Skip to main content
Erschienen in: Reproductive Biology and Endocrinology 1/2010

Open Access 01.12.2010 | Research

Adiponectin promotes syncytialisation of BeWo cell line and primary trophoblast cells

verfasst von: Delphine Benaitreau, Esther Dos Santos, Marie-Christine Leneveu, Philippe De Mazancourt, René Pecquery, Marie-Noëlle Dieudonné

Erschienen in: Reproductive Biology and Endocrinology | Ausgabe 1/2010

Abstract

Background

In human pregnancy, a correct placentation depends on trophoblast proliferation, differentiation, migration and invasion. These processes are highly regulated by placental hormones, growth factors and cytokines. Recently, we have shown that adiponectin, an adipokine, has anti-proliferative effects on trophoblastic cells. Here, we complete this study by demonstrating that adiponectin modulates BeWo and human villous cytotrophoblast cell differentiation.

Results

We showed that hCG secretion was up-regulated by adiponectin treatment in both BeWo cells and human cytotrophoblasts from very early placentas (5-6 weeks). The expression of two trophoblast differentiation markers, leptin and syncytin 2, was also up-regulated by adiponectin in BeWo cells. Moreover, adiponectin treatment induced a loss of E-cadherin staining in these cells. In parallel, we demonstrated that AdipoR1 and AdipoR2 are up-regulated during forskolin induced BeWo cell differentiation, reinforcing the role of adiponectin in trophoblast syncytialization. SiRNA mediated down-regulation of AdipoR1 and AdipoR2 was used to demonstrate that adiponectin effects on differentiation were essentially mediated by these receptors. Finally, using a specific inhibitor, we demonstrated that the PKA signalling pathway could be one pathway involved in adiponectin effects on trophoblast differentiation.

Conclusion

Adiponectin enhances the differentiation process of trophoblast cells and could thus be involved in functional syncytiotrophoblast formation.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1477-7827-8-128) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

MND, EDS, RP and PdM conceived, designed and coordinated much of this project. The experiments were carried out by DB, MND, EDS and MCL. Data analysis was performed by DB, MND, EDS and RP. DB wrote the manuscript with participation from MND and EDS. MND, EDS, RP and PdM reviewed the manuscript. All authors read and aproved the final manuscript.
Abkürzungen
AMPK
AMP Activated Protein Kinase
PKA
Protein Kinase A
MAPK
Mitogen Activated Protein Kinase
cAMP
cyclic Adenosine Mono Phosphate
RT-PCR
Reverse Transcription-Polymerase Chain Reaction
CK7
cytokeratine 7.

Background

In human pregnancy, trophoblast cells play an essential role in embryo implantation and placental development. These cells differentiate according to one of two distinct pathways. In the extravillous pathway, cytotrophoblasts (CT) proliferate, differentiate into an invasive phenotype, and penetrate into the maternal decidua and myometrium [1, 2]. In the villous pathway, mononuclear CT fuse to form a specialized multinuclear syncytium called syncytiotrophoblast (ST) on the outer layer of placental villi [1]. ST formation plays an important role in human placentation. This process might be affected in some pathological pregnancy situations. For example, altered ST formation was observed in human preeclampsia [2].
The ST layer is the site of many placental functions necessary for foetal growth and development, including nutrient, gas exchanges, and synthesis of steroid and peptide hormones [2]. Characteristics related to trophoblast differentiation include the production of hormones like human chorionic gonadotropin (hCG), human placental lactogen, and leptin [3]. However, morphological changes, which involve fusion of CT to form the ST layer represent a hallmark of this differentiation. Studies have highlighted the impact of adhesion molecules such as cadherins in trophoblast differentiation. Among these, E-cadherin is localized at the membrane of the isolated CT and disappears when the CT fuse into ST [4, 5]. Very recently, studies have demonstrated the role of former envelope viral proteins derived from human endogenous retrovirus (HERVs) in trophoblast cell fusion, of which syncytin-1 [6] and syncytin-2 [7] seem to be of high importance. Moreover, syncytin-2 mRNA and protein are particularly expressed in the ST [7, 8].
Different in vitro studies have shown that the villous CT differentiation could be modulated by hormones and by soluble factors. For example, epidermal growth factor (EGF) [9], 17β-estradiol [10], granulocyte macrophage-colony stimulating factor (GM-CSF) [11], glucocorticoids [12], and hCG [13] induce differentiation, whereas tumor necrosis factor α (TNFα) [2, 14] and tumor growth factor β1 (TGFβ1) [15] impair this process. Adipokines such as leptin and adiponectin have recently been shown to affect the reproductive system through central effects on the hypothalamus and/or peripheral effects on the ovary, endometrium, or directly on the embryo and placenta developments [1621]. Indeed, leptin is specifically expressed in the ST [18], and is considered as a new placental hormone [18, 22]. Adiponectin is a cytokine, predominantly produced by adipose tissue, and present at high concentrations in human circulation (5-15 μg/ml) [23]. This adipokine is described as an insulin sensitizing hormone [2426], and has been shown to have anti-inflammatory, anti-angiogenic, anti-atherosclerotic and anti-proliferative roles in various cell types [25]. Adiponectin is a 30 kDa protein that is assembled into an array of complexes composed of adiponectin multimers. Adiponectin subunits assemble into trimers called low molecular weight complexes (LMW), hewamers or middle molecular weight forms (MMW), or more elaborate high molecular weight complexes (HMW) composed of 9 hewamers. The HMW form is predominant in human circulation [27]. Two specific adiponectin receptors, AdipoR1 and AdipoR2 have been identified [28]. Both receptors contain seven transmembrane domains but are structurally and functionally distinct from G-protein coupled receptors. AdipoR1 and AdipoR2 are both expressed in human endometrium and placenta [19, 29, 30]. However, adiponectin is only produced by endometrial cells at the foetal-maternal interface [19]. An additional receptor for adiponectin, T-cadherin, has recently been described [31] but is not expressed in human trophoblast [30]. AdipoR1 and AdipoR2 activate different signal transduction pathways such as the AMPK, PKA, PI3K and P38/P42/P44 MAPK pathways [16, 25, 28, 32]. Recently, we have shown that adiponectin exerts anti-proliferative effects on trophoblastic cell lines (JEG-3 and BeWo) and also on human trophoblasts [30]. Moreover, it has been shown that adiponectin serum concentrations are deregulated in some placental pathologies as gestational diabetes mellitus [33], and preeclampsia [34, 35]. However, to date, there are no data concerning the direct impact of adiponectin in trophoblast differentiation.
To study adiponectin effects on trophoblast differentiation, the widely used trophoblast differentiation model BeWo choriocarcinoma cell line was chosen [36, 37]. These cells have indeed a high degree of similarity to normal placental trophoblasts and can morphologically and functionally differentiate in vitro into ST. In particular, BeWo differentiation can be strongly induced by cAMP analogs or forskolin, an adenylate cyclase activator [37, 38]. Thus, the effects of adiponectin on differentiation in both BeWo cells and in villous cytotrophoblasts were tested by measuring hCG secretion and expression of various differentiation markers (leptin, syncytin-2 and E-cadherin) to evaluate the associated morphological and biochemical changes.

Methods

Materials

The culture medium DMEM/F12, penicillin, streptomycin, forskolin, Compound C, H89, and bovine serum albumine (BSA) were purchased from Sigma Chemical Co. (St Louis, Mo, USA). Fetal Calf Serum (FCS) was purchased from Gibco (Invitrogen, Carlsbad, Ca, USA). Recombinant human adiponectin was provided by R&D Systems Europe Ltd (Abingdon, UK), Superscript II Rnase H- RT by Invitrogen corporation (Carlsbad, Ca, USA), hCG by Organon (Puteaux, France), and RNAguard by Pharmacia Biotechnology (Uppsala, Sweden). Trypsin was provided by Difco Laboratories (Detroit, Mi, USA). The origin of the different antibodies used are described in the following paragraphs.

BeWo cell culture

The human choriocarcinoma cell line BeWo was obtained from American Type Collection of Cell (Manassas, Va, USA). Cells were maintained at 37°C under 5% CO2, 95% air atmosphere in phenol-red free DMEM/F12 medium with 15% FCS, streptomycin (10 μg/ml) and penicillin (100 U/ml). On the day following plating, BeWo cells were cultured in DMEM/F12 medium with 1% FCS in the presence of various agents such as forskolin (50 μM), adiponectin (25 ng/ml or 250 ng/ml or 500 ng/ml), 17β-estradiol (0.1 μM), progesterone (0.1 μM) and H89 (10 μM).

Isolation of villous cytotrophoblasts

This study was approved by the local ethical committee (CCP) and informed consent was obtained from each donor before clinical sampling.
First trimester human placental tissues (5-11 week gestational age) were obtained from healthy pregnant women aged between 16 and 36 when undergoing legal abortions. Human placental villous cells were prepared from tips of placental villi as previously described [39]. Placental villi were incubated in HBSS containing 0.125% trypsin, 4.2 mM MgSO4, 25 mM Hepes, and 50 U/ml Dnase type IV at 37°C without agitation. The first 15 min trypsin digestion containing a mix of extravillous and villous CT was discarded. The chorionic villi were then incubated in the same trypsin solution for 15 min at 37°C (three times) and finally washed four times with warm HBSS. Each time, the supernatant containing villous CT was collected after tissue sedimentation, filtered through 100 μm nylon screen, and centrifuged at 200 g for 10 min. Cells were washed twice and then filtered through 40 μm nylon screen. The cell supension was layered over a discontinuous Percoll gradient and centrifuged for 25 min at 1000 g. The layer corresponding to 40-45% percoll containing villous CT was washed twice in DMEM/F12 medium supplemented with 10% FCS. Cells were seeded in 24 well culture plates containing DMEM/F12 medium with 10% FCS, streptomycin (100 μg/ml), penicillin (100 U/ml), and gentamycin (5 μg/ml). Purified villous CT cultures were characterized by positive staining for cytokeratin 7 (CK7) (95% positive cells) and by the observation of cell aggregates and syncytiotrophoblasts from 48 to 72 h. In vitro, purified mononuclear CT spontaneously differentiate to form a multinucleated syncytium after 3 days in culture [39].

DNA quantification

BeWo cell and villous CT pellets were resuspended in a PBS buffer. DNA content was quantified using an InstaGene Matrix Reagent (Biorad, Hercules, Ca, USA) according to the manufacturer's instructions.

hCG and cAMP secretions

BeWo cells and villous CT were cultured in DMEM/F12 medium supplemented with 1% FCS with or without adiponectin (250 ng/ml) or forskolin (50 μM) during 24, 48, and 72 h. The culture media were changed every 24 h. The hCG concentrations were measured in the culture medium using an automated immuno-chemiluminescence analyser Architect (Abbott, Rungis, France). In order to compare the secretion of hCG in supernatants, results were normalized to 1 μg of DNA. cAMP concentrations were measured in the culture medium using a cAMP [3H] assay system, code TRK432 (GE healthcare, Orsay, France), according to the manufacturer's instructions.

RT-PCR

BeWo cells or villous CT were seeded in a 12 well culture plate (1.5×105 cells per well for BeWo cells and 3×104 cells per well for villous CT) and were cultured in DMEM/F12 medium suplemented with 1% FCS with or without adiponectin (25 or 250 ng/ml) or forskolin (50 μM) or 17β-estradiol (0.1 μM) or progesterone (0.1 μM) for 24 or 48 h. Total RNA (0.1 μg) was extracted and reverse transcribed as previously described [40]. Quantitative PCR was performed using a LightCycler480® instrument from Roche Diagnostics (Basel, Switzerland) using primer sets indicated in table 1. The Second Derivative Maximum Method was used to automatically determine the crossing point (Cp) for individual samples. The two reference genes TBP and β-2-microglobulin were chosen as previously described [30]. For each sample, the concentration ratio (target/both reference mRNAs) was calculated using the RelQuant Roche software and expressed in arbitrary units. The data were expressed as percentages of control situation. Calibration curves were log-linear over the quantification range with correlation coefficient (r2) > 0.99 and efficiency ranging from 1.8 to 2. The intra-assay variability of duplicate crossing point (Cp) values never exceeded 0.2 cycle and the inter-assay variability (CV value) ranged from 1.9 to 4.1% CV values for the 8 or 10 runs of each transcript.
Table 1
Primers used for PCR
Primer sets
Sequence
PCR product (bp)
AdipoR1
Sense
Antisense
5' TTC TTC CTC ATG GCT GTG ATG T3'
5'AAG AAG CGC TCA GGA ATT CG 3'
71
AdipoR2
Sense
Antisense
5' ATA GGG CAG ATA GGC TGG TTG A 3'
5' GGA TCC GGG CAG CAT ACA 3'
76
Syncytin-2
Sense
Antisense
5' TCG GAT ACC TTC CCT AGT GC 3'
5' GTA TTC CGG AGC TGA GGT TG 3'
126
Leptin
Sense
Antisense
5' CCA AGA TGG ACC AGA CAC TG 3'
5' GCC ACC ACC TCT GTG GAG TA 3'
220
TBP
Sense
Antisense
5' TGC ACA GGA GCC AAG AGT GAA 3'
5' CAC ATC ACA GCT CCC CAC CA 3'
132
B-2-microglobulin
Sense
Antisense
5' TGC TGT CTC CAT GTT TGA TGT ATC T 3'
5' TCT CTG CTC CCC ACC TCT AAG T 3'
86

Immunocytochemistry

BeWo cells (4×104 cells/well), or villous CT (2×105 cells/well), were plated in a labtech culture device (BD biosciences, San Jose, Ca, USA) and cultured in DMEM/F12 medium supplemented with 1% FCS with or without adiponectin (250 ng/ml) or forskolin (50 μM). After 24, 48 and 72 h treatment, cells were washed three times in PBS buffer and fixed in methanol for 10 min at 4°C. Non-specific IgG binding was blocked by incubation in PBS with 3% BSA for 1 h. Samples were then incubated with primary monoclonal mouse anti-human E-cadherin antibody (Ref: 610181, BD biosciences; San Jose, Ca, USA) (1:200 dilution in PBS BSA 3%) overnight at 4°C. The slides were then rinsed with PBS buffer and incubated with FITC conjugated goat anti-mouse secondary antibody (Ref: SC-2010, Santa Cruz Biotechnology, Inc; Santa Cruz, CA, USA) (1:200 dilution in PBS BSA 3%) for 1 h at room temperature. Cell nuclei were counterstained with DAPI. Syncytium formation was measured by observing the distribution of E-cadherin and nuclei in cells. Control studies were performed using the above described methods using mouse non-specific serum instead of primary antibody.

RNA interference for AdipoR

Two pairs of small-interfering RNAs (siRNAs) corresponding to different regions of each receptor gene were chemically synthesized by Qiagen (Courtaboeuf, France). The sequences of the sense siRNAs were: for human AdipoR1: AAG GAC AAC GAC TAT CTG CTA and CTG GCT AAA GGA CAA CGA CTA and for human AdipoR2: ACC AAT TTA AGT GAA CAT TTA and CGG CTC TCC TTG AAT AAG AAA. A fluorescently labeled, non-silencing control siRNA was useful for the optimization of transfection conditions and as a control for non-specific silencing effects. For the knockdown experiments, BeWo cells were plated in 24-well dishes at 1×105 cells/well and cultured for 24 h in medium without antibiotics. Cells were transfected with siRNAs (5 nM/well) using a Lipofectamine RNAiMAX transfection reagent from Invitrogen (Carlsbad, CA, USA) according to the manufacturer's instructions. Adiponectin (500 ng/ml) was added 24 h after transfection. After 72 h of culture, the mRNA expression was analyzed as described above.

Statistics

Statistical analysis was performed using the raw data from 6 to 10 separate experiments. The non-parametric paired Wilcoxon test was applied to compare one adiponectin concentration effect versus the control situation (without adiponectin) for a given time exposure.

Results

Adiponectin effects on biochemical trophoblast differentiation

Effects of adiponectin on hCG production in BeWo cells and human villous CT

Production of hCG by the ST is a marker of biochemical CT differentiation [13]. We measured hCG production in BeWo cells after 24, 48 and 72 h exposure to adiponectin (250 ng/ml). The medium was changed every 24 h. Data presented in Figure 1A show a significant positive effect of adiponectin on hCG production after 48 h exposure (2.05 ± 0.24 fold change), which is even more pronounced after 72 h (3.90 ± 0.42 fold change). A significant positive effect was also observed in the presence of forskolin (50 μM) used as a positive control after 24, 48 and 72 h (Figure 1A). Then, we tested effects of various concentrations of adiponectin (25, 250, 500 ng/ml) after 48 h exposure in BeWo cells. Results in Figure 1B revealed that adiponectin effects on hCG production were already significant at 25 ng/ml (1.47 ± 0.24 fold change) with a maximal effect at 500 ng/ml (2.26 ± 0.22 fold change).
In parallel, we investigated adiponectin effects on CT cells purified from very early first-trimester human placentas (5-6 week gestational age) or early first-trimester human placentas (10-11 week gestational age). In villous CT purified from very early placentas, we observed an increase of hCG production in the presence of adiponectin that was only significant at the maximum concentration (500 ng/ml) (Figure 1C). By contrast, in cells purified from later placentas, adiponectin (250 and 500 ng/ml) reduced hCG production (Figure 1D).

Effects of adiponectin on leptin mRNA expression in BeWo cells and human villous CT

It is well established that leptin is produced by ST and can be considered as a marker of biochemical trophoblast differentiation [18]. Accordingly, we investigated the effects of adiponectin on leptin mRNA expression in BeWo cells and CT cells.
As shown in Figure 2A, maximal stimulation of leptin mRNA expression was observed in BeWo cells after 24 h exposure to 250 ng/ml adiponectin (1.91 ± 0.19 fold change). Moreover, this effect was maintained after 48 h (1.53 ± 0.34 fold change) and still persisted up to 72 h exposure (1.27 ± 0.23 fold change). Forskolin (50 μM), which was used as a positive control, induced a very significant up-regulation of leptin gene expression (× 6 after 24 h exposure and up to × 35 after 72 h exposure).
As can be seen in Figure 2B, adiponectin at 25 ng/ml and at 250 ng/ml stimulates leptin mRNA expression in CT cells after 48 h exposure (1.73 ± 0.45 and 2.14 ± 0.45 fold change, respectively).

Effects of adiponectin on syncytin-2 mRNA expression in BeWo cells and human villous CT

Syncytin-2, which is up-regulated in ST, has been described as a fusogenic protein involved in trophoblast syncytialization [7, 8]. We therefore investigated the influence of adiponectin on syncytin-2 mRNA expression. As shown in Figure 3, exposure to adiponectin (250 ng/ml) significantly increased syncytin-2 mRNA expression in BeWo cells after 24 h exposure (1.16 ± 0.03 fold change). This effect was maintained after 48 and 72 h (1.39 ± 0.23 and 1.75 ± 0.44 fold change, respectively). Forskolin (50 μM), which was used as a positive control, strongly increased syncytin-2 mRNA expression after 24, 48, and 72 h (3.21 ± 0.20, 10.31 ± 0.26 and + 19.06 ± 0.24 fold change, respectively). This stimulatory effect of adiponectin was confirmed using cultured primary trophoblast cells. Adiponectin 250 ng/ml and 500 ng/ml stimulated syncytin-2 mRNA expression in villous CT (+1.55 ± 0.36 and + 2.47 ± 0.56 fold change, respectively).

Adiponectin effects on morphological trophoblast differentiation

Effects of adiponectin on E-cadherin immunostaining in BeWo cells and human villous CT

E-cadherin is a cell adhesion molecule expressed only in isolated CT. During the trophoblast differentiation process, E-cadherin mRNA and protein are down-regulated in association with loss of E-cadherin staining from the surface of fusing cells [4]. Thus, E-cadherin staining is a qualitative marker of trophoblast syncytialization.
To confirm our results on syncytialization, we studied E-cadherin staining in BeWo cells at different time exposures to adiponectin (250 ng/ml) or forskolin (50 μM). The most important effects were observed after 72 h exposure and are presented in Figure 4. Under control conditions (without adiponectin nor forskolin), more than 90% BeWo cells aggregated and showed strong E-cadherin staining at cell boundaries (Figure 4A). Forskolin (50 μM) alone resulted in the disappearance of E-cadherin from cell-cell contact areas (Figure 4C). BeWo cells incubated with adiponectin (250 ng/ml) for 72 h exhibited a loss of E-cadherin staining and a level of syncytialization similar to that in the presence of forskolin (Figure 4B).
E-cadherin staining was also observed in primary villous CT after 48 h exposure to adiponectin. With this time exposure, under control conditions (without adiponectin), we observed that some cells had spontaneously fused and were negative for E-cadherin staining (Figure 4D). Cells exposed to adiponectin for 48 h expressed less E-cadherin than cells cultured in control conditions. Very few cells still expressed E-cadherin (Figure 4E). A negative staining control can be observed on Figure 4F.

Signalling pathways involved in adiponectin effects on trophoblast differentiation

Regulation of AdipoR1 and AdipoR2 mRNA expressions in BeWo cells

To test the impact of AdipoR1 and AdipoR2 on adiponectin effects in BeWo cells, we studied the regulation of AdipoR mRNA expressions by different hormones which are known to play a pivotal role during pregnancy. We demonstrated that forskolin (50 μM) significantly increased the expression of both AdipoR mRNAs after 24 h exposure in BeWo cells (Figure 5A-B). However, as can be seen in Figure 5, 17β-estradiol (0.1 μM) and progesterone (0.1 μM) did not modify AdipoR mRNA expressions in these cells.
Finally, as some studies have described a down-regulation of AdipoR by adiponectin itself [4143], we studied AdipoR1 and AdipoR2 mRNA expressions in BeWo cells after 24 h exposure to human recombinant adiponectin. We observed a small but significant decrease of AdipoR2 mRNA expression (0.77 ± 0.04 fold change) in the presence of low adiponectin concentration (25 ng/ml) (Figure 5B). However, a higher adiponectin concentration (250 ng/ml) did not modify AdipoR1 and AdipoR2 mRNA expressions in BeWo cells (Figure 5A-B).

SiRNA down-regulation of AdipoR in BeWo cells

In these experiments, we used two different siRNA for each receptor and we observed a decrease of 67 and 54% in AdipoR1 and R2 expression, respectively, after 72 h of transfection (Figure 6A). Furthermore, as shown in Figure 6B, this partial suppression of AdipoR1 and R2 with siRNA inhibited the increasing leptin mRNA expression by adiponectin.

Transduction pathways involved in adiponectin effects on BeWo cells

The classical signal transduction pathway involved in CT differentiation is the activation of the adenylate cyclase -cAMP- PKA pathway [44]. We tested the impact of the PKA pathway on the induction of hCG secretion by adiponectin in BeWo cells using a PKA transduction pathway inhibitor.
We demonstrated that treatment of BeWo cells with adiponectin (250 ng/ml) for 48 h increased cAMP production as compared to the control situation (2.05 ± 0.29 fold change; Figure 7A). Forkolin, used as a positive control, strongly increased cAMP levels. Moreover, as shown in Figure 7B, treatment of BeWo cells with adiponectin for 48 h in the presence of the specific inhibitor H89 (10 μM) for PKA pathway suppressed the positive effect of adiponectin on hCG secretion. In our experimental conditions, addition of H89 alone induced a slight increase of hCG production in these cells (1.39 ± 0.21 fold change).

Discussion

Many factors involved in the regulation of trophoblast differentiation have been described. Some of them are also involved in trophoblast proliferation. We have recently shown that adiponectin exerts anti-proliferative effects on trophoblast cells [30]. In the present study, we provide new evidence that adiponectin also promotes a trophoblast differentiation process.
We have examined direct adiponectin effects on BeWo cell and villous CT differentiation by studying biochemical and morphological markers of the ST. We have found that adiponectin was able to i) up-regulate expression of fusion markers as syncytin-2 and ii) reduce E-cadherin membrane staining, indicating that adiponectin promotes the syncytialization of trophoblast cells. Moreover, we have shown for the first time that adiponectin induces a strong increase of leptin expression in BeWo cells and human villous CT. In this way, adiponectin could potentiate the positive effects of leptin on proliferation and invasion of trophoblast cells [21, 22, 45].
In BeWo cells, adiponectin also mediates a modest but reproducible induction of hCG production. To investigate the physiological relevance of this result, we examined the effects of adiponectin on hCG production in villous CT. We observed that adiponectin exerts a gestational age-dependent dual action on first trimester placentas. Like in BeWo cells, we observed an up-regulation of hCG production by adiponectin in villous CT purified from very early placentas (5-6 week gestational age). By contrast, in cells purified from later placentas (10-11 week gestational age), adiponectin decreased hCG production. This last result is in accordance with another study showing a down-regulation of hCG production by adiponectin on the ST of term placentas [46]. Moreover, similar results were observed with the placental growth factor EGF, that has gestationnal age-dependent effects in first trimester placentas [47]. This switch could be related to the oxygen exposure during placentation. Indeed, it is well established that during early pregnancy, placentation occurs in a relative hypoxic environment. After 10-12 weeks' gestation, the intervillous space opens to maternal blood and results in exposure of the trophoblasts to increased oxygen levels [2]. In this context, we can hypothesize that the dual effect of adiponectin on hCG production between 5-6 weeks and 10-11 weeks of gestation could be dependent on signalling pathways and/or transcriptional factors sensitive to oxygen concentrations [48]. Experiments are currently in progress in our laboratory to test this hypothesis.
We have thus shown that adiponectin is a new regulator of leptin and hCG production, which are both essential placental hormones. Moreover, it was recently shown that leptin expression is up-regulated by hCG in the trophoblastic cell line BeWo and in placental explants [49] and, inversely, that leptin increases hCG production in trophoblast and adipose cells [5052]. Adiponectin, through direct or indirect actions, could strengthen this amplification loop between hCG and leptin. Moreover, the positive effect of adiponectin on hCG expression might be reinforced by the up-regulation of AdipoR1 by hCG itself (data not shown) [53]. This last finding is in accordance with an in vivo study showing an up-regulation of AdipoR1 -specifically by hCG- in rat ovaries [53]. Silencing the AdipoR1 and AdipoR2 genes suppressed adiponectin effects on leptin expression. This result suggests a critical impact of AdipoR in adiponectin regulation of trophoblast differentiation.
Biological effects of adiponectin are initiated by AdipoR1 and AdipoR2 inducing the activation of protein kinases, mainly the AMPK but also the PKA pathways [32]. The rise of intracellular cAMP production by the PKA pathway is widely described as the main signal mediating trophoblast differentiation [44]. Thus, we used a specific inhibitor (H89) to investigate the impact of PKA signalling pathway in adiponectin effects in BeWo cells. We show that the addition of H89 suppressed the positive effect of adiponectin on hCG secretion. Moreover, adiponectin increases cAMP release in BeWo cells, reinforcing PKA signalling impact. However, this increase was more pronounced in the presence of forskolin and could explain the difference between adiponectin and forskolin effects on hCG production.
Finally, we found that AdipoR1 and AdipoR2 mRNA expressions were increased by forskolin, suggesting a cAMP dependent mechanism. This up-regulation of the AdipoR could maintain a higher sensitivity to adiponectin in trophoblast cells and thus promote the positive effects of adiponectin on trophoblast differentiation.
A recent study showing that adiponectin induces differentiation and fusion of muscle cells via AMPK pathway [54]. Our results show that adiponectin can promote cell fusion in another cell type.
The process of syncytialization is linked to the early stages of the apoptotic cascade within cytotrophoblast cells [55]. In particular, initiator caspase 8 and caspase 14 are involved in this process [56, 57]. Adiponectin has been described as a pro-apoptotic factor in many cell types, including breast cancer cells [58] and endometrial cells [17]. Further experiments will be needed to establish whether adiponectin effects on differentiation are also mediated by these caspases.
Inappropriate trophoblast differentiation is a potential cause of the aetiology of pre-eclampsia and fetal growth restriction. Altered plasma adiponectin concentrations have been described in women with pre-eclampsia [59], reinforcing its possible impact on the control of trophoblast differentiation.
In conclusion, our study reveals a novel function for adiponectin in modulating trophoblast differentiation.

Acknowledgements

The authors gratefully acknowledge T. Fournier, Ph.D. for his helpful advice in conducting the EVT cell culture assays and the Department of gynaecology and obstetrics, CHI de Poissy-St Germain for their courtesy in making first trimester human placental tissue available.
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://​creativecommons.​org/​licenses/​by/​2.​0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

MND, EDS, RP and PdM conceived, designed and coordinated much of this project. The experiments were carried out by DB, MND, EDS and MCL. Data analysis was performed by DB, MND, EDS and RP. DB wrote the manuscript with participation from MND and EDS. MND, EDS, RP and PdM reviewed the manuscript. All authors read and aproved the final manuscript.
Literatur
1.
Zurück zum Zitat Carson DD, Bagchi I, Dey SK, Enders AC, Fazleabas AT, Lessey BA, Yoshinaga K: Embryo implantation. Dev Biol. 2000, 223 (2): 217-237. 10.1006/dbio.2000.9767.CrossRefPubMed Carson DD, Bagchi I, Dey SK, Enders AC, Fazleabas AT, Lessey BA, Yoshinaga K: Embryo implantation. Dev Biol. 2000, 223 (2): 217-237. 10.1006/dbio.2000.9767.CrossRefPubMed
2.
Zurück zum Zitat Lunghi L, Ferretti ME, Medici S, Biondi C, Vesce F: Control of human trophoblast function. Reprod Biol Endocrinol. 2007, 5: 6-10.1186/1477-7827-5-6.PubMedCentralCrossRefPubMed Lunghi L, Ferretti ME, Medici S, Biondi C, Vesce F: Control of human trophoblast function. Reprod Biol Endocrinol. 2007, 5: 6-10.1186/1477-7827-5-6.PubMedCentralCrossRefPubMed
3.
Zurück zum Zitat Evain-Brion D, Malassine A: Human placenta as an endocrine organ. Growth Horm IGF Res. 2003, 13: S34-37. 10.1016/S1096-6374(03)00053-4.CrossRefPubMed Evain-Brion D, Malassine A: Human placenta as an endocrine organ. Growth Horm IGF Res. 2003, 13: S34-37. 10.1016/S1096-6374(03)00053-4.CrossRefPubMed
4.
Zurück zum Zitat Coutifaris C, Kao LC, Sehdev HM, Chin U, Babalola GO, Blaschuk OW, Strauss JF: E-cadherin expression during the differentiation of human trophoblasts. Development. 1991, 113 (3): 767-777.PubMed Coutifaris C, Kao LC, Sehdev HM, Chin U, Babalola GO, Blaschuk OW, Strauss JF: E-cadherin expression during the differentiation of human trophoblasts. Development. 1991, 113 (3): 767-777.PubMed
5.
Zurück zum Zitat Getsios S, Chen GT, MacCalman CD: Regulation of beta-catenin mRNA and protein levels in human villous cytotrophoblasts undergoing aggregation and fusion in vitro: correlation with E-cadherin expression. J Reprod Fertil. 2000, 119 (1): 59-68. 10.1530/reprod/119.1.59.CrossRefPubMed Getsios S, Chen GT, MacCalman CD: Regulation of beta-catenin mRNA and protein levels in human villous cytotrophoblasts undergoing aggregation and fusion in vitro: correlation with E-cadherin expression. J Reprod Fertil. 2000, 119 (1): 59-68. 10.1530/reprod/119.1.59.CrossRefPubMed
6.
Zurück zum Zitat Chang C, Chen PT, Chang GD, Huang CJ, Chen H: Functional characterization of the placental fusogenic membrane protein syncytin. Biol Reprod. 2004, 71 (6): 1956-1962. 10.1095/biolreprod.104.033340.CrossRefPubMed Chang C, Chen PT, Chang GD, Huang CJ, Chen H: Functional characterization of the placental fusogenic membrane protein syncytin. Biol Reprod. 2004, 71 (6): 1956-1962. 10.1095/biolreprod.104.033340.CrossRefPubMed
7.
Zurück zum Zitat Chen CP, Chen LF, Yang SR, Chen CY, Ko CC, Chang GD, Chen H: Functional characterization of the human placental fusogenic membrane protein syncytin 2. Biol Reprod. 2008, 79 (5): 815-823. 10.1095/biolreprod.108.069765.CrossRefPubMed Chen CP, Chen LF, Yang SR, Chen CY, Ko CC, Chang GD, Chen H: Functional characterization of the human placental fusogenic membrane protein syncytin 2. Biol Reprod. 2008, 79 (5): 815-823. 10.1095/biolreprod.108.069765.CrossRefPubMed
8.
Zurück zum Zitat Vargas A, Moreau J, Landry S, LeBellego F, Toufaily C, Rassart E, Lafond J, Barbeau B: Syncytin-2 plays an important role in the fusion of human trophoblast cells. J Mol Biol. 2009, 392 (2): 301-318. 10.1016/j.jmb.2009.07.025.CrossRefPubMed Vargas A, Moreau J, Landry S, LeBellego F, Toufaily C, Rassart E, Lafond J, Barbeau B: Syncytin-2 plays an important role in the fusion of human trophoblast cells. J Mol Biol. 2009, 392 (2): 301-318. 10.1016/j.jmb.2009.07.025.CrossRefPubMed
9.
Zurück zum Zitat Morrish DW, Bhardwaj D, Dabbagh LK, Marusyk H, Siy O: Epidermal growth factor induces differentiation and secretion of human chorionic gonadotropin and placental lactogen in normal human placenta. J Clin Endocrinol Metab. 1987, 65 (6): 1282-1290. 10.1210/jcem-65-6-1282.CrossRefPubMed Morrish DW, Bhardwaj D, Dabbagh LK, Marusyk H, Siy O: Epidermal growth factor induces differentiation and secretion of human chorionic gonadotropin and placental lactogen in normal human placenta. J Clin Endocrinol Metab. 1987, 65 (6): 1282-1290. 10.1210/jcem-65-6-1282.CrossRefPubMed
10.
Zurück zum Zitat Cronier L, Guibourdenche J, Niger C, Malassine A: Oestradiol stimulates morphological and functional differentiation of human villous cytotrophoblast. Placenta. 1999, 20 (8): 669-676. 10.1053/plac.1999.0423.CrossRefPubMed Cronier L, Guibourdenche J, Niger C, Malassine A: Oestradiol stimulates morphological and functional differentiation of human villous cytotrophoblast. Placenta. 1999, 20 (8): 669-676. 10.1053/plac.1999.0423.CrossRefPubMed
11.
Zurück zum Zitat Garcia-Lloret MI, Morrish DW, Wegmann TG, Honore L, Turner AR, Guilbert LJ: Demonstration of functional cytokine-placental interactions: CSF-1 and GM-CSF stimulate human cytotrophoblast differentiation and peptide hormone secretion. Exp Cell Res. 1994, 214 (1): 46-54. 10.1006/excr.1994.1232.CrossRefPubMed Garcia-Lloret MI, Morrish DW, Wegmann TG, Honore L, Turner AR, Guilbert LJ: Demonstration of functional cytokine-placental interactions: CSF-1 and GM-CSF stimulate human cytotrophoblast differentiation and peptide hormone secretion. Exp Cell Res. 1994, 214 (1): 46-54. 10.1006/excr.1994.1232.CrossRefPubMed
12.
Zurück zum Zitat Malassine A, Cronier L: Hormones and human trophoblast differentiation: a review. Endocrine. 2002, 19 (1): 3-11. 10.1385/ENDO:19:1:3.CrossRefPubMed Malassine A, Cronier L: Hormones and human trophoblast differentiation: a review. Endocrine. 2002, 19 (1): 3-11. 10.1385/ENDO:19:1:3.CrossRefPubMed
13.
Zurück zum Zitat Shi QJ, Lei ZM, Rao CV, Lin J: Novel role of human chorionic gonadotropin in differentiation of human cytotrophoblasts. Endocrinology. 1993, 132 (3): 1387-1395. 10.1210/en.132.3.1387.PubMed Shi QJ, Lei ZM, Rao CV, Lin J: Novel role of human chorionic gonadotropin in differentiation of human cytotrophoblasts. Endocrinology. 1993, 132 (3): 1387-1395. 10.1210/en.132.3.1387.PubMed
14.
Zurück zum Zitat Leisser C, Saleh L, Haider S, Husslein H, Sonderegger S, Knofler M: Tumour necrosis factor-alpha impairs chorionic gonadotrophin beta-subunit expression and cell fusion of human villous cytotrophoblast. Mol Hum Reprod. 2006, 12 (10): 601-609. 10.1093/molehr/gal066.CrossRefPubMed Leisser C, Saleh L, Haider S, Husslein H, Sonderegger S, Knofler M: Tumour necrosis factor-alpha impairs chorionic gonadotrophin beta-subunit expression and cell fusion of human villous cytotrophoblast. Mol Hum Reprod. 2006, 12 (10): 601-609. 10.1093/molehr/gal066.CrossRefPubMed
15.
Zurück zum Zitat Morrish DW, Bhardwaj D, Paras MT: Transforming growth factor beta 1 inhibits placental differentiation and human chorionic gonadotropin and human placental lactogen secretion. Endocrinology. 1991, 129 (1): 22-26. 10.1210/endo-129-1-22.CrossRefPubMed Morrish DW, Bhardwaj D, Paras MT: Transforming growth factor beta 1 inhibits placental differentiation and human chorionic gonadotropin and human placental lactogen secretion. Endocrinology. 1991, 129 (1): 22-26. 10.1210/endo-129-1-22.CrossRefPubMed
16.
Zurück zum Zitat Campos DB, Palin MF, Bordignon V, Murphy BD: The 'beneficial' adipokines in reproduction and fertility. Int J Obes (Lond). 2008, 32 (2): 223-231. 10.1038/sj.ijo.0803719.CrossRef Campos DB, Palin MF, Bordignon V, Murphy BD: The 'beneficial' adipokines in reproduction and fertility. Int J Obes (Lond). 2008, 32 (2): 223-231. 10.1038/sj.ijo.0803719.CrossRef
17.
Zurück zum Zitat Cong L, Gasser J, Zhao J, Yang B, Li F, Zhao AZ: Human adiponectin inhibits cell growth and induces apoptosis in human endometrial carcinoma cells, HEC-1-A and RL95 2. Endocr Relat Cancer. 2007, 14 (3): 713-720. 10.1677/ERC-07-0065.CrossRefPubMed Cong L, Gasser J, Zhao J, Yang B, Li F, Zhao AZ: Human adiponectin inhibits cell growth and induces apoptosis in human endometrial carcinoma cells, HEC-1-A and RL95 2. Endocr Relat Cancer. 2007, 14 (3): 713-720. 10.1677/ERC-07-0065.CrossRefPubMed
18.
Zurück zum Zitat Hoggard N, Haggarty P, Thomas L, Lea RG: Leptin expression in placental and fetal tissues: does leptin have a functional role?. Biochem Soc Trans. 2001, 29 (Pt 2): 57-63. 10.1042/BST0290057.CrossRefPubMed Hoggard N, Haggarty P, Thomas L, Lea RG: Leptin expression in placental and fetal tissues: does leptin have a functional role?. Biochem Soc Trans. 2001, 29 (Pt 2): 57-63. 10.1042/BST0290057.CrossRefPubMed
19.
Zurück zum Zitat Takemura Y, Osuga Y, Yamauchi T, Kobayashi M, Harada M, Hirata T, Morimoto C, Hirota Y, Yoshino O, Koga K, Yano T, Kadowaki T, Taketani Y: Expression of adiponectin receptors and its possible implication in the human endometrium. Endocrinology. 2006, 147 (7): 3203-3210. 10.1210/en.2005-1510.CrossRefPubMed Takemura Y, Osuga Y, Yamauchi T, Kobayashi M, Harada M, Hirata T, Morimoto C, Hirota Y, Yoshino O, Koga K, Yano T, Kadowaki T, Taketani Y: Expression of adiponectin receptors and its possible implication in the human endometrium. Endocrinology. 2006, 147 (7): 3203-3210. 10.1210/en.2005-1510.CrossRefPubMed
20.
Zurück zum Zitat Alfer J, Muller-Schottle F, Classen-Linke I, von Rango U, Happel L, Beier-Hellwig K, Rath W, Beier HM: The endometrium as a novel target for leptin: differences in fertility and subfertility. Mol Hum Reprod. 2000, 6 (7): 595-601. 10.1093/molehr/6.7.595.CrossRefPubMed Alfer J, Muller-Schottle F, Classen-Linke I, von Rango U, Happel L, Beier-Hellwig K, Rath W, Beier HM: The endometrium as a novel target for leptin: differences in fertility and subfertility. Mol Hum Reprod. 2000, 6 (7): 595-601. 10.1093/molehr/6.7.595.CrossRefPubMed
21.
Zurück zum Zitat Gonzalez RR, Simon C, Caballero-Campo P, Norman R, Chardonnens D, Devoto L, Bischof P: Leptin and reproduction. Hum Reprod Update. 2000, 6 (3): 290-300. 10.1093/humupd/6.3.290.CrossRefPubMed Gonzalez RR, Simon C, Caballero-Campo P, Norman R, Chardonnens D, Devoto L, Bischof P: Leptin and reproduction. Hum Reprod Update. 2000, 6 (3): 290-300. 10.1093/humupd/6.3.290.CrossRefPubMed
22.
Zurück zum Zitat Magarinos MP, Sanchez-Margalet V, Kotler M, Calvo JC, Varone CL: Leptin promotes cell proliferation and survival of trophoblastic cells. Biol Reprod. 2007, 76 (2): 203-210. 10.1095/biolreprod.106.051391.CrossRefPubMed Magarinos MP, Sanchez-Margalet V, Kotler M, Calvo JC, Varone CL: Leptin promotes cell proliferation and survival of trophoblastic cells. Biol Reprod. 2007, 76 (2): 203-210. 10.1095/biolreprod.106.051391.CrossRefPubMed
23.
Zurück zum Zitat Kern PA, Di Gregorio GB, Lu T, Rassouli N, Ranganathan G: Adiponectin expression from human adipose tissue: relation to obesity, insulin resistance, and tumor necrosis factor-alpha expression. Diabetes. 2003, 52 (7): 1779-1785. 10.2337/diabetes.52.7.1779.CrossRefPubMed Kern PA, Di Gregorio GB, Lu T, Rassouli N, Ranganathan G: Adiponectin expression from human adipose tissue: relation to obesity, insulin resistance, and tumor necrosis factor-alpha expression. Diabetes. 2003, 52 (7): 1779-1785. 10.2337/diabetes.52.7.1779.CrossRefPubMed
24.
Zurück zum Zitat Yamauchi T, Hara K, Kubota N, Terauchi Y, Tobe K, Froguel P, Nagai R, Kadowaki T: Dual roles of adiponectin/Acrp30 in vivo as an anti-diabetic and anti-atherogenic adipokine. Curr Drug Targets Immune Endocr Metabol Disord. 2003, 3 (4): 243-254. 10.2174/1568008033340090.CrossRefPubMed Yamauchi T, Hara K, Kubota N, Terauchi Y, Tobe K, Froguel P, Nagai R, Kadowaki T: Dual roles of adiponectin/Acrp30 in vivo as an anti-diabetic and anti-atherogenic adipokine. Curr Drug Targets Immune Endocr Metabol Disord. 2003, 3 (4): 243-254. 10.2174/1568008033340090.CrossRefPubMed
25.
Zurück zum Zitat Tilg H, Moschen AR: Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol. 2006, 6 (10): 772-783. 10.1038/nri1937.CrossRefPubMed Tilg H, Moschen AR: Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol. 2006, 6 (10): 772-783. 10.1038/nri1937.CrossRefPubMed
26.
Zurück zum Zitat Fu Y, Luo N, Klein RL, Garvey WT: Adiponectin promotes adipocyte differentiation, insulin sensitivity, and lipid accumulation. J Lipid Res. 2005, 46 (7): 1369-1379. 10.1194/jlr.M400373-JLR200.CrossRefPubMed Fu Y, Luo N, Klein RL, Garvey WT: Adiponectin promotes adipocyte differentiation, insulin sensitivity, and lipid accumulation. J Lipid Res. 2005, 46 (7): 1369-1379. 10.1194/jlr.M400373-JLR200.CrossRefPubMed
27.
Zurück zum Zitat Hada Y, Yamauchi T, Waki H, Tsuchida A, Hara K, Yago H, Miyazaki O, Ebinuma H, Kadowaki T: Selective purification and characterization of adiponectin multimer species from human plasma. Biochem Biophys Res Commun. 2007, 356 (2): 487-493. 10.1016/j.bbrc.2007.03.004.CrossRefPubMed Hada Y, Yamauchi T, Waki H, Tsuchida A, Hara K, Yago H, Miyazaki O, Ebinuma H, Kadowaki T: Selective purification and characterization of adiponectin multimer species from human plasma. Biochem Biophys Res Commun. 2007, 356 (2): 487-493. 10.1016/j.bbrc.2007.03.004.CrossRefPubMed
28.
Zurück zum Zitat Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Kita S, Sugiyama T, Miyagishi M, Hara K, Tsunoda M, Murakami K, Ohteki T, Uchida S, Takekawa S, Waki H, Tsuno NH, Shibata Y, Terauchi Y, Froguel P, Tobe K, Koyasu S, Taira K, Kitamura T, Shimizu T, Nagai R, Kadowaki T: Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature. 2003, 423 (6941): 762-769. 10.1038/nature01705.CrossRefPubMed Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Kita S, Sugiyama T, Miyagishi M, Hara K, Tsunoda M, Murakami K, Ohteki T, Uchida S, Takekawa S, Waki H, Tsuno NH, Shibata Y, Terauchi Y, Froguel P, Tobe K, Koyasu S, Taira K, Kitamura T, Shimizu T, Nagai R, Kadowaki T: Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature. 2003, 423 (6941): 762-769. 10.1038/nature01705.CrossRefPubMed
29.
Zurück zum Zitat Caminos JE, Nogueiras R, Gallego R, Bravo S, Tovar S, Garcia-Caballero T, Casanueva FF, Dieguez C: Expression and regulation of adiponectin and receptor in human and rat placenta. J Clin Endocrinol Metab. 2005, 90 (7): 4276-4286. 10.1210/jc.2004-0930.CrossRefPubMed Caminos JE, Nogueiras R, Gallego R, Bravo S, Tovar S, Garcia-Caballero T, Casanueva FF, Dieguez C: Expression and regulation of adiponectin and receptor in human and rat placenta. J Clin Endocrinol Metab. 2005, 90 (7): 4276-4286. 10.1210/jc.2004-0930.CrossRefPubMed
30.
Zurück zum Zitat Benaitreau D, Dieudonne MN, Dos Santos E, Leneveu MC, Mazancourt P, Pecquery R: Antiproliferative effects of adiponectin on human trophoblastic cell lines JEG-3 and BeWo. Biol Reprod. 2009, 80 (6): 1107-1114. 10.1095/biolreprod.108.070573.CrossRefPubMed Benaitreau D, Dieudonne MN, Dos Santos E, Leneveu MC, Mazancourt P, Pecquery R: Antiproliferative effects of adiponectin on human trophoblastic cell lines JEG-3 and BeWo. Biol Reprod. 2009, 80 (6): 1107-1114. 10.1095/biolreprod.108.070573.CrossRefPubMed
31.
Zurück zum Zitat Hug C, Wang J, Ahmad NS, Bogan JS, Tsao TS, Lodish HF: T-cadherin is a receptor for hexameric and high-molecular-weight forms of Acrp30/adiponectin. Proc Natl Acad Sci USA. 2004, 101 (28): 10308-10313. 10.1073/pnas.0403382101.PubMedCentralCrossRefPubMed Hug C, Wang J, Ahmad NS, Bogan JS, Tsao TS, Lodish HF: T-cadherin is a receptor for hexameric and high-molecular-weight forms of Acrp30/adiponectin. Proc Natl Acad Sci USA. 2004, 101 (28): 10308-10313. 10.1073/pnas.0403382101.PubMedCentralCrossRefPubMed
32.
Zurück zum Zitat Ouchi N, Kihara S, Arita Y, Okamoto Y, Maeda K, Kuriyama H, Hotta K, Nishida M, Takahashi M, Muraguchi M, Ohmoto Y, Nakamura T, Yamashita S, Funahashi T, Matsuzawa Y: Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-kappaB signaling through a cAMP-dependent pathway. Circulation. 2000, 102 (11): 1296-1301.CrossRefPubMed Ouchi N, Kihara S, Arita Y, Okamoto Y, Maeda K, Kuriyama H, Hotta K, Nishida M, Takahashi M, Muraguchi M, Ohmoto Y, Nakamura T, Yamashita S, Funahashi T, Matsuzawa Y: Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-kappaB signaling through a cAMP-dependent pathway. Circulation. 2000, 102 (11): 1296-1301.CrossRefPubMed
33.
Zurück zum Zitat Thyfault JP, Hedberg EM, Anchan RM, Thorne OP, Isler CM, Newton ER, Dohm GL, deVente JE: Gestational diabetes is associated with depressed adiponectin levels. J Soc Gynecol Investig. 2005, 12 (1): 41-45. 10.1016/j.jsgi.2004.07.003.CrossRefPubMed Thyfault JP, Hedberg EM, Anchan RM, Thorne OP, Isler CM, Newton ER, Dohm GL, deVente JE: Gestational diabetes is associated with depressed adiponectin levels. J Soc Gynecol Investig. 2005, 12 (1): 41-45. 10.1016/j.jsgi.2004.07.003.CrossRefPubMed
34.
Zurück zum Zitat Lu D, Yang X, Wu Y, Wang H, Huang H, Dong M: Serum adiponectin, leptin and soluble leptin receptor in pre-eclampsia. Int J Gynaecol Obstet. 2006, 95 (2): 121-126. 10.1016/j.ijgo.2006.06.015.CrossRefPubMed Lu D, Yang X, Wu Y, Wang H, Huang H, Dong M: Serum adiponectin, leptin and soluble leptin receptor in pre-eclampsia. Int J Gynaecol Obstet. 2006, 95 (2): 121-126. 10.1016/j.ijgo.2006.06.015.CrossRefPubMed
35.
Zurück zum Zitat Cortelazzi D, Corbetta S, Ronzoni S, Pelle F, Marconi A, Cozzi V, Cetin I, Cortelazzi R, Beck-Peccoz P, Spada A: Maternal and foetal resistin and adiponectin concentrations in normal and complicated pregnancies. Clin Endocrinol (Oxf). 2007, 66 (3): 447-453. 10.1111/j.1365-2265.2007.02761.x.CrossRef Cortelazzi D, Corbetta S, Ronzoni S, Pelle F, Marconi A, Cozzi V, Cetin I, Cortelazzi R, Beck-Peccoz P, Spada A: Maternal and foetal resistin and adiponectin concentrations in normal and complicated pregnancies. Clin Endocrinol (Oxf). 2007, 66 (3): 447-453. 10.1111/j.1365-2265.2007.02761.x.CrossRef
36.
Zurück zum Zitat Ringler GE, Strauss JF: In vitro systems for the study of human placental endocrine function. Endocr Rev. 1990, 11 (1): 105-123. 10.1210/edrv-11-1-105.CrossRefPubMed Ringler GE, Strauss JF: In vitro systems for the study of human placental endocrine function. Endocr Rev. 1990, 11 (1): 105-123. 10.1210/edrv-11-1-105.CrossRefPubMed
37.
Zurück zum Zitat Wice B, Menton D, Geuze H, Schwartz AL: Modulators of cyclic AMP metabolism induce syncytiotrophoblast formation in vitro. Exp Cell Res. 1990, 186 (2): 306-316. 10.1016/0014-4827(90)90310-7.CrossRefPubMed Wice B, Menton D, Geuze H, Schwartz AL: Modulators of cyclic AMP metabolism induce syncytiotrophoblast formation in vitro. Exp Cell Res. 1990, 186 (2): 306-316. 10.1016/0014-4827(90)90310-7.CrossRefPubMed
38.
Zurück zum Zitat Strauss JF, Kido S, Sayegh R, Sakuragi N, Gafvels ME: The cAMP signalling system and human trophoblast function. Placenta. 1992, 13 (5): 389-403. 10.1016/0143-4004(92)90047-W.CrossRefPubMed Strauss JF, Kido S, Sayegh R, Sakuragi N, Gafvels ME: The cAMP signalling system and human trophoblast function. Placenta. 1992, 13 (5): 389-403. 10.1016/0143-4004(92)90047-W.CrossRefPubMed
39.
Zurück zum Zitat Handschuh K, Guibourdenche J, Tsatsaris V, Guesnon M, Laurendeau I, Evain-Brion D, Fournier T: Human chorionic gonadotropin expression in human trophoblasts from early placenta: comparative study between villous and extravillous trophoblastic cells. Placenta. 2007, 28 (2-3): 175-184. 10.1016/j.placenta.2006.01.019.CrossRefPubMed Handschuh K, Guibourdenche J, Tsatsaris V, Guesnon M, Laurendeau I, Evain-Brion D, Fournier T: Human chorionic gonadotropin expression in human trophoblasts from early placenta: comparative study between villous and extravillous trophoblastic cells. Placenta. 2007, 28 (2-3): 175-184. 10.1016/j.placenta.2006.01.019.CrossRefPubMed
40.
Zurück zum Zitat Machinal-Quelin F, Dieudonne MN, Leneveu MC, Pecquery R, Giudicelli Y: Proadipogenic effect of leptin on rat preadipocytes in vitro: activation of MAPK and STAT3 signaling pathways. Am J Physiol Cell Physiol. 2002, 282 (4): C853-863.CrossRefPubMed Machinal-Quelin F, Dieudonne MN, Leneveu MC, Pecquery R, Giudicelli Y: Proadipogenic effect of leptin on rat preadipocytes in vitro: activation of MAPK and STAT3 signaling pathways. Am J Physiol Cell Physiol. 2002, 282 (4): C853-863.CrossRefPubMed
41.
Zurück zum Zitat Bauche IB, Ait El Mkadem S, Rezsohazy R, Funahashi T, Maeda N, Miranda LM, Brichard SM: Adiponectin downregulates its own production and the expression of its AdipoR2 receptor in transgenic mice. Biochem Biophys Res Commun. 2006, 345 (4): 1414-1424. 10.1016/j.bbrc.2006.05.033.CrossRefPubMed Bauche IB, Ait El Mkadem S, Rezsohazy R, Funahashi T, Maeda N, Miranda LM, Brichard SM: Adiponectin downregulates its own production and the expression of its AdipoR2 receptor in transgenic mice. Biochem Biophys Res Commun. 2006, 345 (4): 1414-1424. 10.1016/j.bbrc.2006.05.033.CrossRefPubMed
42.
Zurück zum Zitat Mistry T, Digby JE, Chen J, Desai KM, Randeva HS: The regulation of adiponectin receptors in human prostate cancer cell lines. Biochem Biophys Res Commun. 2006, 348 (3): 832-838. 10.1016/j.bbrc.2006.07.139.CrossRefPubMed Mistry T, Digby JE, Chen J, Desai KM, Randeva HS: The regulation of adiponectin receptors in human prostate cancer cell lines. Biochem Biophys Res Commun. 2006, 348 (3): 832-838. 10.1016/j.bbrc.2006.07.139.CrossRefPubMed
43.
Zurück zum Zitat Dos Santos E, Benaitreau D, Dieudonne MN, Leneveu MC, Serazin V, Giudicelli Y, Pecquery R: Adiponectin mediates an antiproliferative response in human MDA-MB 231 breast cancer cells. Oncol Rep. 2008, 20 (4): 971-977.PubMed Dos Santos E, Benaitreau D, Dieudonne MN, Leneveu MC, Serazin V, Giudicelli Y, Pecquery R: Adiponectin mediates an antiproliferative response in human MDA-MB 231 breast cancer cells. Oncol Rep. 2008, 20 (4): 971-977.PubMed
44.
Zurück zum Zitat Keryer G, Alsat E, Tasken K, Evain-Brion D: Cyclic AMP-dependent protein kinases and human trophoblast cell differentiation in vitro. J Cell Sci. 1998, 111: 995-1004.PubMed Keryer G, Alsat E, Tasken K, Evain-Brion D: Cyclic AMP-dependent protein kinases and human trophoblast cell differentiation in vitro. J Cell Sci. 1998, 111: 995-1004.PubMed
45.
Zurück zum Zitat Castellucci M, De Matteis R, Meisser A, Cancello R, Monsurro V, Islami D, Sarzani R, Marzioni D, Cinti S, Bischof P: Leptin modulates extracellular matrix molecules and metalloproteinases: possible implications for trophoblast invasion. Mol Hum Reprod. 2000, 6 (10): 951-958. 10.1093/molehr/6.10.951.CrossRefPubMed Castellucci M, De Matteis R, Meisser A, Cancello R, Monsurro V, Islami D, Sarzani R, Marzioni D, Cinti S, Bischof P: Leptin modulates extracellular matrix molecules and metalloproteinases: possible implications for trophoblast invasion. Mol Hum Reprod. 2000, 6 (10): 951-958. 10.1093/molehr/6.10.951.CrossRefPubMed
46.
Zurück zum Zitat McDonald EA, Wolfe MW: Adiponectin attenuation of endocrine function within human term trophoblast cells. Endocrinology. 2009, 150 (9): 4358-4365. 10.1210/en.2009-0058.CrossRefPubMed McDonald EA, Wolfe MW: Adiponectin attenuation of endocrine function within human term trophoblast cells. Endocrinology. 2009, 150 (9): 4358-4365. 10.1210/en.2009-0058.CrossRefPubMed
47.
Zurück zum Zitat Maruo T, Matsuo H, Murata K, Mochizuki M: Gestational age-dependent dual action of epidermal growth factor on human placenta early in gestation. J Clin Endocrinol Metab. 1992, 75 (5): 1362-1367. 10.1210/jc.75.5.1362.PubMed Maruo T, Matsuo H, Murata K, Mochizuki M: Gestational age-dependent dual action of epidermal growth factor on human placenta early in gestation. J Clin Endocrinol Metab. 1992, 75 (5): 1362-1367. 10.1210/jc.75.5.1362.PubMed
48.
Zurück zum Zitat Zappala G, Rechler MM: IGFBP-3, hypoxia and TNF-alpha inhibit adiponectin transcription. Biochem Biophys Res Commun. 2009, 382 (4): 785-789. 10.1016/j.bbrc.2009.03.112.PubMedCentralCrossRefPubMed Zappala G, Rechler MM: IGFBP-3, hypoxia and TNF-alpha inhibit adiponectin transcription. Biochem Biophys Res Commun. 2009, 382 (4): 785-789. 10.1016/j.bbrc.2009.03.112.PubMedCentralCrossRefPubMed
49.
Zurück zum Zitat Maymo JL, Perez Perez A, Sanchez-Margalet V, Duenas JL, Calvo JC, Varone CL: Up-regulation of placental leptin by human chorionic gonadotropin. Endocrinology. 2009, 150 (1): 304-313. 10.1210/en.2008-0522.CrossRefPubMed Maymo JL, Perez Perez A, Sanchez-Margalet V, Duenas JL, Calvo JC, Varone CL: Up-regulation of placental leptin by human chorionic gonadotropin. Endocrinology. 2009, 150 (1): 304-313. 10.1210/en.2008-0522.CrossRefPubMed
50.
Zurück zum Zitat Islami D, Bischof P, Chardonnens D: Possible interactions between leptin, gonadotrophin-releasing hormone (GnRH-I and II) and human chorionic gonadotrophin (hCG). Eur J Obstet Gynecol Reprod Biol. 2003, 110 (2): 169-175. 10.1016/S0301-2115(03)00185-4.CrossRefPubMed Islami D, Bischof P, Chardonnens D: Possible interactions between leptin, gonadotrophin-releasing hormone (GnRH-I and II) and human chorionic gonadotrophin (hCG). Eur J Obstet Gynecol Reprod Biol. 2003, 110 (2): 169-175. 10.1016/S0301-2115(03)00185-4.CrossRefPubMed
51.
Zurück zum Zitat Cameo P, Bischof P, Calvo JC: Effect of leptin on progesterone, human chorionic gonadotropin, and interleukin-6 secretion by human term trophoblast cells in culture. Biol Reprod. 2003, 68 (2): 472-477. 10.1095/biolreprod.102.006122.CrossRefPubMed Cameo P, Bischof P, Calvo JC: Effect of leptin on progesterone, human chorionic gonadotropin, and interleukin-6 secretion by human term trophoblast cells in culture. Biol Reprod. 2003, 68 (2): 472-477. 10.1095/biolreprod.102.006122.CrossRefPubMed
52.
Zurück zum Zitat Dos Santos E, Dieudonne MN, Leneveu MC, Pecquery R, Serazin V, Giudicelli Y: In vitro effects of chorionic gonadotropin hormone on human adipose development. J Endocrinol. 2007, 194 (2): 313-325. 10.1677/JOE-06-0101.CrossRefPubMed Dos Santos E, Dieudonne MN, Leneveu MC, Pecquery R, Serazin V, Giudicelli Y: In vitro effects of chorionic gonadotropin hormone on human adipose development. J Endocrinol. 2007, 194 (2): 313-325. 10.1677/JOE-06-0101.CrossRefPubMed
53.
Zurück zum Zitat Chabrolle C, Tosca L, Dupont J: Regulation of adiponectin and its receptors in rat ovary by human chorionic gonadotrophin treatment and potential involvement of adiponectin in granulosa cell steroidogenesis. Reproduction. 2007, 133 (4): 719-731. 10.1530/REP-06-0244.CrossRefPubMed Chabrolle C, Tosca L, Dupont J: Regulation of adiponectin and its receptors in rat ovary by human chorionic gonadotrophin treatment and potential involvement of adiponectin in granulosa cell steroidogenesis. Reproduction. 2007, 133 (4): 719-731. 10.1530/REP-06-0244.CrossRefPubMed
54.
Zurück zum Zitat Fiaschi T, Cirelli D, Comito G, Gelmini S, Ramponi G, Serio M, Chiarugi P: Globular adiponectin induces differentiation and fusion of skeletal muscle cells. Cell Res. 2009, 19 (5): 584-597. 10.1038/cr.2009.39.CrossRefPubMed Fiaschi T, Cirelli D, Comito G, Gelmini S, Ramponi G, Serio M, Chiarugi P: Globular adiponectin induces differentiation and fusion of skeletal muscle cells. Cell Res. 2009, 19 (5): 584-597. 10.1038/cr.2009.39.CrossRefPubMed
55.
Zurück zum Zitat Huppertz B, Kingdom JC: Apoptosis in the trophoblast--role of apoptosis in placental morphogenesis. J Soc Gynecol Investig. 2004, 11 (6): 353-362. 10.1016/j.jsgi.2004.06.002.CrossRefPubMed Huppertz B, Kingdom JC: Apoptosis in the trophoblast--role of apoptosis in placental morphogenesis. J Soc Gynecol Investig. 2004, 11 (6): 353-362. 10.1016/j.jsgi.2004.06.002.CrossRefPubMed
56.
Zurück zum Zitat White L, Dharmarajan A, Charles A: Caspase-14: a new player in cytotrophoblast differentiation. Reprod Biomed Online. 2007, 14 (3): 300-307. 10.1016/S1472-6483(10)60871-1.CrossRefPubMed White L, Dharmarajan A, Charles A: Caspase-14: a new player in cytotrophoblast differentiation. Reprod Biomed Online. 2007, 14 (3): 300-307. 10.1016/S1472-6483(10)60871-1.CrossRefPubMed
57.
Zurück zum Zitat Black S, Kadyrov M, Kaufmann P, Ugele B, Emans N, Huppertz B: Syncytial fusion of human trophoblast depends on caspase 8. Cell Death Differ. 2004, 11 (1): 90-98. 10.1038/sj.cdd.4401307.CrossRefPubMed Black S, Kadyrov M, Kaufmann P, Ugele B, Emans N, Huppertz B: Syncytial fusion of human trophoblast depends on caspase 8. Cell Death Differ. 2004, 11 (1): 90-98. 10.1038/sj.cdd.4401307.CrossRefPubMed
58.
Zurück zum Zitat Dieudonne MN, Bussiere M, Dos Santos E, Leneveu MC, Giudicelli Y, Pecquery R: Adiponectin mediates antiproliferative and apoptotic responses in human MCF7 breast cancer cells. Biochem Biophys Res Commun. 2006, 345 (1): 271-279. 10.1016/j.bbrc.2006.04.076.CrossRefPubMed Dieudonne MN, Bussiere M, Dos Santos E, Leneveu MC, Giudicelli Y, Pecquery R: Adiponectin mediates antiproliferative and apoptotic responses in human MCF7 breast cancer cells. Biochem Biophys Res Commun. 2006, 345 (1): 271-279. 10.1016/j.bbrc.2006.04.076.CrossRefPubMed
59.
Zurück zum Zitat Nien JK, Mazaki-Tovi S, Romero R, Erez O, Kusanovic JP, Gotsch F, Pineles BL, Gomez R, Edwin S, Mazor M, Espinoza J, Yoon BH, Hassan SS: Adiponectin in severe preeclampsia. J Perinat Med. 2007, 35 (6): 503-512. 10.1515/JPM.2007.121.PubMedCentralPubMed Nien JK, Mazaki-Tovi S, Romero R, Erez O, Kusanovic JP, Gotsch F, Pineles BL, Gomez R, Edwin S, Mazor M, Espinoza J, Yoon BH, Hassan SS: Adiponectin in severe preeclampsia. J Perinat Med. 2007, 35 (6): 503-512. 10.1515/JPM.2007.121.PubMedCentralPubMed
Metadaten
Titel
Adiponectin promotes syncytialisation of BeWo cell line and primary trophoblast cells
verfasst von
Delphine Benaitreau
Esther Dos Santos
Marie-Christine Leneveu
Philippe De Mazancourt
René Pecquery
Marie-Noëlle Dieudonné
Publikationsdatum
01.12.2010
Verlag
BioMed Central
Erschienen in
Reproductive Biology and Endocrinology / Ausgabe 1/2010
Elektronische ISSN: 1477-7827
DOI
https://doi.org/10.1186/1477-7827-8-128

Weitere Artikel der Ausgabe 1/2010

Reproductive Biology and Endocrinology 1/2010 Zur Ausgabe

Hirsutismus bei PCOS: Laser- und Lichttherapien helfen

26.04.2024 Hirsutismus Nachrichten

Laser- und Lichtbehandlungen können bei Frauen mit polyzystischem Ovarialsyndrom (PCOS) den übermäßigen Haarwuchs verringern und das Wohlbefinden verbessern – bei alleiniger Anwendung oder in Kombination mit Medikamenten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Weniger postpartale Depressionen nach Esketamin-Einmalgabe

Bislang gibt es kein Medikament zur Prävention von Wochenbettdepressionen. Das Injektionsanästhetikum Esketamin könnte womöglich diese Lücke füllen.

Bei RSV-Impfung vor 60. Lebensjahr über Off-Label-Gebrauch aufklären!

22.04.2024 DGIM 2024 Kongressbericht

Durch die Häufung nach der COVID-19-Pandemie sind Infektionen mit dem Respiratorischen Synzytial-Virus (RSV) in den Fokus gerückt. Fachgesellschaften empfehlen eine Impfung inzwischen nicht nur für Säuglinge und Kleinkinder.

Update Gynäkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.