion and signaling mechanism that requires cis-trans receptor clustering. Proc Natl Acad Sci U S A 109(14):5399–5404PubMedPubMedCentralCrossRef Stengel KF, Harden-Bowles K, Yu X, Rouge L, Yin J, Comps-Agrar L, Wiesmann C, Bazan JF, Eaton DL, Grogan JL (2012) Structure of TIGIT immunoreceptor bound to poliovirus receptor reveals a cell-cell adhesion and signaling mechanism that requires cis-trans receptor clustering. Proc Natl Acad Sci U S A 109(14):5399–5404PubMedPubMedCentralCrossRef
85.
Zurück zum Zitat Yu X, Harden K, C Gonzalez L, Francesco M, Chiang E, Irving B, Tom I, Ivelja S, Refino CJ, Clark H, Eaton D, Grogan JL (2009) The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat Immunol 10(1):48–57PubMedCrossRef Yu X, Harden K, C Gonzalez L, Francesco M, Chiang E, Irving B, Tom I, Ivelja S, Refino CJ, Clark H, Eaton D, Grogan JL (2009) The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat Immunol 10(1):48–57PubMedCrossRef
86.
Zurück zum Zitat Bernhardt G (2014) TACTILE becomes tangible: CD96 discloses its inhibitory peculiarities. Nat Immunol 15(5):406–408PubMedCrossRef Bernhardt G (2014) TACTILE becomes tangible: CD96 discloses its inhibitory peculiarities. Nat Immunol 15(5):406–408PubMedCrossRef
87.
Zurück zum Zitat Chan CJ, Martinet L, Gilfillan S, Souza-Fonseca-Guimaraes F, Chow MT, Town L, Ritchie DS, Colonna M, Andrews DM, Smyth MJ (2014) The receptors CD96 and CD226 oppose each other in the regulation of natural killer cell functions. Nat Immunol 15(5):431–438PubMedCrossRef Chan CJ, Martinet L, Gilfillan S, Souza-Fonseca-Guimaraes F, Chow MT, Town L, Ritchie DS, Colonna M, Andrews DM, Smyth MJ (2014) The receptors CD96 and CD226 oppose each other in the regulation of natural killer cell functions. Nat Immunol 15(5):431–438PubMedCrossRef
88.
Zurück zum Zitat Xu F, Liu J, Liu D, Liu B, Wang M, Hu Z, du X, Tang L, He F (2014) LSECtin expressed on melanoma cells promotes tumor progression by inhibiting antitumor T-cell responses. Cancer Res 74(13):3418–3428PubMedCrossRef Xu F, Liu J, Liu D, Liu B, Wang M, Hu Z, du X, Tang L, He F (2014) LSECtin expressed on melanoma cells promotes tumor progression by inhibiting antitumor T-cell responses. Cancer Res 74(13):3418–3428PubMedCrossRef
89.
Zurück zum Zitat Kouo T, Huang L, Pucsek AB, Cao M, Solt S, Armstrong T, Jaffee E (2015) Galectin-3 shapes antitumor immune responses by suppressing CD8+ T cells via LAG-3 and inhibiting expansion of plasmacytoid dendritic cells. Cancer Immunol Res 3(4):412–423PubMedPubMedCentralCrossRef Kouo T, Huang L, Pucsek AB, Cao M, Solt S, Armstrong T, Jaffee E (2015) Galectin-3 shapes antitumor immune responses by suppressing CD8+ T cells via LAG-3 and inhibiting expansion of plasmacytoid dendritic cells. Cancer Immunol Res 3(4):412–423PubMedPubMedCentralCrossRef
90.
Zurück zum Zitat Miyazaki T, Dierich A, Benoist C, Mathis D (1996) Independent modes of natural killing distinguished in mice lacking Lag3. Science 272(5260):405–408PubMedCrossRef Miyazaki T, Dierich A, Benoist C, Mathis D (1996) Independent modes of natural killing distinguished in mice lacking Lag3. Science 272(5260):405–408PubMedCrossRef
91.
Zurück zum Zitat Ndhlovu LC, Lopez-Verges S, Barbour JD, Jones RB, Jha AR, Long BR, Schoeffler EC, Fujita T, Nixon DF, Lanier LL (2012) Tim-3 marks human natural killer cell maturation and suppresses cell-mediated cytotoxicity. Blood 119(16):3734–3743PubMedPubMedCentralCrossRef Ndhlovu LC, Lopez-Verges S, Barbour JD, Jones RB, Jha AR, Long BR, Schoeffler EC, Fujita T, Nixon DF, Lanier LL (2012) Tim-3 marks human natural killer cell maturation and suppresses cell-mediated cytotoxicity. Blood 119(16):3734–3743PubMedPubMedCentralCrossRef
92.
Zurück zum Zitat Ju Y, Hou N, Meng J, Wang X, Zhang X, Zhao D, Liu Y, Zhu F, Zhang L, Sun W, Liang X, Gao L, Ma C (2010) T cell immunoglobulin- and mucin-domain-containing molecule-3 (Tim-3) mediates natural killer cell suppression in chronic hepatitis B. J Hepatol 52(3):322–329PubMedCrossRef Ju Y, Hou N, Meng J, Wang X, Zhang X, Zhao D, Liu Y, Zhu F, Zhang L, Sun W, Liang X, Gao L, Ma C (2010) T cell immunoglobulin- and mucin-domain-containing molecule-3 (Tim-3) mediates natural killer cell suppression in chronic hepatitis B. J Hepatol 52(3):322–329PubMedCrossRef
93.
Zurück zum Zitat da Silva IP, Gallois A, Jimenez-Baranda S, Khan S, Anderson AC, Kuchroo VK, Osman I, Bhardwaj N (2014) Reversal of NK-cell exhaustion in advanced melanoma by Tim-3 blockade. Cancer Immunol Res 2(5):410–422PubMedPubMedCentralCrossRef da Silva IP, Gallois A, Jimenez-Baranda S, Khan S, Anderson AC, Kuchroo VK, Osman I, Bhardwaj N (2014) Reversal of NK-cell exhaustion in advanced melanoma by Tim-3 blockade. Cancer Immunol Res 2(5):410–422PubMedPubMedCentralCrossRef
94.
Zurück zum Zitat Xu L, Huang Y, Tan L, Yu W, Chen D, Lu CC, He J, Wu G, Liu X, Zhang Y (2015) Increased Tim-3 expression in peripheral NK cells predicts a poorer prognosis and Tim-3 blockade improves NK cell-mediated cytotoxicity in human lung adenocarcinoma. Int Immunopharmacol 29(2):635–641PubMedCrossRef Xu L, Huang Y, Tan L, Yu W, Chen D, Lu CC, He J, Wu G, Liu X, Zhang Y (2015) Increased Tim-3 expression in peripheral NK cells predicts a poorer prognosis and Tim-3 blockade improves NK cell-mediated cytotoxicity in human lung adenocarcinoma. Int Immunopharmacol 29(2):635–641PubMedCrossRef
96.
Zurück zum Zitat Pesce S et al (2017) Identification of a subset of human natural killer cells expressing high levels of programmed death 1: a phenotypic and functional characterization. J Allergy Clin Immunol 139(1):335–346 e3PubMedCrossRef Pesce S et al (2017) Identification of a subset of human natural killer cells expressing high levels of programmed death 1: a phenotypic and functional characterization. J Allergy Clin Immunol 139(1):335–346 e3PubMedCrossRef
97.
98.
Zurück zum Zitat Beldi-Ferchiou A, Lambert M, Dogniaux S, Vély F, Vivier E, Olive D, Dupuy S, Levasseur F, Zucman D, Lebbé C, Sène D, Hivroz C, Caillat-Zucman S (2016) PD-1 mediates functional exhaustion of activated NK cells in patients with Kaposi sarcoma. Oncotarget 7(45):72961–72977PubMedPubMedCentralCrossRef Beldi-Ferchiou A, Lambert M, Dogniaux S, Vély F, Vivier E, Olive D, Dupuy S, Levasseur F, Zucman D, Lebbé C, Sène D, Hivroz C, Caillat-Zucman S (2016) PD-1 mediates functional exhaustion of activated NK cells in patients with Kaposi sarcoma. Oncotarget 7(45):72961–72977PubMedPubMedCentralCrossRef
99.
Zurück zum Zitat Taylor S, Huang Y, Mallett G, Stathopoulou C, Felizardo TC, Sun MA, Martin EL, Zhu N, Woodward EL, Elias MS, Scott J, Reynolds NJ, Paul WE, Fowler DH, Amarnath S (2017) PD-1 regulates KLRG1+ group 2 innate lymphoid cells. J Exp Med 214(6):1663–1678PubMedPubMedCentralCrossRef Taylor S, Huang Y, Mallett G, Stathopoulou C, Felizardo TC, Sun MA, Martin EL, Zhu N, Woodward EL, Elias MS, Scott J, Reynolds NJ, Paul WE, Fowler DH, Amarnath S (2017) PD-1 regulates KLRG1+ group 2 innate lymphoid cells. J Exp Med 214(6):1663–1678PubMedPubMedCentralCrossRef
100.
Zurück zum Zitat Okazaki T, Chikuma S, Iwai Y, Fagarasan S, Honjo T (2013) A rheostat for immune responses: the unique properties of PD-1 and their advantages for clinical application. Nat Immunol 14(12):1212–1218PubMedCrossRef Okazaki T, Chikuma S, Iwai Y, Fagarasan S, Honjo T (2013) A rheostat for immune responses: the unique properties of PD-1 and their advantages for clinical application. Nat Immunol 14(12):1212–1218PubMedCrossRef
101.
102.
Zurück zum Zitat Huang Y, Guo L, Qiu J, Chen X, Hu-Li J, Siebenlist U, Williamson PR, Urban JF Jr, Paul WE (2015) IL-25-responsive, lineage-negative KLRG1(hi) cells are multipotential ‘inflammatory’ type 2 innate lymphoid cells. Nat Immunol 16(2):161–169PubMedCrossRef Huang Y, Guo L, Qiu J, Chen X, Hu-Li J, Siebenlist U, Williamson PR, Urban JF Jr, Paul WE (2015) IL-25-responsive, lineage-negative KLRG1(hi) cells are multipotential ‘inflammatory’ type 2 innate lymphoid cells. Nat Immunol 16(2):161–169PubMedCrossRef
103.
Zurück zum Zitat Ito M, Maruyama T, Saito N, Koganei S, Yamamoto K, Matsumoto N (2006) Killer cell lectin-like receptor G1 binds three members of the classical cadherin family to inhibit NK cell cytotoxicity. J Exp Med 203(2):289–295PubMedPubMedCentralCrossRef Ito M, Maruyama T, Saito N, Koganei S, Yamamoto K, Matsumoto N (2006) Killer cell lectin-like receptor G1 binds three members of the classical cadherin family to inhibit NK cell cytotoxicity. J Exp Med 203(2):289–295PubMedPubMedCentralCrossRef
104.
Zurück zum Zitat Salimi M, Barlow JL, Saunders SP, Xue L, Gutowska-Owsiak D, Wang X, Huang LC, Johnson D, Scanlon ST, McKenzie ANJ, Fallon PG, Ogg GS (2013) A role for IL-25 and IL-33-driven type-2 innate lymphoid cells in atopic dermatitis. J Exp Med 210(13):2939–2950PubMedPubMedCentralCrossRef Salimi M, Barlow JL, Saunders SP, Xue L, Gutowska-Owsiak D, Wang X, Huang LC, Johnson D, Scanlon ST, McKenzie ANJ, Fallon PG, Ogg GS (2013) A role for IL-25 and IL-33-driven type-2 innate lymphoid cells in atopic dermatitis. J Exp Med 210(13):2939–2950PubMedPubMedCentralCrossRef
105.
Zurück zum Zitat Grundemann C, Bauer M, Schweier O, von Oppen N, Lassing U, Saudan P, Becker KF, Karp K, Hanke T, Bachmann MF, Pircher H (2006) Cutting edge: identification of E-cadherin as a ligand for the murine killer cell lectin-like receptor G1. J Immunol 176(3):1311–1315PubMedCrossRef Grundemann C, Bauer M, Schweier O, von Oppen N, Lassing U, Saudan P, Becker KF, Karp K, Hanke T, Bachmann MF, Pircher H (2006) Cutting edge: identification of E-cadherin as a ligand for the murine killer cell lectin-like receptor G1. J Immunol 176(3):1311–1315PubMedCrossRef
107.
Zurück zum Zitat Robbins SH, Nguyen KB, Takahashi N, Mikayama T, Biron CA, Brossay L (2002) Cutting edge: inhibitory functions of the killer cell lectin-like receptor G1 molecule during the activation of mouse NK cells. J Immunol 168(6):2585–2589PubMedCrossRef Robbins SH, Nguyen KB, Takahashi N, Mikayama T, Biron CA, Brossay L (2002) Cutting edge: inhibitory functions of the killer cell lectin-like receptor G1 molecule during the activation of mouse NK cells. J Immunol 168(6):2585–2589PubMedCrossRef
108.
Zurück zum Zitat Schwartzkopff S, Grundemann C, Schweier O, Rosshart S, Karjalainen KE, Becker KF, Pircher H (2007) Tumor-associated E-cadherin mutations affect binding to the killer cell lectin-like receptor G1 in humans. J Immunol 179(2):1022–1029PubMedCrossRef Schwartzkopff S, Grundemann C, Schweier O, Rosshart S, Karjalainen KE, Becker KF, Pircher H (2007) Tumor-associated E-cadherin mutations affect binding to the killer cell lectin-like receptor G1 in humans. J Immunol 179(2):1022–1029PubMedCrossRef
109.
Zurück zum Zitat Ryan JC, Seaman WE (1997) Divergent functions of lectin-like receptors on NK cells. Immunol Rev 155:79–89PubMedCrossRef Ryan JC, Seaman WE (1997) Divergent functions of lectin-like receptors on NK cells. Immunol Rev 155:79–89PubMedCrossRef
110.
Zurück zum Zitat Rosen DB, Bettadapura J, Alsharifi M, Mathew PA, Warren HS, Lanier LL (2005) Cutting edge: lectin-like transcript-1 is a ligand for the inhibitory human NKR-P1A receptor. J Immunol 175(12):7796–7799PubMedCrossRef Rosen DB, Bettadapura J, Alsharifi M, Mathew PA, Warren HS, Lanier LL (2005) Cutting edge: lectin-like transcript-1 is a ligand for the inhibitory human NKR-P1A receptor. J Immunol 175(12):7796–7799PubMedCrossRef
112.
Zurück zum Zitat Carlyle JR, Jamieson AM, Gasser S, Clingan CS, Arase H, Raulet DH (2004) Missing self-recognition of Ocil/Clr-b by inhibitory NKR-P1 natural killer cell receptors. Proc Natl Acad Sci U S A 101(10):3527–3532PubMedPubMedCentralCrossRef Carlyle JR, Jamieson AM, Gasser S, Clingan CS, Arase H, Raulet DH (2004) Missing self-recognition of Ocil/Clr-b by inhibitory NKR-P1 natural killer cell receptors. Proc Natl Acad Sci U S A 101(10):3527–3532PubMedPubMedCentralCrossRef
113.
Zurück zum Zitat Carlyle JR, Mesci A, Ljutic B, Belanger S, Tai LH, Rousselle E, Troke AD, Proteau MF, Makrigiannis AP (2006) Molecular and genetic basis for strain-dependent NK1.1 alloreactivity of mouse NK cells. J Immunol 176(12):7511–7524PubMedCrossRef Carlyle JR, Mesci A, Ljutic B, Belanger S, Tai LH, Rousselle E, Troke AD, Proteau MF, Makrigiannis AP (2006) Molecular and genetic basis for strain-dependent NK1.1 alloreactivity of mouse NK cells. J Immunol 176(12):7511–7524PubMedCrossRef
114.
Zurück zum Zitat Lanier LL, Chang C, Phillips JH (1994) Human NKR-P1A. A disulfide-linked homodimer of the C-type lectin superfamily expressed by a subset of NK and T lymphocytes. J Immunol 153(6):2417–2428PubMed Lanier LL, Chang C, Phillips JH (1994) Human NKR-P1A. A disulfide-linked homodimer of the C-type lectin superfamily expressed by a subset of NK and T lymphocytes. J Immunol 153(6):2417–2428PubMed
115.
Zurück zum Zitat Rosen DB, Cao W, Avery DT, Tangye SG, Liu YJ, Houchins JP, Lanier LL (2008) Functional consequences of interactions between human NKR-P1A and its ligand LLT1 expressed on activated dendritic cells and B cells. J Immunol 180(10):6508–6517PubMedCrossRef Rosen DB, Cao W, Avery DT, Tangye SG, Liu YJ, Houchins JP, Lanier LL (2008) Functional consequences of interactions between human NKR-P1A and its ligand LLT1 expressed on activated dendritic cells and B cells. J Immunol 180(10):6508–6517PubMedCrossRef
116.
117.
Zurück zum Zitat Pazina T et al (2017) Regulation of the functions of natural cytotoxicity receptors by interactions with diverse ligands and alterations in splice variant expression. Front Immunol 8:369PubMedPubMedCentralCrossRef Pazina T et al (2017) Regulation of the functions of natural cytotoxicity receptors by interactions with diverse ligands and alterations in splice variant expression. Front Immunol 8:369PubMedPubMedCentralCrossRef
118.
Zurück zum Zitat Ebbo M, Crinier A, Vély F, Vivier E (2017) Innate lymphoid cells: major players in inflammatory diseases. Nat Rev Immunol 17:665–678PubMedCrossRef Ebbo M, Crinier A, Vély F, Vivier E (2017) Innate lymphoid cells: major players in inflammatory diseases. Nat Rev Immunol 17:665–678PubMedCrossRef
Metadaten
Titel
Activating and inhibitory receptors expressed on innate lymphoid cells
verfasst von
Sophie Guia
Aurore Fenis
Eric Vivier
Emilie Narni-Mancinelli
Publikationsdatum
22.05.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Seminars in Immunopathology / Ausgabe 4/2018
Print ISSN: 1863-2297
Elektronische ISSN: 1863-2300
DOI
https://doi.org/10.1007/s00281-018-0685-x

Weitere Artikel der Ausgabe 4/2018

Seminars in Immunopathology 4/2018 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.