Skip to main content
Erschienen in: BMC Pulmonary Medicine 1/2014

Open Access 01.12.2014 | Research article

Altered mucosal immune response after acute lung injury in a murine model of Ataxia Telangiectasia

verfasst von: Olaf Eickmeier, Su Youn Kim, Eva Herrmann, Constanze Döring, Ruth Duecker, Sandra Voss, Sibylle Wehner, Christoph Hölscher, Julia Pietzner, Stefan Zielen, Ralf Schubert

Erschienen in: BMC Pulmonary Medicine | Ausgabe 1/2014

Abstract

Background

Ataxia telangiectasia (A-T) is a rare but devastating and progressive disorder characterized by cerebellar dysfunction, lymphoreticular malignancies and recurrent sinopulmonary infections. In A-T, disease of the respiratory system causes significant morbidity and is a frequent cause of death.

Methods

We used a self-limited murine model of hydrochloric acid-induced acute lung injury (ALI) to determine the inflammatory answer due to mucosal injury in Atm (A-T mutated)- deficient mice (Atm -/-).

Results

ATM deficiency increased peak lung inflammation as demonstrated by bronchoalveolar lavage fluid (BALF) neutrophils and lymphocytes and increased levels of BALF pro-inflammatory cytokines (e.g. IL-6, TNF). Furthermore, bronchial epithelial damage after ALI was increased in Atm -/- mice. ATM deficiency increased airway resistance and tissue compliance before ALI was performed.

Conclusions

Together, these findings indicate that ATM plays a key role in inflammatory response after airway mucosal injury.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1471-2466-14-93) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

OE and RS designed the protocol. OE, SK, SV, CH, RPD and JP performed the experiments. CD and SW made the histological studies. All authors analyzed and discussed the data. OE and SZ wrote the manuscript. All authors read and approved the final manuscript.

Background

Ataxia telangiectasia (A-T) is a severe autosomal recessive disorder that is caused by mutations in the ATM gene which codes for ataxia telangiectasia mutated (ATM), a pleiotropic kinase involved in DNA double-strand break recognition, activation of DNA repair proteins, and signaling in cell cycle checkpoint control [15]. This rare human disease encompasses defects in T- and B- cell maturation, cerebellar degeneration, radiosensitivity, and increased susceptibility to malignancies, especially lymphomas [611]. The majority of patients suffers from IgA and IgG subclass deficiency and has impaired antibody responses to pneumococcal antigens [12, 13]. Immunodeficiency is considered to be the primary factor predisposing these patients to the development of chronic respiratory tract infections. The 20 year survival rate is 53.4%, and death is predominantly caused by lung failure and cancer. The prognosis has not changed since 1954 [14]. Atm- deficient (Atm-/-) mice exhibit similar defects as A-T patients [9, 1519] and have been useful for studying A-T, mechanisms of DNA damage responses, and oncogenesis.
Lung disease is common in patients with A-T and often progresses with age and neurological decline [20]. Three major types of lung disease are generally recognized in A-T patients: Recurrent sinopulmonary infections and bronchiectasis, interstitial lung disease (ILD)/ pulmonary fibrosis and lung disease associated with neuromuscular deficits due to bulbar and spinal system impairment [2024]. An evaluation of a series of patients with A-T showed an increased frequency and severity of signs and symptoms of impaired deglutition and an association between dysphagia, aspiration and pulmonary disease of these patients was confirmed [25]. Clarifying the impact of cellular and clinical factors on A-T lung disease and its progression may help with discovery and development of therapeutic interventions.
Aspiration pneumonitis is one of the leading causes of Acute Lung Injury (ALI)/ Acute Respiratory Distress Syndrome (ARDS) that is in most instances self-limited, suggesting the existence of endogenous, host protective mechanisms [26]. Here, in a non-lethal model of ALI [27, 28], Atm -/-mice were challenged with intratracheal application of hydrochloric acid (HCl) in order to examine if host protective mechanisms are disturbed after mucosal injury.

Methods

Animal model

All mice were maintained under specific pathogen-free conditions and were checked daily. All studies were reviewed and approved by the German Animal Subjects Committee (Gen.Nr.F133/10). We used 10–12 week-old, male Atm -/- mice (Atm tm1Awb ), in a 129SvEv background [18], kindly provided by A. Wynshaw-Boris, School of Medicine, University California San Diego, USA, were used as animal model. Weights of the Atm-/- mice (20 g ±0.4 (n ≥ 5); mean ± S.E.M.) were different from the wild type animals (24 g ± 0.8; (n ≥ 5); mean ± S.E.M.; p < 0.01).

Acid-initiated acute lung injury (ALI) and treatment with AT-RVD1

Hydrochloric acid (0.1 N HCl, pH 1.5, 50 μl, endotoxin free; Sigma-Aldrich) was instilled selectively into the left mainstem bronchus of anesthetized mice via a 24-gauge angiocatheter inserted intratracheally. Due to high mortality rate in the Atm -/- mice, the experimental setting was changed to instillation of 1 μl/g body weight of 0.1 N HCl (pH 1.5) into the left mainstem bronchus of anesthetized mice. At different time points (24 hours and 1 week) after acid instillation, bilateral bronchoalveolar lavage (BAL) was performed with 2 aliquots of 1 ml of PBS plus 0.6 mM EDTA. The total cell counts and leukocyte differential in BAL fluids (BALFs) were determined as previously described [28]. Briefly, total cells in BALFs were counted using a hemocytometer, and differential cell counts were determined after cytospin using Wright-Giemsa staining.

Histology and immunohistochemistry

Mice were anesthetized with an intraperitoneal Ketamin–Rompun mixture (20% Ketamin, CuraMED GmbH, Karlsruhe, Germany; 8% Rompun, Bayer Vital GmbH, Leverkusen,Germany) injection. They were perfused transcardially with 4% paraformaldehyde in PBS. Lung tissue sections were prepared from fixed, paraffin-embedded organs and stained with either hematoxylin and eosin (H&E) or a special mucous staining, namely Alcian blue and van Giesona (ABvG).

Measurement of lung mechanics

For measurement of tissue elastance and lung resistance, mice were anesthetized and mechanically ventilated with a flexiVent small animal ventilator (SCIREQ, Montreal, Canada). Lung mechanics were determined in anesthetized, ventilated animals.

Mediator levels in BALFs

Select cytokines and chemokines were measured in aliquots of BALF by cytometric bead array as described [29].

Statistical analysis

Data are expressed as mean values ± S.E.M. unless otherwise indicated. A two factorial analysis of variance of the logarithmized cell counts with interactions was used discriminate between differences caused by experimental conditions over time and those caused by experimental groups with the corresponding F test. Gauss distribution of the residuals was checked with the Shapiro-Wilk test.
Parametric or nonparametric analysis of variance was used to determine significance for differences between more than 2 groups as appropriate. For analyses between 2 groups, cohorts were compared by Mann–Whitney-U- test. Significance was determined with P values ≤ 0.05. Statistics were performed using GraphPad Prism 5 for Windows (San Diego, CA, USA).

Results

Atm-/-deficient mice show elevated sensitivity to airway mucosal injury

In an in vivo setting we examined the role of ATM in the pathogenesis of airway mucosal injury due to ALI. In order to measure the inflammatory and resolutional response after acute lung injury, 50 μl of hydrochloric acid (0.1 N HCl, pH 1.5) was instilled into the left mainstem bronchus. Remarkably, Atm -/-mice showed elevated mortality due to airway HCl exposure in a defined mild injury experimental setting [27, 28] in comparison to healthy control mice (Figure 1). A mortality rate of 60% in the Atm -/-group (n > 5) in comparison to a mortality rate of 10% in the control group (n > 5) was the reason for changing the injury protocol. So we adjusted the acid dosage to the body weight of the mice. In particular, we injected 1 μl/g body weight of hydrochloric acid into the left mainstem bronchus and thus increased the survival rate in the Atm -/-group to 100% (Figure 1).

Defective ATM increases leukocyte recruitment after airway mucosal injury

To determine the effects of ATM on host responses to mucosal injury, BAL was performed on different time points after instillation of hydrochloric acid (0.1 N HCl, pH 1.5) into the left mainstem bronchus (Figure 2a-f and Figure 3a). There was a significant change in total BALF cell numbers after ALI (p = 0.017). Total BALF cell numbers 24 hours after ALI in Atm -/-mice (70.130 total BALF cells ± 14.630 (n = 5); mean ± S.E.M.) were larger than in healthy control mice (24.840 total BALF cells ± 5898; (n = 4); mean ± S.E.M.) (Figure 3b-d) but this difference was not significant in two-factorial ANOVA. There was no significant difference in total leukocyte and differential cell count between Atm -/- mice before (Figure 3b and Figure 4a,d,g) or one week after (Figure 3d and Figure 4c,f,i) ALI. However, 24 hours after injury Atm -/-mice showed increased BALF neutrophils (PMNs) (30.300 PMNs ± 11.210 (n = 5); mean ± S.E.M.) as compared to healthy control mice (1.220 PMNs ± 647 (n = 4); mean ± S.E.M.) (Figure 4b). Difference over time after injury as well as interactions between Atm -/- mice and control mice were significant here (p < 0.001 and p = 0.012, respectively). BALF lymphocytes were also increased in Atm -/-mice (179 lymphocytes ± 43; (n = 5); mean ± S.E.M.) and in healthy control mice (34 lymphocytes ± 34, n = 4, mean ± S.E.M.; p = 0.042 for time-effect in two- factorial ANOVA) (Figure 4e). There were no significant differences in the number of macrophages 24 hours after ALI in Atm -/-mice compared to control mice (Figure 4h).

ATM deficiency impacts the lung histopathological changes after acid- initiated acute lung injury (ALI)

Acute lung injury due to HCl acid instillation led to increased epithelial disruption 24 hours after exposure to acid in Atm -/-mice relative to control mice (Figure 5a-d). One week after mucosal injury Atm -/-mice showed hyperemic lung tissue (Figure 5e) and increased mucus production (Figure 5g) in comparison to control mice (Figure 5f and h).

ATM deficient mice show elevated airway resistance and decreased tissue compliance

To investigate whether ATM deficiency had a measurable effect on lung mechanics, we determined lung function in mechanically-ventilated, anesthetized mice. Possibly because of the unilateral and mild nature of the ALI in this model, marked changes in airway resistance (Figure 6a) and tissue compliance (Figure 6b) were not observed and no significant differences were evident with ATM deficiency 24 hours after ALI (Figure 6a and b). Of interest, the Atm -/-mice showed increased lung resistance (1.1 cmH2O*s/ml ± 0.12, (n = 5)) and decreased tissue compliance (0.02 cmH2O*/ml ± 0.003, (n = 5)) before mucosal damage was performed in comparison to control mice (resistance: 0.57 cmH2O*s/ml ± 0.03, mean ± S.E.M., (n = 6), p < 0.001; compliance (0.04 cmH2O/ml ± 0.002, mean ± S.E.M., (n = 6), p < 0.005) (Figure 6a and b).

ATM deficiency enhances pro-inflammatory mediator release after ALI

To identify anti-inflammatory or pro-resolving mechanisms for ATM in ALI, BALF levels of several cytokines were determined by cytometric bead array. BALF IL-6 (Figure 7a) and TNF-α (Figure 7b) was significantly increased in Atm-/- mice 24 hours after ALI. BALF levels of other mediators did not increase with Atm deficiency relative to healthy control mice. No significant changes were observed in BALF for IL-10, IL-4, IL-12p40, IL-17A and IFN-γ (data not shown).

Discussion

Lung disease is a common feature in patients with A-T and often progresses with age and neurological decline [20]. Diseases of the respiratory system cause significant morbidity and are a frequent factor or cause of death in the A-T population [20, 3032]. Several factors contribute to the increased susceptibility to respiratory infections. Immunodeficiency may be one, but not the only, etiology for lung disease in A-T. Low levels of pneumococcal antibodies and diminished levels of IgG subclasses are hallmarks of A-T and associated with respiratory tract infection frequency. However, not all respiratory tract infections in A-T are solely due to immunodeficiency [13, 32]. Abnormal injury repair, premature aging, systemic inflammation, and oxidative stress are confirmed to contribute to the pathophysiology and disease progression in A-T lung disease and pulmonary disorders [33]. However, little is known about injury and host protective mechanisms in A-T lung disease. Furthermore, dysphagia in patients with A-T is a well known clinical symptom [25]. Similar to lung disease, this problem appears to be progressive and the assumption that swallowing function worsens with age is consistent with the progression of neurodegeneration and the bulbar impairments associated with A-T [5]. The impact of cellular and clinical factors on A-T lung disease is unknown so far. In our study, we investigated a pathogen-independent damage in order to determine differences in host mucosal inflammatory and repair mechanisms in Atm -/- mice in comparison to control mice. Interestingly, Atm -/-mice did not show any clinical symptoms except for smaller size at birth and a slower growth rate compared to the wild-type littermates [34]. However, when challenged with hydrochloric acid, causing a disruption in the integrity of the airway epithelial barrier, we showed that Atm -/-mice exhibit greater severity of clinical symptoms and mortality rates as well as airway recruitment of peripheral leukocytes, and mount an even stronger immune response characterized by inflammatory biomarkers compared with wild-type mice. This is in accordance with the finding that A-T patients do exhibit elevated serum IL-8 levels, reflecting a systemic inflammation contributing to disease phenotype [35]. Since weights of the Atm-/-mice were less in comparison to wild-type mice, initial application of 50 μl hydrochloric acid may have shown a high mortality rate in Atm -/-mice due to a higher volume per body weight. So we adjusted the application of hydrochloric acid volume to the body weight of the mice.
Epithelial damage, PMN recruitment and activation of host protective mechanisms are early events in acute mucosal inflammation and ALI/ARDS. In this study, we confirmed the pivotal role of ATM in decreasing the severity of HCl acid-initiated ALI. ATM deficiency favored disruption of epithelial barrier integrity after ALI, as indicated by histological findings, and BALF biomarkers, namely IL-6 and TNF-α. In addition, we found an elevation in lung resistance and reduction in tissue compliance before intratracheal administration of HCl that was not altered after ALI. This data is in accordance with pulmonary function testing (PFT) in A-T patients 12–20 years of age, showing a mixture pattern of obstructive and restrictive lung disease [21, 24, 36]. The current study explored for the first time the inflammatory response of airway mucosa after injury by HCl. In accordance with human studies showing early structural changes, particulary bronchiectasis and consolidation [37], our Atm -/-mice showed decreased compliance and increased obstruction before musosal injury occurred. This is highly suggestive for the role of ATM for epithelial cell integrity homeostasis.
In other murine models, e.g. an experimental model of colitis, or acute inflammation, ATM deficiency also increases production of pro-inflammatory mediators and regulates leukocyte trafficking to inflammatory sites [38]. Here, ATM deficiency may have contributed to an increased inflammatory response confirmed by levels of several pro-inflammatory mediators in the injured lung.
On the one hand, neutrophilic invasion into the airways is critical to clear pathogens from the site of infection and suppression of the inflammatory response may increase the risk of infection-related adverse events, on the other hand, neutrophilic activation can cause bystander tissue damage that contributes to the pathogenesis of ALI/ARDS [39]. To this end, inhibition of PMN function in animal studies attenuates lung injury induced by models of gastric acid aspiration [40, 41]. In this context our data suggest that ATM is a potent regulator of mucosal repair and can promote an array of protective responses for lung catabasis after mucosal injury.
Together, the differences of mucosal immune response and mucosal repair mechanism in Atm -/- mice point to the clinical impact of repetitive mucosal injury by non-pathogen associated mucosal damage in order to explain decline in lung function in our A-T patients. Furthermore, ATM may be a critical immunoregulatory factor dampening the deleterious effects of acute HCl-induced inflammation, being mandatory for systemic genomic stability and homeostasis of the lung epithelial barrier.

Conclusions

Even though the results of our study are more descriptive, this is the first study showing aggravated non-pathogen damage response after airway mucosal injury in an in vivo AT- mouse model.
Atm -/-mice are more sensitive to HCl-induced acute inflammation than control mice, especially during remission (24 hours) and up to one week after lung injury, showing lack of repair of incurred damage. ATM therefore can be inferred to play a critical role in immunoregulation after airway mucosal damage. Further investigations about the role of ATM in achieving homeostasis after airway mucosal injury may help to understand the pathogenesis of A-T lung disease.

Acknowledgments

This research was supported in part by the Starke Lunge Stiftung and the German Society of Pediatric Pulmonology. We thank Katrin Krug and Alexandra Hölscher for technical assistance. The content is solely the responsibility of the authors.
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

OE and RS designed the protocol. OE, SK, SV, CH, RPD and JP performed the experiments. CD and SW made the histological studies. All authors analyzed and discussed the data. OE and SZ wrote the manuscript. All authors read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat Gatti RA, Berkel I, Boder E, Braedt G, Charmley P, Concannon P, Ersoy F, Foroud T, Jaspers NG, Lange K, Lathrop GM, Leppert M, Nakamura Y, O'Connell P, Paterson M, Salser W, Sanal O, Silver J, Sparkes S, Susi E, Weeks DE, Wei S, White R, Yoder F: Localization of an ataxia- telangiectasia gene to chromosome 11q22-23. Nature. 1988, 336: 577-580. 10.1038/336577a0.CrossRefPubMed Gatti RA, Berkel I, Boder E, Braedt G, Charmley P, Concannon P, Ersoy F, Foroud T, Jaspers NG, Lange K, Lathrop GM, Leppert M, Nakamura Y, O'Connell P, Paterson M, Salser W, Sanal O, Silver J, Sparkes S, Susi E, Weeks DE, Wei S, White R, Yoder F: Localization of an ataxia- telangiectasia gene to chromosome 11q22-23. Nature. 1988, 336: 577-580. 10.1038/336577a0.CrossRefPubMed
2.
Zurück zum Zitat Bredemeyer AL, Sharma GG, Huang CY, Helmink BA, Walker LM, Khor KC, Nuskey B, Sullivan KE, Pandita TK, Bassing CH, Sleckman BP: ATM stabilizes DNA double-strand-break complexes during V(D)J recombination. Nature. 2006, 442: 466-470. 10.1038/nature04866.CrossRefPubMed Bredemeyer AL, Sharma GG, Huang CY, Helmink BA, Walker LM, Khor KC, Nuskey B, Sullivan KE, Pandita TK, Bassing CH, Sleckman BP: ATM stabilizes DNA double-strand-break complexes during V(D)J recombination. Nature. 2006, 442: 466-470. 10.1038/nature04866.CrossRefPubMed
3.
Zurück zum Zitat Callen E, Jankovic M, Difilippantonio S, Daniel JA, Chen HT, Celeste A, Pellegrini M, McBride K, Wangsa D, Bredemeyer AL, Sleckman BP, Ried T, Nussenzweig M, Nussenzweig A: ATM prevents the persistence and propagation of chromosome breaks in lympho- cytes. Cell. 2007, 130: 63-75. 10.1016/j.cell.2007.06.016.CrossRefPubMed Callen E, Jankovic M, Difilippantonio S, Daniel JA, Chen HT, Celeste A, Pellegrini M, McBride K, Wangsa D, Bredemeyer AL, Sleckman BP, Ried T, Nussenzweig M, Nussenzweig A: ATM prevents the persistence and propagation of chromosome breaks in lympho- cytes. Cell. 2007, 130: 63-75. 10.1016/j.cell.2007.06.016.CrossRefPubMed
4.
Zurück zum Zitat Savitsky K, Bar-Shira A, Gilad S, Rotman G, Ziv Y, Vanagaite L, Tagle DA, Smith S, Uziel T, Sfez S, Ashkenazi M, Pecker I, Frydman M, Harnik R, Patanjali SR, Simmons A, Clines GA, Sartiel A, Gatti RA, Chessa L, Sanal O, Lavin MF, Jaspers NG, Taylor AM, Arlett CF, Miki T, Weissman SM, Lovett M, Collins FS, Shiloh Y: A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science. 1995, 268: 1749-1753. 10.1126/science.7792600.CrossRefPubMed Savitsky K, Bar-Shira A, Gilad S, Rotman G, Ziv Y, Vanagaite L, Tagle DA, Smith S, Uziel T, Sfez S, Ashkenazi M, Pecker I, Frydman M, Harnik R, Patanjali SR, Simmons A, Clines GA, Sartiel A, Gatti RA, Chessa L, Sanal O, Lavin MF, Jaspers NG, Taylor AM, Arlett CF, Miki T, Weissman SM, Lovett M, Collins FS, Shiloh Y: A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science. 1995, 268: 1749-1753. 10.1126/science.7792600.CrossRefPubMed
5.
Zurück zum Zitat Crawford TO: Ataxia telangiectasia. Semin Pediatr Neurol. 1998, 5: 287-294. 10.1016/S1071-9091(98)80007-7.CrossRefPubMed Crawford TO: Ataxia telangiectasia. Semin Pediatr Neurol. 1998, 5: 287-294. 10.1016/S1071-9091(98)80007-7.CrossRefPubMed
6.
Zurück zum Zitat Lavin MF, Shiloh Y: The genetic defect in ataxia-telangiectasia. Annu Rev Immunol. 1997, 15: 177-202. 10.1146/annurev.immunol.15.1.177.CrossRefPubMed Lavin MF, Shiloh Y: The genetic defect in ataxia-telangiectasia. Annu Rev Immunol. 1997, 15: 177-202. 10.1146/annurev.immunol.15.1.177.CrossRefPubMed
7.
Zurück zum Zitat Chun HH, Gatti RA: Ataxia-telangiectasia, an evolving phenotype. DNA Repair (Amst). 2004, 3: 1187-1196. 10.1016/j.dnarep.2004.04.010.CrossRef Chun HH, Gatti RA: Ataxia-telangiectasia, an evolving phenotype. DNA Repair (Amst). 2004, 3: 1187-1196. 10.1016/j.dnarep.2004.04.010.CrossRef
8.
Zurück zum Zitat Gatti RA, Becker-Catania S, Chun HH, Sun X, Mitui M, Lai CH, Khanlou N, Babaei M, Cheng R, Clark C, Huo Y, Udar NC, Iyer RK: The pathogenesis of ataxia- telangiectasia. Learning from a Rosetta stone. Clin Rev Allergy Immunol. 2001, 20: 87-108. 10.1385/CRIAI:20:1:87.CrossRefPubMed Gatti RA, Becker-Catania S, Chun HH, Sun X, Mitui M, Lai CH, Khanlou N, Babaei M, Cheng R, Clark C, Huo Y, Udar NC, Iyer RK: The pathogenesis of ataxia- telangiectasia. Learning from a Rosetta stone. Clin Rev Allergy Immunol. 2001, 20: 87-108. 10.1385/CRIAI:20:1:87.CrossRefPubMed
9.
Zurück zum Zitat Lavin MF: Ataxia-telangiectasia: from a rare disorder to a paradigm for cell signalling and cancer. Nat Rev Mol Cell Biol. 2008, 9: 759-769. 10.1038/nrm2514.CrossRefPubMed Lavin MF: Ataxia-telangiectasia: from a rare disorder to a paradigm for cell signalling and cancer. Nat Rev Mol Cell Biol. 2008, 9: 759-769. 10.1038/nrm2514.CrossRefPubMed
10.
Zurück zum Zitat Reichenbach J, Schubert R, Schindler D, Muller K, Bohles H, Zielen S: Elevated oxidative stress in patients with ataxia telangiectasia. Antioxid Redox Signal. 2002, 4: 465-469. 10.1089/15230860260196254.CrossRefPubMed Reichenbach J, Schubert R, Schindler D, Muller K, Bohles H, Zielen S: Elevated oxidative stress in patients with ataxia telangiectasia. Antioxid Redox Signal. 2002, 4: 465-469. 10.1089/15230860260196254.CrossRefPubMed
11.
Zurück zum Zitat Schubert R, Reichenbach J, Zielen S: Deficiencies in CD4+ and CD8+ T cell subsets in ataxia telangiectasia. Clin Exp Immunol. 2002, 129: 125-132. 10.1046/j.1365-2249.2002.01830.x.CrossRefPubMedPubMedCentral Schubert R, Reichenbach J, Zielen S: Deficiencies in CD4+ and CD8+ T cell subsets in ataxia telangiectasia. Clin Exp Immunol. 2002, 129: 125-132. 10.1046/j.1365-2249.2002.01830.x.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Sanal O, Ersoy F, Yel L, Tezcan I, Metin A, Ozyurek H, Gariboglu S, Fikrig S, Berkel AI, Rijkers GT, Zegers BJ: Impaired IgG antibody production to pneumococcal polysaccharides in patients with ataxia-telangiectasia. J Clin Immunol. 1999, 19: 326-334. 10.1023/A:1020599810261.CrossRefPubMed Sanal O, Ersoy F, Yel L, Tezcan I, Metin A, Ozyurek H, Gariboglu S, Fikrig S, Berkel AI, Rijkers GT, Zegers BJ: Impaired IgG antibody production to pneumococcal polysaccharides in patients with ataxia-telangiectasia. J Clin Immunol. 1999, 19: 326-334. 10.1023/A:1020599810261.CrossRefPubMed
13.
Zurück zum Zitat Schubert R, Reichenbach J, Rose M, Zielen S: Immunogenicity of the seven valent pneumococcal conjugate vaccine in patients with ataxia- telangiectasia. Pediatr Infect Dis J. 2004, 23: 269-270. 10.1097/01.inf.0000115737.35353.55.CrossRefPubMed Schubert R, Reichenbach J, Rose M, Zielen S: Immunogenicity of the seven valent pneumococcal conjugate vaccine in patients with ataxia- telangiectasia. Pediatr Infect Dis J. 2004, 23: 269-270. 10.1097/01.inf.0000115737.35353.55.CrossRefPubMed
14.
Zurück zum Zitat Micol R, Ben Slama L, Suarez F, Le Mignot L, Beaute J, Mahlaoui N, d'Enghien Dubois C, Lauge A, Hall J, Couturier J, Vallée L, Delobel B, Rivier F, Nguyen K, Billette de Villemeur T, Stephan JL, Bordigoni P, Bertrand Y, Aladjidi N, Pedespan JM, Thomas C, Pellier I, Koenig M, Hermine O, Picard C, Moshous D, Neven B, Lanternier F, Blanche S, Tardieu M, Debré M, Fischer A, Stoppa-Lyonnet D, CEREDIH Network Investigators: Morbidity and mortality from ataxia-telangiectasia are associated with ATM genotype. J Allergy Clin Immunol. 2011, 28: 382-389.CrossRef Micol R, Ben Slama L, Suarez F, Le Mignot L, Beaute J, Mahlaoui N, d'Enghien Dubois C, Lauge A, Hall J, Couturier J, Vallée L, Delobel B, Rivier F, Nguyen K, Billette de Villemeur T, Stephan JL, Bordigoni P, Bertrand Y, Aladjidi N, Pedespan JM, Thomas C, Pellier I, Koenig M, Hermine O, Picard C, Moshous D, Neven B, Lanternier F, Blanche S, Tardieu M, Debré M, Fischer A, Stoppa-Lyonnet D, CEREDIH Network Investigators: Morbidity and mortality from ataxia-telangiectasia are associated with ATM genotype. J Allergy Clin Immunol. 2011, 28: 382-389.CrossRef
15.
Zurück zum Zitat Bagley J, Cortes ML, Breakefield XO, Iacomini J: Bone marrow transplantation restores immune system function and prevents lymphoma in Atm-deficient mice. Blood. 2004, 104: 572-578. 10.1182/blood-2003-12-4226.CrossRefPubMed Bagley J, Cortes ML, Breakefield XO, Iacomini J: Bone marrow transplantation restores immune system function and prevents lymphoma in Atm-deficient mice. Blood. 2004, 104: 572-578. 10.1182/blood-2003-12-4226.CrossRefPubMed
16.
Zurück zum Zitat Lumsden JM, McCarty T, Petiniot LK, Shen R, Barlow C, Wynn TA, Morse HC, Gearhart PJ, Wynshaw-Boris A, Max EE, Hodes RJ: Immunoglobulin class switch recombination is impaired in Atm-deficient mice. J Exp Med. 2004, 200: 1111-1121. 10.1084/jem.20041074.CrossRefPubMedPubMedCentral Lumsden JM, McCarty T, Petiniot LK, Shen R, Barlow C, Wynn TA, Morse HC, Gearhart PJ, Wynshaw-Boris A, Max EE, Hodes RJ: Immunoglobulin class switch recombination is impaired in Atm-deficient mice. J Exp Med. 2004, 200: 1111-1121. 10.1084/jem.20041074.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Pietzner J, Baer PC, Duecker RP, Merscher MB, Satzger-Prodinger C, Bechmann I, Wietelmann A, Del Turco D, Doering C, Kuci S, Bader P, Schirmer S, Zielen S, Schubert R: Bone marrow transplantation improves the outcome of Atm-deficient mice through the migration of ATM-competent cells. Hum Mol Genet. 2013, 22: 493-507. 10.1093/hmg/dds448.CrossRefPubMed Pietzner J, Baer PC, Duecker RP, Merscher MB, Satzger-Prodinger C, Bechmann I, Wietelmann A, Del Turco D, Doering C, Kuci S, Bader P, Schirmer S, Zielen S, Schubert R: Bone marrow transplantation improves the outcome of Atm-deficient mice through the migration of ATM-competent cells. Hum Mol Genet. 2013, 22: 493-507. 10.1093/hmg/dds448.CrossRefPubMed
18.
Zurück zum Zitat Barlow C, Hirotsune S, Paylor R, Liyanage M, Eckhaus M, Collins F, Shiloh Y, Crawley JN, Ried T, Tagle D, Wynshaw-Boris A: Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell. 1996, 86: 159-171. 10.1016/S0092-8674(00)80086-0.CrossRefPubMed Barlow C, Hirotsune S, Paylor R, Liyanage M, Eckhaus M, Collins F, Shiloh Y, Crawley JN, Ried T, Tagle D, Wynshaw-Boris A: Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell. 1996, 86: 159-171. 10.1016/S0092-8674(00)80086-0.CrossRefPubMed
19.
Zurück zum Zitat Schubert R, Erker L, Barlow C, Yakushiji H, Larson D, Russo A, Mitchell JB, Wynshaw-Boris A: Cancer chemoprevention by the antioxidant tempol in Atm-deficient mice. Hum Mol Genet. 2004, 13: 1793-1802. 10.1093/hmg/ddh189.CrossRefPubMed Schubert R, Erker L, Barlow C, Yakushiji H, Larson D, Russo A, Mitchell JB, Wynshaw-Boris A: Cancer chemoprevention by the antioxidant tempol in Atm-deficient mice. Hum Mol Genet. 2004, 13: 1793-1802. 10.1093/hmg/ddh189.CrossRefPubMed
20.
Zurück zum Zitat Bott L, Lebreton J, Thumerelle C, Cuvellier J, Deschildre A, Sardet A: Lung disease in ataxia- telangiectasia. Acta Paediatr. 2007, 96: 1021-1024. 10.1111/j.1651-2227.2007.00338.x.CrossRefPubMed Bott L, Lebreton J, Thumerelle C, Cuvellier J, Deschildre A, Sardet A: Lung disease in ataxia- telangiectasia. Acta Paediatr. 2007, 96: 1021-1024. 10.1111/j.1651-2227.2007.00338.x.CrossRefPubMed
21.
Zurück zum Zitat McGrath-Morrow SA, Gower WA, Rothblum-Oviatt C, Brody AS, Langston C, Fan LL, Lefton- Greif MA, Crawford TO, Troche M, Sandlund JT, Auwaerter PG, Easley B, Loughlin GM, Carroll JL, Lederman HM: Evaluation and management of pulmonary disease in ataxia-telangiectasia. Pediatr Pulmonol. 2010, 45: 847-859. 10.1002/ppul.21277.CrossRefPubMedPubMedCentral McGrath-Morrow SA, Gower WA, Rothblum-Oviatt C, Brody AS, Langston C, Fan LL, Lefton- Greif MA, Crawford TO, Troche M, Sandlund JT, Auwaerter PG, Easley B, Loughlin GM, Carroll JL, Lederman HM: Evaluation and management of pulmonary disease in ataxia-telangiectasia. Pediatr Pulmonol. 2010, 45: 847-859. 10.1002/ppul.21277.CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Nowak-Wegrzyn A, Crawford TO, Winkelstein JA, Carson KA, Lederman HM: Immunodeficiency and infections in ataxia-telangiectasia. J Pediatr. 2004, 144: 505-511. 10.1016/j.jpeds.2003.12.046.CrossRefPubMed Nowak-Wegrzyn A, Crawford TO, Winkelstein JA, Carson KA, Lederman HM: Immunodeficiency and infections in ataxia-telangiectasia. J Pediatr. 2004, 144: 505-511. 10.1016/j.jpeds.2003.12.046.CrossRefPubMed
23.
Zurück zum Zitat Schroeder SA, Swift M, Sandoval C, Langston C: Interstitial lung disease in patients with ataxia-telangiectasia. Pediatr Pulmonol. 2005, 39: 537-543. 10.1002/ppul.20209.CrossRefPubMed Schroeder SA, Swift M, Sandoval C, Langston C: Interstitial lung disease in patients with ataxia-telangiectasia. Pediatr Pulmonol. 2005, 39: 537-543. 10.1002/ppul.20209.CrossRefPubMed
24.
Zurück zum Zitat Schroeder SA, Zielen S: Infections of the respiratory system in patients with ataxia-telangiectasia. Pediatr Pulmonol. 2014, 49: 389-399. 10.1002/ppul.22817.CrossRefPubMed Schroeder SA, Zielen S: Infections of the respiratory system in patients with ataxia-telangiectasia. Pediatr Pulmonol. 2014, 49: 389-399. 10.1002/ppul.22817.CrossRefPubMed
25.
Zurück zum Zitat Lefton-Greif MA, Crawford TO, Winkelstein JA, Loughlin GM, Koerner CB, Zahurak M, Lederman HM: Oropharyngeal dysphagia and aspiration in patients with ataxia-telangiectasia. J Pediatr. 2000, 136: 225-231. 10.1016/S0022-3476(00)70106-5.CrossRefPubMed Lefton-Greif MA, Crawford TO, Winkelstein JA, Loughlin GM, Koerner CB, Zahurak M, Lederman HM: Oropharyngeal dysphagia and aspiration in patients with ataxia-telangiectasia. J Pediatr. 2000, 136: 225-231. 10.1016/S0022-3476(00)70106-5.CrossRefPubMed
26.
Zurück zum Zitat Marik PE: Aspiration pneumonitis and aspiration pneumonia. N Engl J Med. 2001, 344: 665-671. 10.1056/NEJM200103013440908.CrossRefPubMed Marik PE: Aspiration pneumonitis and aspiration pneumonia. N Engl J Med. 2001, 344: 665-671. 10.1056/NEJM200103013440908.CrossRefPubMed
27.
Zurück zum Zitat Eickmeier O, Seki H, Haworth O, Hilberath JN, Gao F, Uddin M, Croze RH, Carlo T, Pfeffer MA, Levy BD: Aspirin-triggered resolvin D1 reduces mucosal inflammation and promotes resolution in a murine model of acute lung injury. Mucosal Immunol. 2013, 6: 256-266. 10.1038/mi.2012.66.CrossRefPubMed Eickmeier O, Seki H, Haworth O, Hilberath JN, Gao F, Uddin M, Croze RH, Carlo T, Pfeffer MA, Levy BD: Aspirin-triggered resolvin D1 reduces mucosal inflammation and promotes resolution in a murine model of acute lung injury. Mucosal Immunol. 2013, 6: 256-266. 10.1038/mi.2012.66.CrossRefPubMed
28.
Zurück zum Zitat Fukunaga K, Kohli P, Bonnans C, Fredenburgh LE, Levy BD: Cyclooxygenase 2 plays a pivotal role in the resolution of acute lung injury. J Immunol. 2005, 174: 5033-5039. 10.4049/jimmunol.174.8.5033.CrossRefPubMed Fukunaga K, Kohli P, Bonnans C, Fredenburgh LE, Levy BD: Cyclooxygenase 2 plays a pivotal role in the resolution of acute lung injury. J Immunol. 2005, 174: 5033-5039. 10.4049/jimmunol.174.8.5033.CrossRefPubMed
29.
Zurück zum Zitat Ehlers S, Reiling N, Hölscher C, Aly S: Measuring immune responses in vivo. Methods in Microbiology. 2010, 37: 227-269.CrossRef Ehlers S, Reiling N, Hölscher C, Aly S: Measuring immune responses in vivo. Methods in Microbiology. 2010, 37: 227-269.CrossRef
30.
Zurück zum Zitat Buckley RH: Pulmonary complications of primary immunodeficiencies. Paediatr Respir Rev. 2004, 5: S225-S233.CrossRefPubMed Buckley RH: Pulmonary complications of primary immunodeficiencies. Paediatr Respir Rev. 2004, 5: S225-S233.CrossRefPubMed
31.
Zurück zum Zitat Crawford TO, Skolasky RL, Fernandez R, Rosquist KJ, Lederman HM: Survival probability in ataxia telangiectasia. Arch Dis Child. 2006, 91: 610-611.CrossRefPubMedPubMedCentral Crawford TO, Skolasky RL, Fernandez R, Rosquist KJ, Lederman HM: Survival probability in ataxia telangiectasia. Arch Dis Child. 2006, 91: 610-611.CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Chopra C, Davies G, Taylor M, Anderson M, Bainbridge S, Tighe P, McDermott EM: Immune deficiency in Ataxia-Telangiectasia: a longitudinal study of 44 patients. Clin Exp Immunol. 2014, 176: 275-282. 10.1111/cei.12262.CrossRefPubMedPubMedCentral Chopra C, Davies G, Taylor M, Anderson M, Bainbridge S, Tighe P, McDermott EM: Immune deficiency in Ataxia-Telangiectasia: a longitudinal study of 44 patients. Clin Exp Immunol. 2014, 176: 275-282. 10.1111/cei.12262.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Carlo T, Levy BD: Molecular circuits of resolution in airway inflammation. Sci World J. 2010, 10: 1386-1399.CrossRef Carlo T, Levy BD: Molecular circuits of resolution in airway inflammation. Sci World J. 2010, 10: 1386-1399.CrossRef
34.
Zurück zum Zitat Schubert R, Schmitz N, Pietzner J, Tandi C, Theisen A, Dresel R, Christmann M, Zielen S: Growth hormone supplementation increased latency to tumourigenesis in Atm-deficient mice. Growth Factors. 2009, 27: 265-273. 10.1080/08977190903112663.CrossRefPubMed Schubert R, Schmitz N, Pietzner J, Tandi C, Theisen A, Dresel R, Christmann M, Zielen S: Growth hormone supplementation increased latency to tumourigenesis in Atm-deficient mice. Growth Factors. 2009, 27: 265-273. 10.1080/08977190903112663.CrossRefPubMed
35.
Zurück zum Zitat McGrath-Morrow SA, Collaco JM, Crawford TO, Carson KA, Lefton- Greif MA, Zeitlin P, Lederman HM: Elevated serum IL-8 levels in ataxia telangiectasia. J Pediatr. 2010, 156 (4): 682-684. 10.1016/j.jpeds.2009.12.007.CrossRefPubMed McGrath-Morrow SA, Collaco JM, Crawford TO, Carson KA, Lefton- Greif MA, Zeitlin P, Lederman HM: Elevated serum IL-8 levels in ataxia telangiectasia. J Pediatr. 2010, 156 (4): 682-684. 10.1016/j.jpeds.2009.12.007.CrossRefPubMed
36.
Zurück zum Zitat McGrath-Morrow SA, Lederman HM, Aherrera AD, Lefton-Greif MA, Crawford TO, Ryan T, Wright J, Collaco JM: Pulmonary function in children and young adults with ataxia telangiectasia. Pediatr Pulmonol. 2014, 49 (1): 84-90. 10.1002/ppul.22760.CrossRefPubMed McGrath-Morrow SA, Lederman HM, Aherrera AD, Lefton-Greif MA, Crawford TO, Ryan T, Wright J, Collaco JM: Pulmonary function in children and young adults with ataxia telangiectasia. Pediatr Pulmonol. 2014, 49 (1): 84-90. 10.1002/ppul.22760.CrossRefPubMed
37.
Zurück zum Zitat Montella S, Mollica C, Finocchi A, Pession A, Pietrogrande MC, Trizzino A, Ranucci G, Maglione M, Giardino G, Salvatore M, Santamaria F, Pignata C: Non invasive assessment of lung disease in ataxia telangiectasia by high- field magnetic resonance imaging. J Clin Immunol. 2013, 33 (7): 1185-1191. 10.1007/s10875-013-9933-y.CrossRefPubMed Montella S, Mollica C, Finocchi A, Pession A, Pietrogrande MC, Trizzino A, Ranucci G, Maglione M, Giardino G, Salvatore M, Santamaria F, Pignata C: Non invasive assessment of lung disease in ataxia telangiectasia by high- field magnetic resonance imaging. J Clin Immunol. 2013, 33 (7): 1185-1191. 10.1007/s10875-013-9933-y.CrossRefPubMed
38.
Zurück zum Zitat Westbrook AM, Schiestl RH: Atm-deficient mice exhibit increased sensitivity to dextran sulfate sodium-induced colitis characterized by elevated DNA damage and persistent immune activation. Cancer Res. 2010, 70: 1875-1884. 10.1158/0008-5472.CAN-09-2584.CrossRefPubMedPubMedCentral Westbrook AM, Schiestl RH: Atm-deficient mice exhibit increased sensitivity to dextran sulfate sodium-induced colitis characterized by elevated DNA damage and persistent immune activation. Cancer Res. 2010, 70: 1875-1884. 10.1158/0008-5472.CAN-09-2584.CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Abraham E: Neutrophils and acute lung injury. Crit Care Med. 2003, 31: S195-S199. 10.1097/01.CCM.0000057843.47705.E8.CrossRefPubMed Abraham E: Neutrophils and acute lung injury. Crit Care Med. 2003, 31: S195-S199. 10.1097/01.CCM.0000057843.47705.E8.CrossRefPubMed
40.
Zurück zum Zitat Knight PR, Druskovich G, Tait AR, Johnson KJ: The role of neutrophils, oxidants, and proteases in the pathogenesis of acid pulmonary injury. Anesthesiology. 1992, 77: 772-778. 10.1097/00000542-199210000-00023.CrossRefPubMed Knight PR, Druskovich G, Tait AR, Johnson KJ: The role of neutrophils, oxidants, and proteases in the pathogenesis of acid pulmonary injury. Anesthesiology. 1992, 77: 772-778. 10.1097/00000542-199210000-00023.CrossRefPubMed
41.
Zurück zum Zitat Folkesson HG, Matthay MA, Hebert CA, Broaddus VC: Acid aspiration- induced lung injury in rabbits is mediated by interleukin-8-dependent mechanisms. J Clin Invest. 1995, 96: 107-116. 10.1172/JCI118009.CrossRefPubMedPubMedCentral Folkesson HG, Matthay MA, Hebert CA, Broaddus VC: Acid aspiration- induced lung injury in rabbits is mediated by interleukin-8-dependent mechanisms. J Clin Invest. 1995, 96: 107-116. 10.1172/JCI118009.CrossRefPubMedPubMedCentral
Metadaten
Titel
Altered mucosal immune response after acute lung injury in a murine model of Ataxia Telangiectasia
verfasst von
Olaf Eickmeier
Su Youn Kim
Eva Herrmann
Constanze Döring
Ruth Duecker
Sandra Voss
Sibylle Wehner
Christoph Hölscher
Julia Pietzner
Stefan Zielen
Ralf Schubert
Publikationsdatum
01.12.2014
Verlag
BioMed Central
Erschienen in
BMC Pulmonary Medicine / Ausgabe 1/2014
Elektronische ISSN: 1471-2466
DOI
https://doi.org/10.1186/1471-2466-14-93

Weitere Artikel der Ausgabe 1/2014

BMC Pulmonary Medicine 1/2014 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Reizdarmsyndrom: Diäten wirksamer als Medikamente

29.04.2024 Reizdarmsyndrom Nachrichten

Bei Reizdarmsyndrom scheinen Diäten, wie etwa die FODMAP-arme oder die kohlenhydratreduzierte Ernährung, effektiver als eine medikamentöse Therapie zu sein. Das hat eine Studie aus Schweden ergeben, die die drei Therapieoptionen im direkten Vergleich analysierte.

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.