Skip to main content
Erschienen in: BMC Gastroenterology 1/2022

Open Access 01.12.2022 | Research

Additive effect of evaluating microsurface and microvascular patterns using magnifying endoscopy with narrow-band imaging in gastric cancer: a post-hoc analysis of a single-center observational study

verfasst von: Yusuke Horiuchi, Toshiaki Hirasawa, Naoki Ishizuka, Junki Tokura, Mitsuaki Ishioka, Yoshitaka Tokai, Ken Namikawa, Shoichi Yoshimizu, Akiyoshi Ishiyama, Toshiyuki Yoshio, Junko Fujisaki

Erschienen in: BMC Gastroenterology | Ausgabe 1/2022

Abstract

Background

No studies have compared the performance of microvascular and microsurface patterns alone with their combination in patients undergoing magnifying endoscopy with narrow-band imaging for diagnosing gastric cancer. This study aimed to clarify the differences in diagnostic performance among these methods.

Methods

Thirty-three participating endoscopists who had received specialized training in magnifying endoscopy evaluated the microvascular and microsurface patterns of images of 106 cancerous and 106 non-cancerous lesions. If classified as “irregular,” the lesion was diagnosed as gastric cancer. To evaluate diagnostic performance, we compared the diagnostic accuracy, sensitivity, and specificity of these methods.

Results

Performance-related items did not differ significantly between microvascular and microsurface patterns. However, the diagnostic accuracy and sensitivity were significantly higher when using a combination of these methods than when using microvascular (82.1% [76.4–86.7] vs. 76.4% [70.3–81.6] and 69.8% [60.5–77.8] vs. 63.2% [53.7–71.8]; P < 0.001 and P = 0.008, respectively) or microsurface (82.1% [76.4–86.7] vs. 73.6% [67.3–79.1] and 69.8% [60.5–77.8] vs. 52.8% [43.4‒62.1]; both, P < 0.001) patterns alone. The additive effect on diagnostic accuracy and sensitivity was 5.7‒8.6% and 6.6‒17.0%, respectively.

Conclusions

We demonstrate the superiority of the combination of microvascular and microsurface patterns over microvascular or microsurface patterns alone for diagnosing gastric cancer. Our data support the use of the former method in clinical practice. Although a major limitation of this study was its retrospective, single-center design, our findings may help to improve the diagnosis of gastric cancer.
Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
ME-NBI
Magnifying endoscopy with narrow-band imaging
VS
Vessel plus surface
MV
Microvascular pattern
MS
Microsurface pattern
ESD
Endoscopic submucosal dissection
JGES
Japan Gastroenterological Endoscopy Society
IQR
Interquartile range
PPV
Positive predictive value
NPV
Negative predictive value
PG
Pepsinogen
CI
Confidence interval

Background

Gastric cancer is among the most prevalent types of cancer and is associated with high mortality [1, 2]. However, owing to recent advances in endoscopic technology, the number of gastric cancer cases detected at an early stage has increased and mortality rates have decreased [35]. Among these recent developments is magnifying endoscopy with narrow-band imaging (ME-NBI), which has superior diagnostic performance when combined with conventional endoscopy [6, 7]. Therefore, ME-NBI is currently the standard method for diagnosing gastric cancer.
Previous studies have reported that the vessel plus surface (VS) classification system used during ME-NBI is useful for diagnosing gastric cancer [7, 8]. In the VS classification system [7, 8], the demarcation between the cancerous and non-cancerous tissues is identified under low magnification, following which the target area is observed under high magnification, and both the microvascular (MV) and microsurface (MS) patterns are evaluated. Cancer is diagnosed if irregular findings are observed with respect to either the MV or MS pattern. Meanwhile, several studies have reported that assessments based on MV patterns alone are feasible for diagnosing gastric cancer [911]. To date, no study has compared the diagnostic performance of the combination of MS and MV with MV alone; therefore, this difference is unclear. In addition, as for MS alone, there are no reports of its usefulness.
If there is indeed an additive effect of evaluating MS and MV, the results of this analysis can demonstrate the superiority of combining MS and MV over MV alone or MS alone for diagnosing gastric cancer. In contrast, if high diagnostic performance can be achieved with MS or MV alone, the diagnostic system can be simplified by omitting the unnecessary component. In this study, we evaluated the respective contributions of MS and MV patterns in diagnosing gastric cancer and assessed the differences in diagnostic performance between the combination of MS and MV and MS or MV alone.

Methods

This study was a post-hoc analysis of a single-center observational study [12]. We used images of 118 consecutive lesions in 114 patients who underwent endoscopic submucosal dissection (ESD) performed by a single endoscopist (Y.H.) between July 2016 and July 2019. Patient images and data were extracted from electronic medical records. The study design was approved by the Institutional Review Board of the Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan (approval number: 2019-1032). Informed consent was obtained from each patient for the use of pathological specimens and imaging data.
ME-NBI was performed before treatment (on a different day). Before examination, a soft hood (MB-46; Olympus Medical Systems, Tokyo, Japan) was mounted on the tip of the endoscope to enable the endoscopist to consistently fix the mucosa at approximately 2 mm. We first performed endoscopy with white-light imaging, following which ME-NBI was performed to identify cancerous and noncancerous tissues. In particular, the demarcation between the cancerous and noncancerous tissues was identified under low magnification, following which the target area was observed under high magnification. Finally, endoscopy was performed following indigo carmine spraying.
The inclusion criterion was the availability of ME-NBI images at the utmost oral side of the cancerous tissue and adjacent noncancerous tissue (one image each of the cancerous and noncancerous tissue per patient). The exclusion criteria included a lack of ME-NBI images and unclear images owing to the presence of mucus, blood, or halation.
In accordance with the Gastric Cancer Treatment Guidelines [13], we compared the pathological macro images that revealed the cancerous areas from the pathological reports to the endoscopic images, confirming the cancerous and noncancerous areas in all cases based on post-ESD pathological findings, which are considered the gold standard. The diagnosis of gastric cancer was assessed according to the Japanese classification of gastric carcinoma [14]. All images were selected by a single instructor (YH) of the Japan Gastroenterological Endoscopy Society. Another instructor of the Japan Gastroenterological Endoscopy Society (T.H.) confirmed that all images met the inclusion criteria. GIF-H260Z and GIF-H290Z systems (Olympus Medical Systems, Tokyo, Japan) were used for ME-NBI.

Endoscopists involved in diagnostic imaging and the diagnostic method

Thirty-three endoscopists with specialized training in ME-NBI across 19 institutions participated in the diagnostic process. The VS classification system was used for the diagnosis of lesions [7, 8]. The VS classification system was established based on diagnoses made by endoscopists with ME-NBI training at specialized facilities [7]. It was previously reported that diagnostic performance is better among such endoscopists than among those without training [15]. Since diagnoses made by endoscopists without specialized training in ME-NBI may not adequately reflect the accuracy of ME-NBI diagnosis, endoscopists with specialized training in ME-NBI were selected.
Each endoscopist evaluated each image using the terms “regular,” “irregular,” “absent,” or “inconclusive.” If either MV or MS was defined as “irregular,” the lesion was diagnosed as cancerous; the lesion was not diagnosed as cancerous for any of the other definitions. Representative ME-NBI images in which the VS classification system was used are shown in Fig. 1. MV was defined as “irregular” if the shape (such as closed-loop [polygonal], open loop, tortuous, branched, bizarrely shaped, and network) and size of the vessels varied and their arrangement and distribution were irregular [7]. MS was defined as “irregular” if the individual morphology of the crypt epithelium exhibited irregular tubular/linear/curved/papillary/villous structures, varying in width and length, and their arrangement and distribution were irregular [7].
In our previous study [12], the diagnosis of cancer or non-cancer provided by each endoscopist was aggregated to calculate the diagnostic performance among all participating endoscopists. In this study, the diagnostic results (“regular,” “irregular,” “absent,” or “inconclusive”) for MS and/or MV were collected for each image using the original data from our previous study [12], and the diagnostic performance based on MS and/or MV was calculated for all images.

Evaluation criteria

This study was conducted in accordance with the Standards for the Reporting of Diagnostic Accuracy Studies 2015 guidelines [16]. We recently examined images combining endocytoscopy with NBI in another post-hoc analysis of data collected in the single-center observational study noted above [12], and the same methods of analysis were used in this study [17]. Briefly, for each image, the classification (“regular,” “irregular,” “absent,” or “inconclusive”) with the greatest frequency of response among the endoscopists was regarded as the final diagnosis (we did not set a threshold). When multiple classifications exhibited the maximum number of responses, the final diagnosis was regarded as “inconclusive.” In contrast, if the agreement rate among the endoscopists for each image was low, the reliability of the diagnosis was considered low, and generalization was difficult. Therefore, we also calculated the diagnostic agreement rate for each image, which was defined as the ratio of the maximum number of responses for a given classification to the total number of responses.
We calculated the median and interquartile range (IQR) of the diagnostic agreement rate for all images, which was confirmed based on the MV and MS. MV and MS diagnoses were then aggregated for each of the cancerous and non-cancerous images.
Based on the aggregated results, we calculated the diagnostic accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for the diagnosis based on the MV alone (irregular pattern indicative of cancer), the MS alone (irregular pattern indicative of cancer), and the combination of MS and MV (cancer diagnosed if either pattern was considered irregular). Subsequently, we compared the diagnostic performance between MV alone and MS alone, between MV alone and the combination of MS and MV, and between MS alone and the combination of MS and MV. The classification of “inconclusive” was considered an incorrect diagnosis.
In addition, to identify factors contributing to the additive effect of imaging patterns, we compared cancerous lesion characteristics (location, macroscopic type, tumor diameter, depth, ulcerative findings, histological type, and a history of Helicobacter pylori [H. pylori] infection) between patients correctly diagnosed using MV alone and those correctly diagnosed using MS alone. The cutoff values for tumor diameter were determined with reference to the median value for all tumors.
H. pylori-uninfected cases were defined as meeting all of the following criteria: (1) no prior H. pylori eradication, (2) negative urea breath test results (UBIT; Otsuka, Tokushima, Japan), (3) negative results for H. pylori antibodies (H. pylori antibody II: EIKEN Co. Ltd., Tokyo, Japan), (4) negative pepsinogen (PG) test results (positive cutoff value: PGI ≤ 70 ng/mL; PGI/II ratio ≤ 3), (5) endoscopically confirmed positive regular arrangement of collecting venules in the lower gastric body [18], and (6) histologically confirmed H. pylori-uninfected case and negative inflammatory cell infiltration result based on the updated Sydney system [19]. Patients that did not meet these criteria were considered to have a history of H. pylori infection.
The inclusion criteria for the H. pylori-infected with eradication group were as follows: negative for H. pylori antibodies or a negative C urea breath test result, if the patient underwent H. pylori eradication at our hospital or another hospital, with a confirmed negative urea breath test result ≥ 4 weeks after initiating H. pylori eradication, if the patient was positive for H. pylori antibodies or had a positive urea breath test result at the first examination at our hospital. The H. pylori-infected without eradication group did not meet these criteria and was labeled the “noneradication group.”

Statistical analysis

The median and IQR were used when calculating the diagnostic agreement rate for all images. McNemar tests with 95% confidence intervals (CIs) were used to compare the diagnostic accuracy, sensitivity, and specificity among diagnoses made based on MV alone, MS alone, and the combination of MS and MV. Fisher’s exact tests with 95% CIs were used to compare the PPV and NPV among the three diagnostic methods. Fleiss’ kappa statistic was used to assess the diagnostic agreement between images.
Statistical significance was set at P < 0.05/3 using the Bonferroni correction for pairwise comparisons (MV alone vs. MS alone, MV alone vs. the combination of MS and MV, and MS alone vs. the combination of MS and MV). Fisher’s exact test was used to compare lesion characteristics between patients correctly diagnosed based on MV alone and those correctly diagnosed based on the combination of MS and MV, with statistical significance set at P < 0.05. JMP version 13.2 (SAS Institute, Cary, NC, USA) was used to perform the analyses.

Results

As in our previous study [12], a total of 106 lesions in 102 patients satisfied the inclusion and exclusion criteria. The patient characteristics are summarized in Table 1. The median age was 71 (IQR, 61.8–77.0; range, 26–87) years; 66 (64.7%) patients were male and 36 (35.3%) were female. Endoscopic images of the adjacent non-cancerous tissue revealed that eight lesions (7.5%) exhibited atrophy, intestinal metaplasia, and erosion; 44 (41.5%) exhibited atrophy and intestinal metaplasia; two (1.9%) exhibited atrophy and erosion; 40 (37.7%) exhibited atrophy alone; and 12 (11.3%) exhibited none of the above.
Table 1
Patient characteristics
 
102 cases, 106 lesions
Age (years)
71 (61.8–77.0) [26–87]
Sex (male/female)
66 (64.7)/36 (35.3)
Location
 
 Upper third
26 (24.5)
 Middle third
59 (55.7)
 Lower third
17 (16.0)
 Gastric tubea
4 (3.8)
Macroscopic type
 
 Elevated
15 (14.2)
 Flat
5 (4.7)
 Depressed
83 (78.3)
 Complex
3 (2.8)
Tumor diameter (mm)
14 (9.0–20.3) (1.5–57.0)
Depth
 
 Intramucosal
90 (84.9)
 Submucosal
 
  < 500 μm
12 (11.3)
  ≥ 500 μm
4 (3.8)
Ulcerative findings
 
 Present
5 (4.7)
 Absent
101 (95.3)
Histological type
 
 Differentiated
82 (77.4)
 Undifferentiated
24 (22.6)
History of Helicobacter pylori infection
 
 Infected
97 (91.5)
  Noneradicated
23 (21.7)
  Eradiated
74 (76.3)
 Uninfected
9 (8.5)
Endoscopic findings in adjacent noncancerous tissue
 
 Atrophy
94 (88.7)
 Intestinal metaplasia
52 (49.1)
 Erosion
10 (9.4)
 None of the above
12 (11.3)
Data are presented as numbers (%), except for tumor size, which is expressed as median (interquartile range) [range]
aA gastric tube is a reconstruction method used after esophagectomy
The Patients had undergone ME-NBI before ESD on a different day. Thirty-three endoscopists with specialized training analyzed and provided a diagnosis (“regular,” “irregular,” “absent,” or “inconclusive”) based on the MS and/or MV pattern of each image. Table 2 shows the diagnostic agreement rate for all images (72.7% for MV [IQR: 60.6–81.8]; 72.7% for MS [IQR: 54.5–81.8]). The lower limit of the IQR for both MV and MS was > 50%. The Fleiss’ kappa statistic for all images was approximately 0.3 for both MV and MS.
Table 2
Median diagnostic agreement rate for each finding in all images
 
Diagnostic agreement rate
kappa statistic
MV
  
 Total (n = 212)
72.7% (60.6–81.8%) [36.4–100.0%]
0.320
 Cancerous tissue (n = 106)
72.7% (57.6–87.9%) [36.4–100.0%]
0.291
 Non-cancerous tissue (n = 106)
72.7% (60.6–81.8%) [36.4–93.9%]
0.102
MS
  
 Total (n = 212)
72.7% (54.5–81.8%) [30.3–93.9%]
0.289
 Cancerous tissue (n = 106)
60.6% (51.5–78.8%) [33.3–93.9%]
0.261
 Non-cancerous tissue (n = 106)
78.8% (63.6–84.8%) [30.3–93.9%]
0.092
Data are expressed as median (interquartile range) [range]
MS, microsurface pattern; MV, microvascular pattern
Table 3 shows the diagnoses made using a combination of MS and MV in cancerous and non-cancerous lesion images. Among the noncancerous lesion images, regular MS and MV findings were observed in 94 patients (88.7%). Among the images of cancerous cases, irregular MV and MS findings were observed in 49 images (46.2%), irregular MV findings were observed only in 18 images (16.9%), and irregular MS findings were observed only in seven images (6.6%).
Table 3
Combination of MS and MV diagnoses in images of cancerous and non-cancerous lesions
MV
MS
Non-cancerous (n = 106)
Cancerous (n = 106)
Regular
Regular
94 (88.7)
29 (27.4)
 
Irregular
0
5 (4.7)
 
Absent
0
1 (0.9)
 
Inconclusive
0
0
Irregular
Regular
0
1 (0.9)
 
Irregular
6 (5.7)
49 (46.2)
 
Absent
0
17 (16.0)
 
Inconclusive
0
0
Absent
Regular
1 (0.9)
1 (0.9)
 
Irregular
0
0
 
Absent
0
0
 
Inconclusive
0
0
Inconclusive
Regular
5 (4.7)
0
 
Irregular
0
2 (1.9)
 
Absent
0
0
 
Inconclusive
0
1 (0.9)
Data are presented as numbers (%)
MS, microsurface pattern; MV, microvascular pattern
Based on the data presented in Table 3, we calculated the diagnostic accuracy, sensitivity, specificity, PPV, and NPV. Subsequently, we compared the diagnostic performance between MV alone and MS alone, between MV alone and the combination of MS and MV, and between MS alone and the combination of MS and MV (Table 4). There was no significant difference in the diagnostic performance of any of the items between MV alone and MS alone. In contrast, diagnostic accuracy and sensitivity were significantly higher for the combination of MS and MV than that for MV alone and MS alone (diagnostic accuracy: 82.1% [95% CI: 76.4–86.7] vs. 76.4% [95% CI: 70.3–81.6] and 82.1% [95% CI: 76.4–86.7] vs. 73.6% [67.3–79.1], both P < 0.001; and sensitivity: 69.8% [95% CI: 60.5–77.8] vs. 63.2% [95% CI: 53.7–71.8] and 69.8% [95% CI: 60.5–77.8] vs. 52.8% [43.4‒62.1], P = 0.008 and P < 0.001, respectively). The additive effect on diagnostic accuracy and sensitivity was 5.7‒8.6% and 6.6‒17.0%, respectively.
Table 4
Comparison of diagnostic performance
 
1. MV alone
2. MS alone
3. MV and MS
P (1 vs. 2)
P (1 vs. 3)
P (2 vs. 3)
Accuracy, % (95% CI)
76.4 (70.3–81.6)
73.6 (67.3–79.1)
82.1 (76.4–86.7)
0.027
< 0.001
< 0.001
Sensitivity, % (95% CI)
63.2 (53.7–71.8)
52.8 (43.4–62.1)
69.8 (60.5–77.8)
0.028
0.008
< 0.001
Specificity, % (95% CI)
89.6 (82.4–94.1)
94.3 (88.2–97.4)
94.3 (88.2–97.4)
0.025
0.025
> 0.99
PPV, % (95% CI)
91.8 (83.2–96.2)
90.2 (80.2–95.4)
92.4 (84.4–96.5)
0.770
> 0.99
0.763
NPV, % (95% CI)
71.9 (64.0–78.7)
66.2 (58.4–73.3)
75.2 (67.2–81.8)
0.312
0.584
0.118
CI, confidence interval; MV, microvascular pattern; MS, microsurface pattern; NPV, negative predictive value; PPV, positive predictive value
In addition, as shown in Table 5, there were no significant differences in cancerous lesion characteristics between lesions correctly diagnosed using MV alone and those correctly diagnosed using MS alone.
Table 5
Comparison of cancerous characteristics between patients correctly and incorrectly diagnosed using MV alone
 
Correctly diagnosed by MV alone (n = 67)
Incorrectly diagnosed by MV alone (requiring MS) (n = 7)
P value
Location
   
 Upper third
7 (10.5)
2 (28.6)
0.4759
 Middle third
40 (59.7)
3 (42.9)
 
 Lower third
16 (23.9)
2 (28.6)
 
 Gastric tube
4 (6.0)
0
 
Macroscopic type
   
 Elevated
11 (16.4)
1 (14.3)
0.7951
 Flat
5 (7.5)
0
 
 Depressed
48 (71.6)
6 (85.7)
 
 Complex
3 (4.5)
0
 
Tumor diameter
   
 ≥ 15 mm
33 (49.3)
1 (14.3)
0.1158
 < 15 mm
34 (50.7)
6 (85.7)
 
Depth
   
 Intramucosal
57 (85.1)
6 (85.7)
> 0.9999
 Submucosal invasion
10 (14.9)
1 (14.3)
 
Ulcerative findings
   
 Present
3 (4.5)
2 (28.6)
0.0674
 Absent
64 (95.5)
5 (71.4)
 
Histological type
   
 Differentiated
50 (74.6)
6 (85.7)
> 0.9999
 Undifferentiated
17 (25.4)
1 (14.3)
 
History of Helicobacter pylori infection
   
 Infected
  
0.2389
 Non-eradicated
15 (22.4)
0
 
 Eradicated
47 (70.2)
7 (100)
 
 Uninfected
5 (7.5)
0
 
Data are presented as numbers (%)
MS, microsurface pattern; MV, microvascular pattern

Discussion

To our knowledge, this study is the first to evaluate the respective contributions of MS and MV in diagnosing gastric cancer, as well as the differences in diagnostic performance between the combination of MS and MV and each of these alone.
Our findings indicate that there are cases that cannot be diagnosed without considering MS. Moreover, we observed no significant difference in the diagnostic performance between MV alone and MS alone. In other words, diagnoses determined based on MS may exhibit the same diagnostic performance as those determined based on MV. We are not aware of any previous investigations into the usefulness of MS alone. In addition, the diagnostic accuracy and sensitivity of the combination of MS and MV were significantly higher than those of either MV or MS alone, and an additive effect of MS and MV was observed. The ability to identify cancerous lesions during endoscopic screening is paramount. Therefore, sensitivity is the most important factor contributing to diagnostic performance. The major strength of our study is that our findings highlight the importance of MS when diagnosing gastric cancer in clinical practice.
While the combination of MS and MV is reportedly useful for diagnosing gastric cancer [7, 8], some studies have reported that MV alone is feasible for diagnosis [911]. Furthermore, no previous reports have compared the diagnostic performance between the combination of MS and MV and MV alone. Given that our results show the superiority of the combination of MS and MV over using MV alone for diagnosing gastric cancer, our data support the application of the former in clinical practice.
Moreover, the lower limit of the IQR for the diagnostic agreement rate for both MV and MS was > 50%. Despite the large number of images (n = 212) and endoscopists (n = 33), the Fleiss’ kappa statistic showed fair agreement for the diagnosis of gastric cancer between MV and MS in all images. The aggregated responses in this study were considered the general responses of choice for the majority of endoscopists. This supports the reliability of the calculated diagnostic performance and the generalizability of our results and is one of the strengths of this study.
We also compared the cancerous lesion characteristics between patients correctly diagnosed using MV alone and those correctly diagnosed using MS to clarify whether the additive effect is associated with specific image attributes. However, no significant differences in any items were observed, which may have been because of the small number of lesions correctly diagnosed based on the combination of MS and MV. While further studies are needed, this result suggests that a diagnosis of gastric cancer should be made based on the combination of both patterns, regardless of lesion characteristics.
This study had some limitations. First, the images were retrospectively collected from a single center. Second, diagnoses were not made at the time of real-time endoscopy. Finally, as all patients underwent ESD, some lesions could have been overlooked. Meanwhile, the images used in this study were from consecutive cases, wherein patients were examined at a specialized cancer hospital, and all images were evaluated by 33 endoscopists from 19 facilities nationwide. Therefore, the influence of bias was likely small, and the results of this study can be generalized. Furthermore, because the design of this study included a distinguishing feature between the cancerous and adjacent non-cancerous tissue, our findings indicated that it is possible to distinguish between adjacent non-cancerous gastric mucosa and gastric cancer, suggesting that our findings may be useful for diagnosing gastric cancer. Therefore, despite the limitations of this study, we consider our results to be clinically meaningful. To address the study limitations, we plan to prospectively evaluate the diagnostic performance (including an evaluation of the demarcating line) of MS alone, MV alone, and the combination of MS and MV during real-time endoscopy in collaboration with multiple centers. The results of this study will provide a valuable basis for comparison.

Conclusions

Our findings demonstrated that the combination of MS and MV has superior diagnostic accuracy and sensitivity for diagnosing gastric cancer compared to MS or MV alone. Our results support the application of the combination of MS and MV in clinical practice and may contribute to improving the diagnosis of gastric cancer.

Acknowledgements

The authors thank the 33 endoscopists from the 19 participating institutions for image evaluation. We would like to thank Editage (www.​editage.​com) for their writing support.

Declarations

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards. The study design was approved by the Institutional Review Board of the Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan (approval number: 2019-1032). While collecting the data for this study, all personal identifying information was removed. Informed consent was obtained from each patient for the use of pathological specimens and imaging data for research purposes.
Not applicable.

Competing interests

Y.H. reports a Grant-in-Aid for Early-Career Scientists [21K15962] and personal fees for specific speaking and teaching commitments involving honoraria from Olympus Corp. and Kaken Pharmaceutical Co., Ltd. T.Y. reports research grants from the Takeda Science Foundation and a Grant-in-Aid for Scientific Research (C) [19K08408]. The remaining authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.CrossRef Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.CrossRef
2.
Zurück zum Zitat Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.CrossRef Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.CrossRef
3.
Zurück zum Zitat Ferro A, Peleteiro B, Malvezzi M, Bosetti C, Bertuccio P, Levi F, et al. Worldwide trends in gastric cancer mortality (1980–2011), with predictions to 2015, and incidence by subtype. Eur J Cancer. 2014;50:1330–44.CrossRef Ferro A, Peleteiro B, Malvezzi M, Bosetti C, Bertuccio P, Levi F, et al. Worldwide trends in gastric cancer mortality (1980–2011), with predictions to 2015, and incidence by subtype. Eur J Cancer. 2014;50:1330–44.CrossRef
4.
Zurück zum Zitat Allum WH, Blazeby JM, Griffin SM, Cunningham D, Jankowski JA, Wong R, et al. Guidelines for the management of oesophageal and gastric cancer. Gut. 2011;60:1449–72.CrossRef Allum WH, Blazeby JM, Griffin SM, Cunningham D, Jankowski JA, Wong R, et al. Guidelines for the management of oesophageal and gastric cancer. Gut. 2011;60:1449–72.CrossRef
5.
Zurück zum Zitat Thrumurthy SG, Chaudry MA, Hochhauser D, Mughal M. The diagnosis and management of gastric cancer. BMJ. 2013;347:f6367.CrossRef Thrumurthy SG, Chaudry MA, Hochhauser D, Mughal M. The diagnosis and management of gastric cancer. BMJ. 2013;347:f6367.CrossRef
6.
Zurück zum Zitat Ezoe Y, Muto M, Uedo N, Doyama H, Yao K, Oda I, et al. Magnifying narrowband imaging is more accurate than conventional white-light imaging in diagnosis of gastric mucosal cancer. Gastroenterology. 2011;141:2017-2025.e3.CrossRef Ezoe Y, Muto M, Uedo N, Doyama H, Yao K, Oda I, et al. Magnifying narrowband imaging is more accurate than conventional white-light imaging in diagnosis of gastric mucosal cancer. Gastroenterology. 2011;141:2017-2025.e3.CrossRef
7.
Zurück zum Zitat Yao K, Anagnostopoulos GK, Ragunath K. Magnifying endoscopy for diagnosing and delineating early gastric cancer. Endoscopy. 2009;41:462–7.CrossRef Yao K, Anagnostopoulos GK, Ragunath K. Magnifying endoscopy for diagnosing and delineating early gastric cancer. Endoscopy. 2009;41:462–7.CrossRef
8.
Zurück zum Zitat Muto M, Yao K, Kaise M, Kato M, Uedo N, Yagi K, et al. Magnifying endoscopy simple diagnostic algorithm for early gastric cancer (MESDA-G). Dig Endosc. 2016;28:379–93.CrossRef Muto M, Yao K, Kaise M, Kato M, Uedo N, Yagi K, et al. Magnifying endoscopy simple diagnostic algorithm for early gastric cancer (MESDA-G). Dig Endosc. 2016;28:379–93.CrossRef
9.
Zurück zum Zitat Nakayoshi T, Tajiri H, Matsuda K, Kaise M, Ikegami M, Sasaki H. Magnifying endoscopy combined with narrow band imaging system for early gastric cancer: correlation of vascular pattern with histopathology (including video). Endoscopy. 2004;36:1080–4.CrossRef Nakayoshi T, Tajiri H, Matsuda K, Kaise M, Ikegami M, Sasaki H. Magnifying endoscopy combined with narrow band imaging system for early gastric cancer: correlation of vascular pattern with histopathology (including video). Endoscopy. 2004;36:1080–4.CrossRef
10.
Zurück zum Zitat Yokoyama A, Inoue H, Minami H, Wada Y, Sato Y, Satodate H, et al. Novel narrow-band imaging magnifying endoscopic classification for early gastric cancer. Dig Liver Dis. 2010;42:704–8.CrossRef Yokoyama A, Inoue H, Minami H, Wada Y, Sato Y, Satodate H, et al. Novel narrow-band imaging magnifying endoscopic classification for early gastric cancer. Dig Liver Dis. 2010;42:704–8.CrossRef
11.
Zurück zum Zitat Horiuchi Y, Tokai Y, Yamamoto N, Yoshimizu S, Ishiyama A, Yoshio T, et al. Additive effect of magnifying endoscopy with narrow-band imaging for diagnosing mixed-type early gastric cancers. Dig Dis Sci. 2020;65:591–9.CrossRef Horiuchi Y, Tokai Y, Yamamoto N, Yoshimizu S, Ishiyama A, Yoshio T, et al. Additive effect of magnifying endoscopy with narrow-band imaging for diagnosing mixed-type early gastric cancers. Dig Dis Sci. 2020;65:591–9.CrossRef
12.
Zurück zum Zitat Horiuchi Y, Hirasawa T, Ishizuka N, Hatamori H, Ikenoyama Y, Tokura J, et al. Diagnostic performance in gastric cancer is higher using endocytoscopy with narrow-band imaging than using magnifying endoscopy with narrow-band imaging. Gastric Cancer. 2021;24:417–27.CrossRef Horiuchi Y, Hirasawa T, Ishizuka N, Hatamori H, Ikenoyama Y, Tokura J, et al. Diagnostic performance in gastric cancer is higher using endocytoscopy with narrow-band imaging than using magnifying endoscopy with narrow-band imaging. Gastric Cancer. 2021;24:417–27.CrossRef
13.
Zurück zum Zitat Japanese Gastric Cancer Association. Japanese gastric cancer treatment guidelines 2018 (5th edition). Gastric Cancer. 2021;24:1–21.CrossRef Japanese Gastric Cancer Association. Japanese gastric cancer treatment guidelines 2018 (5th edition). Gastric Cancer. 2021;24:1–21.CrossRef
14.
Zurück zum Zitat Japanese Gastric Cancer Association. Japanese classification of gastric carcinoma: 3rd English edition. Gastric Cancer. 2011;14:101–12.CrossRef Japanese Gastric Cancer Association. Japanese classification of gastric carcinoma: 3rd English edition. Gastric Cancer. 2011;14:101–12.CrossRef
15.
Zurück zum Zitat Nakanishi H, Doyama H, Ishikawa H, Uedo N, Gotoda T, Kato M, et al. Evaluation of an e-learning system for diagnosis of gastric lesions using magnifying narrow-band imaging: a multicenter randomized controlled study. Endoscopy. 2017;49:957–67.CrossRef Nakanishi H, Doyama H, Ishikawa H, Uedo N, Gotoda T, Kato M, et al. Evaluation of an e-learning system for diagnosis of gastric lesions using magnifying narrow-band imaging: a multicenter randomized controlled study. Endoscopy. 2017;49:957–67.CrossRef
16.
Zurück zum Zitat Cohen JF, Korevaar DA, Altman DG, Bruns DE, Gatsonis CA, Hooft L, et al. STARD 2015 guidelines for reporting diagnostic accuracy studies: explanation and elaboration. BMJ Open. 2016;6:e012799.CrossRef Cohen JF, Korevaar DA, Altman DG, Bruns DE, Gatsonis CA, Hooft L, et al. STARD 2015 guidelines for reporting diagnostic accuracy studies: explanation and elaboration. BMJ Open. 2016;6:e012799.CrossRef
17.
Zurück zum Zitat Horiuchi Y, Hirasawa T, Ishizuka N, Tokura J, Ishioka M, Tokai Y, et al. Evaluation of microvascular patterns alone using endocytoscopy with narrow-band imaging for diagnosing gastric cancer. Digestion. 2021 [Epub ahead of print]:1–10. Horiuchi Y, Hirasawa T, Ishizuka N, Tokura J, Ishioka M, Tokai Y, et al. Evaluation of microvascular patterns alone using endocytoscopy with narrow-band imaging for diagnosing gastric cancer. Digestion. 2021 [Epub ahead of print]:1–10.
18.
Zurück zum Zitat Yagi K, Nakamura A, Sekine A. Characteristic endoscopic and magnified endoscopic findings in the normal stomach without Helicobacter pylori infection. J Gastroenterol Hepatol. 2002;17:39–45.CrossRef Yagi K, Nakamura A, Sekine A. Characteristic endoscopic and magnified endoscopic findings in the normal stomach without Helicobacter pylori infection. J Gastroenterol Hepatol. 2002;17:39–45.CrossRef
19.
Zurück zum Zitat Dixon MF, Genta RM, Yardley JH, Correa P. The updated Sydney system. In: International workshop on the histopathology of gastritis. Houston: 1994. p. 1161–81. Dixon MF, Genta RM, Yardley JH, Correa P. The updated Sydney system. In: International workshop on the histopathology of gastritis. Houston: 1994. p. 1161–81.
Metadaten
Titel
Additive effect of evaluating microsurface and microvascular patterns using magnifying endoscopy with narrow-band imaging in gastric cancer: a post-hoc analysis of a single-center observational study
verfasst von
Yusuke Horiuchi
Toshiaki Hirasawa
Naoki Ishizuka
Junki Tokura
Mitsuaki Ishioka
Yoshitaka Tokai
Ken Namikawa
Shoichi Yoshimizu
Akiyoshi Ishiyama
Toshiyuki Yoshio
Junko Fujisaki
Publikationsdatum
01.12.2022
Verlag
BioMed Central
Erschienen in
BMC Gastroenterology / Ausgabe 1/2022
Elektronische ISSN: 1471-230X
DOI
https://doi.org/10.1186/s12876-022-02197-x

Weitere Artikel der Ausgabe 1/2022

BMC Gastroenterology 1/2022 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

„Jeder Fall von plötzlichem Tod muss obduziert werden!“

17.05.2024 Plötzlicher Herztod Nachrichten

Ein signifikanter Anteil der Fälle von plötzlichem Herztod ist genetisch bedingt. Um ihre Verwandten vor diesem Schicksal zu bewahren, sollten jüngere Personen, die plötzlich unerwartet versterben, ausnahmslos einer Autopsie unterzogen werden.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Schlechtere Vorhofflimmern-Prognose bei kleinem linken Ventrikel

17.05.2024 Vorhofflimmern Nachrichten

Nicht nur ein vergrößerter, sondern auch ein kleiner linker Ventrikel ist bei Vorhofflimmern mit einer erhöhten Komplikationsrate assoziiert. Der Zusammenhang besteht nach Daten aus China unabhängig von anderen Risikofaktoren.

Semaglutid bei Herzinsuffizienz: Wie erklärt sich die Wirksamkeit?

17.05.2024 Herzinsuffizienz Nachrichten

Bei adipösen Patienten mit Herzinsuffizienz des HFpEF-Phänotyps ist Semaglutid von symptomatischem Nutzen. Resultiert dieser Benefit allein aus der Gewichtsreduktion oder auch aus spezifischen Effekten auf die Herzinsuffizienz-Pathogenese? Eine neue Analyse gibt Aufschluss.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.