Skip to main content
Erschienen in: Brain Topography 4/2013

01.10.2013 | Original Paper

Activation of the Human Premotor Cortex During Motor Preparation in Visuomotor Tasks

verfasst von: Kazuhiro Sugawara, Hideaki Onishi, Koya Yamashiro, Hikari Kirimoto, Atsuhiro Tsubaki, Makoto Suzuki, Hiroyuki Tamaki, Hiroatsu Murakami, Shigeki Kameyama

Erschienen in: Brain Topography | Ausgabe 4/2013

Einloggen, um Zugang zu erhalten

Abstract

Functional brain mapping studies in humans suggest that both motor and premotor cortices interact during movement execution. The aim of this study was to investigate whether the premotor cortex also participates in motor planning. We measured movement-related cerebral fields (MRCFs) using magnetoencephalography from the left hemisphere of 12 healthy right-handed participants during two simple visuomotor tasks cued by two visual stimuli S1 and S2. Participants performed a unilateral task in which they always extended the right index finger after S2 presentation regardless of the color of S1 and a bilateral task in which they extended either the right or left index finger after S2 presentation according to the color of S1. Significantly higher MRCF activity was observed during the 500 ms S1 to S2 interval in the bilateral task than in the unilateral task. In the bilateral task trials, the latency of the peak MRCF during the S1 to S2 interval was 343.9 ± 73.5 ms after S1 presentation and that of the peak of movement-evoked field 1 was 33.4 ± 3.9 ms after movement onset in the bilateral task. Equivalent current dipoles at the peak MRCF were significantly medial (9.2 ± 12.1 mm) and anterior (19.8 ± 6.9 mm) to the reference location in the somatosensory cortex (area 3b) established by median nerve stimulation. This location corresponds to the dorsal premotor cortex. These findings suggest that activation of the premotor cortex observed during the interstimulus interval may represent a neurophysiological marker of response selection.
Literatur
Zurück zum Zitat Baranov-Krylov IN, Shuvaev VT, Kanunikov IE (2007) Characteristics of activation in the parietal areas of the cortex in humans in different types of visual attention. Neurosci Behav Physiol 37(4):331–339. doi:10.1007/s11055-007-0018-3 PubMedCrossRef Baranov-Krylov IN, Shuvaev VT, Kanunikov IE (2007) Characteristics of activation in the parietal areas of the cortex in humans in different types of visual attention. Neurosci Behav Physiol 37(4):331–339. doi:10.​1007/​s11055-007-0018-3 PubMedCrossRef
Zurück zum Zitat Caminiti R, Ferraina S, Mayer AB (1998) Visuomotor transformations: early cortical mechanisms of reaching. Curr Opin Neurobiol 8(6):753–761PubMedCrossRef Caminiti R, Ferraina S, Mayer AB (1998) Visuomotor transformations: early cortical mechanisms of reaching. Curr Opin Neurobiol 8(6):753–761PubMedCrossRef
Zurück zum Zitat Cheyne D, Kristeva R, Deecke L (1991) Homuncular organization of human motor cortex as indicated by neuromagnetic recordings. Neurosci Lett 122(1):17–20PubMedCrossRef Cheyne D, Kristeva R, Deecke L (1991) Homuncular organization of human motor cortex as indicated by neuromagnetic recordings. Neurosci Lett 122(1):17–20PubMedCrossRef
Zurück zum Zitat Deiber MP, Wise SP, Honda M, Catalan MJ, Grafman J, Hallett M (1997) Frontal and parietal networks for conditional motor learning: a positron emission tomography study. J Neurophysiol 78(2):977–991PubMed Deiber MP, Wise SP, Honda M, Catalan MJ, Grafman J, Hallett M (1997) Frontal and parietal networks for conditional motor learning: a positron emission tomography study. J Neurophysiol 78(2):977–991PubMed
Zurück zum Zitat Erdler M, Beisteiner R, Mayer D, Kaindl T, Edward V, Windischberger C, Lindinger G, Deecke L (2000) Supplementary motor area activation preceding voluntary movement is detectable with a whole-scalp magnetoencephalography system. Neuroimage 11(6 Pt 1):697–707. doi:10.1006/nimg.2000.0579 PubMedCrossRef Erdler M, Beisteiner R, Mayer D, Kaindl T, Edward V, Windischberger C, Lindinger G, Deecke L (2000) Supplementary motor area activation preceding voluntary movement is detectable with a whole-scalp magnetoencephalography system. Neuroimage 11(6 Pt 1):697–707. doi:10.​1006/​nimg.​2000.​0579 PubMedCrossRef
Zurück zum Zitat Frutiger SA, Strother SC, Anderson JR, Sidtis JJ, Arnold JB, Rottenberg DA (2000) Multivariate predictive relationship between kinematic and functional activation patterns in a PET study of visuomotor learning. Neuroimage 12(5):515–527. doi:10.1006/nimg.2000.0644 PubMedCrossRef Frutiger SA, Strother SC, Anderson JR, Sidtis JJ, Arnold JB, Rottenberg DA (2000) Multivariate predictive relationship between kinematic and functional activation patterns in a PET study of visuomotor learning. Neuroimage 12(5):515–527. doi:10.​1006/​nimg.​2000.​0644 PubMedCrossRef
Zurück zum Zitat Gemba H, Sasaki K (1984) Distribution of potentials preceding visually initiated and self-paced hand movements in various cortical areas of the monkey. Brain Res 306(1–2):207–214PubMedCrossRef Gemba H, Sasaki K (1984) Distribution of potentials preceding visually initiated and self-paced hand movements in various cortical areas of the monkey. Brain Res 306(1–2):207–214PubMedCrossRef
Zurück zum Zitat Halsband U, Freund HJ (1990) Premotor cortex and conditional motor learning in man. Brain 113(Pt 1):207–222PubMedCrossRef Halsband U, Freund HJ (1990) Premotor cortex and conditional motor learning in man. Brain 113(Pt 1):207–222PubMedCrossRef
Zurück zum Zitat Hamano T, Luders HO, Ikeda A, Collura TF, Comair YG, Shibasaki H (1997) The cortical generators of the contingent negative variation in humans: a study with subdural electrodes. Electroencephalogr Clin Neurophysiol 104(3):257–268PubMedCrossRef Hamano T, Luders HO, Ikeda A, Collura TF, Comair YG, Shibasaki H (1997) The cortical generators of the contingent negative variation in humans: a study with subdural electrodes. Electroencephalogr Clin Neurophysiol 104(3):257–268PubMedCrossRef
Zurück zum Zitat Hamon JF, Seri B (1987) Relation between warning stimuli and contingent negative variation in man. Act nerv super 29(4):249–256 Hamon JF, Seri B (1987) Relation between warning stimuli and contingent negative variation in man. Act nerv super 29(4):249–256
Zurück zum Zitat Hashimoto I, Kimura T, Sakuma K, Iguchi Y, Saito Y, Terasaki O, Fukushima T (2000) Dynamic mediolateral activation of the pyramidal cell population in human somatosensory 3b area can be visualized by magnetic recordings. Neurosci Lett 280(1):25–28PubMedCrossRef Hashimoto I, Kimura T, Sakuma K, Iguchi Y, Saito Y, Terasaki O, Fukushima T (2000) Dynamic mediolateral activation of the pyramidal cell population in human somatosensory 3b area can be visualized by magnetic recordings. Neurosci Lett 280(1):25–28PubMedCrossRef
Zurück zum Zitat Hoshi E, Tanji J (2002) Contrasting neuronal activity in the dorsal and ventral premotor areas during preparation to reach. J Neurophysiol 87(2):1123–1128PubMed Hoshi E, Tanji J (2002) Contrasting neuronal activity in the dorsal and ventral premotor areas during preparation to reach. J Neurophysiol 87(2):1123–1128PubMed
Zurück zum Zitat Hoshiyama M, Kakigi R, Berg P, Koyama S, Kitamura Y, Shimojo M, Watanabe S, Nakamura A (1997) Identification of motor and sensory brain activities during unilateral finger movement: spatiotemporal source analysis of movement-associated magnetic fields. Exp Brain Res 115(1):6–14PubMedCrossRef Hoshiyama M, Kakigi R, Berg P, Koyama S, Kitamura Y, Shimojo M, Watanabe S, Nakamura A (1997) Identification of motor and sensory brain activities during unilateral finger movement: spatiotemporal source analysis of movement-associated magnetic fields. Exp Brain Res 115(1):6–14PubMedCrossRef
Zurück zum Zitat Iacoboni M, Zaidel E (2004) Interhemispheric visuo-motor integration in humans: the role of the superior parietal cortex. Neuropsychologia 42(4):419–425PubMedCrossRef Iacoboni M, Zaidel E (2004) Interhemispheric visuo-motor integration in humans: the role of the superior parietal cortex. Neuropsychologia 42(4):419–425PubMedCrossRef
Zurück zum Zitat Iacoboni M, Lieberman MD, Knowlton BJ, Molnar-Szakacs I, Moritz M, Throop CJ, Fiske AP (2004) Watching social interactions produces dorsomedial prefrontal and medial parietal BOLD fMRI signal increases compared to a resting baseline. Neuroimage 21(3):1167–1173. doi:10.1016/j.neuroimage.2003.11.013 PubMedCrossRef Iacoboni M, Lieberman MD, Knowlton BJ, Molnar-Szakacs I, Moritz M, Throop CJ, Fiske AP (2004) Watching social interactions produces dorsomedial prefrontal and medial parietal BOLD fMRI signal increases compared to a resting baseline. Neuroimage 21(3):1167–1173. doi:10.​1016/​j.​neuroimage.​2003.​11.​013 PubMedCrossRef
Zurück zum Zitat Johansen-Berg H, Rushworth MF, Bogdanovic MD, Kischka U, Wimalaratna S, Matthews PM (2002) The role of ipsilateral premotor cortex in hand movement after stroke. Proc Natl Acad Sci USA 99(22):14518–14523. doi:10.1073/pnas.222536799 PubMedCrossRef Johansen-Berg H, Rushworth MF, Bogdanovic MD, Kischka U, Wimalaratna S, Matthews PM (2002) The role of ipsilateral premotor cortex in hand movement after stroke. Proc Natl Acad Sci USA 99(22):14518–14523. doi:10.​1073/​pnas.​222536799 PubMedCrossRef
Zurück zum Zitat Kawamura T, Nakasato N, Seki K, Kanno A, Fujita S, Fujiwara S, Yoshimoto T (1996) Neuromagnetic evidence of pre- and post-central cortical sources of somatosensory evoked responses. Electroencephalogr Clin Neurophysiol 100(1):44–50PubMedCrossRef Kawamura T, Nakasato N, Seki K, Kanno A, Fujita S, Fujiwara S, Yoshimoto T (1996) Neuromagnetic evidence of pre- and post-central cortical sources of somatosensory evoked responses. Electroencephalogr Clin Neurophysiol 100(1):44–50PubMedCrossRef
Zurück zum Zitat Keizer K, Kuypers HG (1989) Distribution of corticospinal neurons with collaterals to the lower brain stem reticular formation in monkey (Macaca fascicularis). Exp Brain Res 74(2):311–318PubMedCrossRef Keizer K, Kuypers HG (1989) Distribution of corticospinal neurons with collaterals to the lower brain stem reticular formation in monkey (Macaca fascicularis). Exp Brain Res 74(2):311–318PubMedCrossRef
Zurück zum Zitat Kotra LP, Xiang Y, Newton MG, Schinazi RF, Cheng YC, Chu CK (1997) Structure-activity relationships of 2′-deoxy-2′,2′-difluoro-L-erythro-pentofuranosyl nucleosides. J Med Chem 40(22):3635–3644. doi:10.1021/jm970275y PubMedCrossRef Kotra LP, Xiang Y, Newton MG, Schinazi RF, Cheng YC, Chu CK (1997) Structure-activity relationships of 2′-deoxy-2′,2′-difluoro-L-erythro-pentofuranosyl nucleosides. J Med Chem 40(22):3635–3644. doi:10.​1021/​jm970275y PubMedCrossRef
Zurück zum Zitat Kristeva-Feige R, Walter H, Lutkenhoner B, Hampson S, Ross B, Knorr U, Steinmetz H, Cheyne D (1994) A neuromagnetic study of the functional organization of the sensorimotor cortex. Eur J neurosci 6(4):632–639PubMedCrossRef Kristeva-Feige R, Walter H, Lutkenhoner B, Hampson S, Ross B, Knorr U, Steinmetz H, Cheyne D (1994) A neuromagnetic study of the functional organization of the sensorimotor cortex. Eur J neurosci 6(4):632–639PubMedCrossRef
Zurück zum Zitat Kristeva-Feige R, Rossi S, Pizzella V, Sabato A, Tecchio F, Feige B, Romani GL, Edrich J, Rossini PM (1996) Changes in movement-related brain activity during transient deafferentation: a neuromagnetic study. Brain Res 714(1–2):201–208PubMedCrossRef Kristeva-Feige R, Rossi S, Pizzella V, Sabato A, Tecchio F, Feige B, Romani GL, Edrich J, Rossini PM (1996) Changes in movement-related brain activity during transient deafferentation: a neuromagnetic study. Brain Res 714(1–2):201–208PubMedCrossRef
Zurück zum Zitat Kristeva-Feige R, Rossi S, Feige B, Mergner T, Lucking CH, Rossini PM (1997) The bereitschaftspotential paradigm in investigating voluntary movement organization in humans using magnetoencephalography (MEG). Brain Res Brain Res Protoc 1(1):13–22PubMedCrossRef Kristeva-Feige R, Rossi S, Feige B, Mergner T, Lucking CH, Rossini PM (1997) The bereitschaftspotential paradigm in investigating voluntary movement organization in humans using magnetoencephalography (MEG). Brain Res Brain Res Protoc 1(1):13–22PubMedCrossRef
Zurück zum Zitat Kurata K, Hoffman DS (1994) Differential effects of muscimol microinjection into dorsal and ventral aspects of the premotor cortex of monkeys. J Neurophysiol 71(3):1151–1164PubMed Kurata K, Hoffman DS (1994) Differential effects of muscimol microinjection into dorsal and ventral aspects of the premotor cortex of monkeys. J Neurophysiol 71(3):1151–1164PubMed
Zurück zum Zitat Leichnetz GR (1986) Afferent and efferent connections of the dorsolateral precentral gyrus (area 4, hand/arm region) in the macaque monkey, with comparisons to area 8. J Comp Neurol 254(4):460–492. doi:10.1002/cne.902540403 PubMedCrossRef Leichnetz GR (1986) Afferent and efferent connections of the dorsolateral precentral gyrus (area 4, hand/arm region) in the macaque monkey, with comparisons to area 8. J Comp Neurol 254(4):460–492. doi:10.​1002/​cne.​902540403 PubMedCrossRef
Zurück zum Zitat Li T, Xu K, Deng H, Cai G, Liu J, Liu X, Wang R, Xiang X, Zhao J, Murray RM, Sham PC, Collier DA (1997) Association analysis of the dopamine D4 gene exon III VNTR and heroin abuse in Chinese subjects. Mol Psychiatry 2(5):413–416PubMedCrossRef Li T, Xu K, Deng H, Cai G, Liu J, Liu X, Wang R, Xiang X, Zhao J, Murray RM, Sham PC, Collier DA (1997) Association analysis of the dopamine D4 gene exon III VNTR and heroin abuse in Chinese subjects. Mol Psychiatry 2(5):413–416PubMedCrossRef
Zurück zum Zitat Macar F, Besson M (1985) Contingent negative variation in processes of expectancy, motor preparation and time estimation. Biol Psychol 21(4):293–307PubMedCrossRef Macar F, Besson M (1985) Contingent negative variation in processes of expectancy, motor preparation and time estimation. Biol Psychol 21(4):293–307PubMedCrossRef
Zurück zum Zitat Matsumura M, Kubota K (1979) Cortical projection to hand-arm motor area from post-arcuate area in macaque monkeys: a histological study of retrograde transport of horseradish peroxidase. Neurosci Lett 11(3):241–246PubMedCrossRef Matsumura M, Kubota K (1979) Cortical projection to hand-arm motor area from post-arcuate area in macaque monkeys: a histological study of retrograde transport of horseradish peroxidase. Neurosci Lett 11(3):241–246PubMedCrossRef
Zurück zum Zitat Muakkassa KF, Strick PL (1979) Frontal lobe inputs to primate motor cortex: evidence for four somatotopically organized ‘premotor’ areas. Brain Res 177(1):176–182PubMedCrossRef Muakkassa KF, Strick PL (1979) Frontal lobe inputs to primate motor cortex: evidence for four somatotopically organized ‘premotor’ areas. Brain Res 177(1):176–182PubMedCrossRef
Zurück zum Zitat Nagamine T, Toro C, Balish M, Deuschl G, Wang B, Sato S, Shibasaki H, Hallett M (1994) Cortical magnetic and electric fields associated with voluntary finger movements. Brain Topogr 6(3):175–183PubMedCrossRef Nagamine T, Toro C, Balish M, Deuschl G, Wang B, Sato S, Shibasaki H, Hallett M (1994) Cortical magnetic and electric fields associated with voluntary finger movements. Brain Topogr 6(3):175–183PubMedCrossRef
Zurück zum Zitat Nishitani N, Uutela K, Shibasaki H, Hari R (1999) Cortical visuomotor integration during eye pursuit and eye-finger pursuit. J Neurosci 19(7):2647–2657PubMed Nishitani N, Uutela K, Shibasaki H, Hari R (1999) Cortical visuomotor integration during eye pursuit and eye-finger pursuit. J Neurosci 19(7):2647–2657PubMed
Zurück zum Zitat Oishi M, Kameyama S, Fukuda M, Tsuchiya K, Kondo T (2004) Cortical activation in area 3b related to finger movement: an MEG study. Neuroreport 15(1):57–62PubMedCrossRef Oishi M, Kameyama S, Fukuda M, Tsuchiya K, Kondo T (2004) Cortical activation in area 3b related to finger movement: an MEG study. Neuroreport 15(1):57–62PubMedCrossRef
Zurück zum Zitat Onishi H, Oyama M, Soma T, Kirimoto H, Sugawara K, Murakami H, Kameyama S (2011) Muscle-afferent projection to the sensorimotor cortex after voluntary movement and motor-point stimulation: an MEG study. Clin Neurophysiol 122(3):605–610. doi:10.1016/j.clinph.2010.07.027 PubMedCrossRef Onishi H, Oyama M, Soma T, Kirimoto H, Sugawara K, Murakami H, Kameyama S (2011) Muscle-afferent projection to the sensorimotor cortex after voluntary movement and motor-point stimulation: an MEG study. Clin Neurophysiol 122(3):605–610. doi:10.​1016/​j.​clinph.​2010.​07.​027 PubMedCrossRef
Zurück zum Zitat Walters C, Parsons OA, Shurley JT (1964) Male-female differences in underwater sensory isolation. Br J Psychiatry 110:290–295PubMedCrossRef Walters C, Parsons OA, Shurley JT (1964) Male-female differences in underwater sensory isolation. Br J Psychiatry 110:290–295PubMedCrossRef
Zurück zum Zitat Wise SP, Di Pellegrino G, Boussaoud D (1992) Primate premotor cortex: dissociation of visuomotor from sensory signals. J Neurophysiol 68(3):969–972PubMed Wise SP, Di Pellegrino G, Boussaoud D (1992) Primate premotor cortex: dissociation of visuomotor from sensory signals. J Neurophysiol 68(3):969–972PubMed
Zurück zum Zitat Woldag H, Waldmann G, Schubert M, Oertel U, Maess B, Friederici A, Hummelsheim H (2003) Cortical neuromagnetic fields evoked by voluntary and passive hand movements in healthy adults. J Clin Neurophysiol 20(2):94–101PubMedCrossRef Woldag H, Waldmann G, Schubert M, Oertel U, Maess B, Friederici A, Hummelsheim H (2003) Cortical neuromagnetic fields evoked by voluntary and passive hand movements in healthy adults. J Clin Neurophysiol 20(2):94–101PubMedCrossRef
Zurück zum Zitat Xiang J, Hoshiyama M, Koyama S, Kaneoke Y, Suzuki H, Watanabe S, Naka D, Kakigi R (1997) Somatosensory evoked magnetic fields following passive finger movement. Brain Res Cogn Brain Res 6(2):73–82PubMedCrossRef Xiang J, Hoshiyama M, Koyama S, Kaneoke Y, Suzuki H, Watanabe S, Naka D, Kakigi R (1997) Somatosensory evoked magnetic fields following passive finger movement. Brain Res Cogn Brain Res 6(2):73–82PubMedCrossRef
Zurück zum Zitat Zappoli R, Versari A, Paganini M, Arnetoli G, Gangemi PF, Muscas GC, Arneodo MG, Battaglia A (1992) Changes in bit-mapped contingent negative variation (CNV) activity due to initial normal involutional processes of the human brain. Int J Psychophysiol 12(2):101–121PubMedCrossRef Zappoli R, Versari A, Paganini M, Arnetoli G, Gangemi PF, Muscas GC, Arneodo MG, Battaglia A (1992) Changes in bit-mapped contingent negative variation (CNV) activity due to initial normal involutional processes of the human brain. Int J Psychophysiol 12(2):101–121PubMedCrossRef
Metadaten
Titel
Activation of the Human Premotor Cortex During Motor Preparation in Visuomotor Tasks
verfasst von
Kazuhiro Sugawara
Hideaki Onishi
Koya Yamashiro
Hikari Kirimoto
Atsuhiro Tsubaki
Makoto Suzuki
Hiroyuki Tamaki
Hiroatsu Murakami
Shigeki Kameyama
Publikationsdatum
01.10.2013
Verlag
Springer US
Erschienen in
Brain Topography / Ausgabe 4/2013
Print ISSN: 0896-0267
Elektronische ISSN: 1573-6792
DOI
https://doi.org/10.1007/s10548-013-0299-5

Weitere Artikel der Ausgabe 4/2013

Brain Topography 4/2013 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Was nützt die Kraniektomie bei schwerer tiefer Hirnblutung?

17.05.2024 Hirnblutung Nachrichten

Eine Studie zum Nutzen der druckentlastenden Kraniektomie nach schwerer tiefer supratentorieller Hirnblutung deutet einen Nutzen der Operation an. Für überlebende Patienten ist das dennoch nur eine bedingt gute Nachricht.

Thrombektomie auch bei großen Infarkten von Vorteil

16.05.2024 Ischämischer Schlaganfall Nachrichten

Auch ein sehr ausgedehnter ischämischer Schlaganfall scheint an sich kein Grund zu sein, von einer mechanischen Thrombektomie abzusehen. Dafür spricht die LASTE-Studie, an der Patienten und Patientinnen mit einem ASPECTS von maximal 5 beteiligt waren.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.