Skip to main content
Erschienen in: Malaria Journal 1/2021

Open Access 01.12.2021 | Research

Antiplasmodial, antimalarial activities and toxicity of African medicinal plants: a systematic review of literature

verfasst von: Elahe Tajbakhsh, Tebit Emmanuel Kwenti, Parya Kheyri, Saeed Nezaratizade, David S. Lindsay, Faham Khamesipour

Erschienen in: Malaria Journal | Ausgabe 1/2021

Abstract

Background

Malaria still constitutes a major public health menace, especially in tropical and subtropical countries. Close to half a million people mainly children in Africa, die every year from the disease. With the rising resistance to frontline drugs (artemisinin-based combinations), there is a need to accelerate the discovery and development of newer anti-malarial drugs. A systematic review was conducted to identify the African medicinal plants with significant antiplasmodial and/or anti-malarial activity, toxicity, as wells as assessing the variation in their activity between study designs (in vitro and in vivo).

Methods

Key health-related databases including Google Scholar, PubMed, PubMed Central, and Science Direct were searched for relevant literature on the antiplasmodial and anti-malarial activities of African medicinal plants.

Results

In total, 200 research articles were identified, a majority of which were studies conducted in Nigeria. The selected research articles constituted 722 independent experiments evaluating 502 plant species. Of the 722 studies, 81.9%, 12.4%, and 5.5% were in vitro, in vivo, and combined in vitro and in vivo, respectively. The most frequently investigated plant species were Azadirachta indica, Zanthoxylum chalybeum, Picrilima nitida, and Nauclea latifolia meanwhile Fabaceae, Euphorbiaceae, Annonaceae, Rubiaceae, Rutaceae, Meliaceae, and Lamiaceae were the most frequently investigated plant families. Overall, 248 (34.3%), 241 (33.4%), and 233 (32.3%) of the studies reported very good, good, and moderate activity, respectively. Alchornea cordifolia, Flueggea virosa, Cryptolepis sanguinolenta, Zanthoxylum chalybeum, and Maytenus senegalensis gave consistently very good activity across the different studies. In all, only 31 (4.3%) of studies involved pure compounds and these had significantly (p = 0.044) higher antiplasmodial activity relative to crude extracts. Out of the 198 plant species tested for toxicity, 52 (26.3%) demonstrated some degree of toxicity, with toxicity most frequently reported with Azadirachta indica and Vernonia amygdalina. These species were equally the most frequently inactive plants reported. The leaves were the most frequently reported toxic part of plants used. Furthermore, toxicity was observed to decrease with increasing antiplasmodial activity.

Conclusions

Although there are many indigenous plants with considerable antiplasmodial and anti-malarial activity, the progress in the development of new anti-malarial drugs from African medicinal plants is still slothful, with only one clinical trial with Cochlospermum planchonii (Bixaceae) conducted to date. There is, therefore, the need to scale up anti-malarial drug discovery in the African region.
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12936-021-03866-0.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
PRISMA
Preferred Reporting Items for Systematic Reviews and Meta-analysis
Nd
Not done
Ns
Not specified
SI
Selectivity Index
LD50
Median lethal dose
IC50
Half-maximal inhibitory concentration
CC50
50% Cytotoxic concentration
LC50
Lethal concentration

Background

Malaria still constitutes a major public health menace, especially in tropical and subtropical countries. Various species of Plasmodium, transmitted through the bite of an infected female Anopheles mosquito, cause malaria, including Plasmodium falciparum, Plasmodium malariae, Plasmodium ovale, Plasmodium vivax, and Plasmodium knowlesi. Among these species, P. falciparum is the most virulent, responsible for the highest morbidity and mortality. It is also the predominant species in sub-Saharan Africa (SSA), a region with the highest number of malaria cases and deaths in the world. According to the World Health Organization (WHO), there were 228 million cases, and 405,000 malaria attributed deaths in 2018 [1]. In SSA, children and pregnant women are the most at-risk groups [13].
Malaria can be treated using chemotherapy but there is widespread resistance to many of the drugs. The first case of resistance to artemisinins was reported in Cambodia in 2006 and has then spread to most of South-East Asia [4, 5]. The safety of chemoprophylaxis is also a major concern; for instance, primaquine, atovaquone, and doxycycline are contraindicated in pregnant women and children [6]. All these shortcomings necessitate the discovery and production of new drugs to treat malaria.
In the past 50 years, natural compounds including plant products, have played a major role in drug discovery and have provided value to the pharmaceutical industry [7]. For instance, therapeutics for various infectious diseases, cancer, and other debilitation diseases caused by metabolic disorders have all benefitted from many drug classes that were initially developed based on active compounds from plant sources [8]. Furthermore, quinine and artemisinin, and their synthetic derivatives which are the mainstay of anti-malarial chemotherapy, were also derived from plant sources. In malaria-endemic areas, especially in Africa, many people rely on herbal medicines as the first line of treatment [9]. The common reasons for their preference vary from the cost of standard drugs, availability and accessibility, perceived effectiveness, low side effect, and faith in traditional medicines [10].
Reviews of the antiplasmodial and anti-malarial activities of medicinal plants are needed to drive research into the discovery and production of new anti-malarial drugs. Only a few reviews of the antiplasmodial or anti-malarial activity of medicinal plants have been published in the scientific literature [1116]. These reviews focused only on studies with high antiplasmodial or anti-malarial activity and hardly report on their toxicity. The purpose of this study was to review medicinal plants with moderate to very good antiplasmodial and anti-malarial activities, as well as assess the variation in the activities between different methods. Furthermore, the toxicity of plant species is highlighted.

Methods

The literature was reviewed in search of scientific articles reporting antiplasmodial activities (IC50, ED50, LD50, and parasite suppression rate) of medicinal plants used in Africa to treat malaria. The current study conforms to the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines [17].

Search strategy and selection criteria

Relevant articles were searched in health-related electronic databases including PubMed, PubMed Central, Google Scholar, and ScienceDirect using the keywords: Traditional herbs or Medicinal plants or Antiplasmodial activity or Antimalarial activity or Herbal medicine or Plasmodium.
The search was limited to studies published in English or containing at least an abstract written in English until May 2020. The titles and abstracts were subsequently examined by two reviewers, independently (parallel method) to identify articles reporting the antiplasmodial activity of medicinal plants. In the case of any discrepancy in their reports, a third reviewer was brought in to resolve the issue. Relevant papers were equally manually cross-checked to identify further references. The following data were extracted from the selected articles by the reviewers: plant species, plant family, place of collection of plant, parts of the plant used, type of study (whether in vitro, in vivo, or human), the extraction solvent used, IC50 or ED50 values, parasite suppression rate, isolated compounds, interaction with known malarial drugs (whether synergistic or antagonistic), and toxicity. Articles that did not report antiplasmodial or anti-malarial activity of medicinal plants as well as review articles were excluded. The entire selection process is presented in Fig. 1.
In this study, antiplasmodial activity pertains to studies performed in vitro using different strains of Plasmodium falciparum, meanwhile, anti-malarial activity is reserved for in vivo studies performed using mice and various parasite models (including Plasmodium berghei, Plasmodium yoelii, and Plasmodium chabaudi) and reporting parasite suppression rate.

Categorization of antiplasmodial and anti-malarial activities

For in vitro studies, the antiplasmodial activity of an extract was considered very good if IC50 < 5 µg/ml, good 5 µg/ml ≤ IC50 < 10 µg/ml, and moderate 10 µg/ml ≤ IC50 < 20 µg/ml [18]. For in vivo studies, the anti-malarial activity of an extract is considered very good if the suppression is ≥ 50% at 100 mg/kg body weight/day, good if the suppression is ≥ 50% at 250 mg/kg body weight/day, and moderate if the suppression is ≥ 50% at 500 mg/kg body weight/day [18]. Antiplasmodial activities of 20 µg/ml and above for in vitro studies and anti-malarial ≥ 50% at > 500 mg/kg body weight/day for in vivo studies, were considered inactive.

Risk of bias in individual studies

The level of risk of bias for the study was likely to be high mainly because of differences in the studies and the methods used to determine the antiplasmodial or anti-malarial activity. The stains of Plasmodium used to assess the antiplasmodial or anti-malarial activity of the medicinal plants equally varied between studies. Furthermore, the extraction solvent, as well as the extraction yield of the plants in the different studies, was not the same, which may have accounted for the variation in the antiplasmodial and anti-malarial activities for the same plants but in the different studies.

Results

The PRISMA flowchart (Fig. 1) presents a four-phase study selection process in the present systematic review study. A total of 25,159 titles were identified in the initial search. After the title and abstract screening, 228 full-text articles were retrieved. Of these, a final 200 articles were identified for the review.
For this review, the evaluation of the individual plant species was considered as an independent study, so it is common for one article to have more than one study depending on the number of plant species evaluated. In all, there were 722 independent studies. Five hundred and ninety-on (81.9%) of the independent studies were in vitro (Table 1), 90 (12.4%) were in vivo (Table 2) and 40 (5.5%) were both in vitro and in vivo (Table 3). There was only one human study (clinical trial) conducted so far (Table 4). The selected research articles were from 31 African countries. Out of the 200 research articles reviewed, most of them were from Nigeria 58 (29.0%), Kenya 24 (12.0%), Ethiopia 13 (6.5%), Cameroon 12 (6.0%), Ivory Coast 11 (5.5%), D.R. Congo 10 (5.0%), and Burkina Faso 7 (3.5%) (Fig. 2). The studies cover the period from 1989 to 2020.
Table 1
In vitro antiplasmodial activity of African medicinal plants
Plant species
Plant family
Source
Country of study
Part of plant used
Extraction solvent
Antiplasmodial Activity
IC50 or ED50 or LD50
Strain of Plasmodium Tested
Toxicity (value; assay)
Dicoma anomala subsp. Gerrardii
Compositae
[19]
South Africa
Whole plant
Methanol, Water, Hexane, Dichloromethane
Very gooda
1.865 µM IC50
Plasmodium falciparum 3D7, D10
Nd
Abutilon grandiflorum
Malvaceae
[20]
Tanzania
Roots
Ethyl Acetate
Moderate
10 µg/ml IC50
Plasmodium falciparum K1
Nd
Acacia mellifera
Fabaceae
[21]
Kenya
Inner Barks
Methanol
Very Good
4.48 µg/ml IC50
Plasmodium falciparum D6
No
Acacia nilotica
Fabaceae
[22]
South Africa
Twigs
Dichloromethane/Methanol
Moderate
13 µg/ml IC50
Plasmodium falciparum D10
Nd
[23]
Sudan
Seeds
Methanol
Very Good
0.9–4.1 µg/ml IC50
Plasmodium falciparum 3D7, Dd2
No
Acacia polyacantha
Fabaceae
[20]
Tanzania
Root Barkss
Ethyl Acetate
Moderate
13 µg/ml IC50
Plasmodium falciparum K1
Nd
Acacia tortilis
Fabaceae
[24]
Kenya
Stem Barks
Methanol
Moderate
13.4 µg/ml IC50
Plasmodium falciparum D6, W2
Nd
[22]
South Africa
Whole Plant
Dichloromethane/Methanol
Very Good
4.8 µg/ml IC50
Plasmodium falciparum D10
Nd
Acacia xanthoploea
Fabaceae
[25]
South Africa
Stem Barks
Acetone
Moderate
10.1 µg/ml IC50
Plasmodium falciparum UP1 (CQ-R)
Nd
[24]
Kenya
Stem Barks
Methanol
Moderate
17.3 µg/ml IC50
Plasmodium falciparum D6, W2
Nd
Acacia mellifera
Fabaceae
[24]
Kenya
Stem Barks
Methanol
Moderate
12.3 µg/ml IC50
Plasmodium falciparum D6, W2
Nd
Amorpha fruticosa
Euphorbiaceae
[26]
Kenya
Leaves
Methanol
Moderate
13.8 µg/ml IC50
Plasmodium falciparum D6, W2
Nd
Acampe pachyglossa
Orchidaceae
[20]
Kenya
Leaves
Ethyl Acetate
Moderate
11 µg/ml IC50
Plasmodium falciparum K1
Nd
Acanthospermum hispidum DC
Compositae
[27]
Burkina Faso
Stems, Leaves
Crude Alkaloid
Good
4–10 µg/ml IC50
Plasmodium falciparum W2
Nd
[28]
Ivory Coast
Stems and Leaves
Ethanol
Moderate
13.7 µg/ml IC50
Plasmodium falciparum Fcb1/Colombia Strain
Nd
[29]
Republic of Congo
Leaves
Methanolic, Ethanol
Very Good
2.8 µg/ml IC50
Plasmodium falciparum
No
Achyranthes aspera
Amaranthaceae
[22]
South Africa
Whole plant
Dichloromethane/Methanol
Good
9.9 µg/ml IC50
Plasmodium falciparum D10
Nd
Acmella caulirhiza
Compositae
[30]
Kenya
Whole plant
Dichloromethane
Good
5.201–9.939 µg/ml IC50
Plasmodium falciparum W2, D6
Nd
Acridocarpus chloropterus
Malpighiaceae
[31]
Tanzania
Roots
Dichloromethane
Good
5.06 µg/ml IC50
Plasmodium falciparum K1
No
Achyranthes aspera
Amaranthaceae
[20]
Tanzania
Root barks
Ethyl Acetate
Very Good
3 µg/ml IC50
Plasmodium falciparum K1
Nd
Adansonia digitata
Malvaceae
[20]
Kenya
Stem barks
Ethyl Acetate
Good
8.2 µg/ml IC50
Plasmodium falciparum K1
Nd
Adenia cissampeloides
Passifloraceae
[32]
Ghana
Whole plant
Ethanol
Good
8.521 µg/ml IC50
Plasmodium falciparum 3D7
Nd
Adhatoda latibracteata
Acanthaceae
[33]
Gabon
Stems
Dichloromethane
Very Good
0.7–1.6 µg/ml IC50
Plasmodium falciparum Fcbm W2
No
Aerva javanica
Amaranthaceae
[34]
Sudan
Whole plant
Petroleum Ether/Chloroform
Very Good
 < 5 µg/ml IC50
Plasmodium falciparum
Nd
Aerva lanata
Amaranthaceae
[20]
Tanzania
Whole plant
Ethyl Acetate
Good
8.6 µg/ml IC50
Plasmodium falciparum K1
Nd
Aframomum giganteum
Zingiberaceae
[33]
Gabon
Stems
Dichloromethane
Moderate
8.3–13.5 µg/ml IC50
Plasmodium falciparum Fcbm W2
No
Agathosma apiculata
Rutaceae
[22]
South Africa
Whole plant
Dichloromethane/Methanol
Good
5.2 µg/ml IC50
Plasmodium falciparum D10
Nd
Ageratum conyzoides
Compositae
[24]
Kenya
Whole plant
Methanol
Moderate
11.5–12.1 µg/ml IC50
Plasmodium falciparum D6, W2
Nd
[30]
Kenya
Whole plant
Dichloromethane
Very Good
2.15–3.444 µg/ml IC50
Plasmodium falciparum W2, D6
Nd
Ajuga remota
Lamiaceae
[35]
Kenya
Ns
Ns
Gooda
8.2 µM IC50
Plasmodium falciparum FCA 20/GHA
No
[35]
Kenya
Aerial parts
Chloroform
Good
8.2 µg/ml IC50
Plasmodium falciparum FCA 20/GHA
No
Alafia barteri
Apocynaceae
[36]
Nigeria
Leaves
Water
Very Good
1.5 µg/ml IC50
Plasmodium falciparum
Nd
Albizia coriaria
Fabaceae
[30]
Kenya
Stem barks
Dichloromethane
Good
6.798–10.679 µg/ml IC50
Plasmodium falciparum W2, D6
Nd
[24]
Kenya
Stem barks
Methanol
Moderate
15.2–16.8 µg/ml C50
Plasmodium falciparum D6, W2
Nd
Albizia gummifera
Fabaceae
[24]
Kenya
Stem barks
Methanol
Good
6.7 µg/ml IC50
Plasmodium falciparum D6, W2
Nd
[20]
Tanzania
Stem barks
Ethyl Acetate
Moderate
15 µg/ml IC50
Plasmodium falciparum K1
Nd
Albizia versicolor Welw.ex Oliv
Fabaceae
[37]
South Africa
Roots
Dichloromethane
Very Good
2.12 µg/ml IC50
Plasmodium falciparum NF54
Nd
Alchornea cordifolia
Euphorbiaceae
[38]
Ivory Coast
Leaves
Ethanol
Very Gooda
0.2–0.5 μM IC50
Plasmodium falciparum Fcm29 Cameroon And Nigerian Strain
No
[39]
Ivory Coast
Stems, leaves
Water, Ethanol, Pentane
Very Good
2.43–4.56 µg/ml IC50
Plasmodium falciparum Fcm29, Fcb1, Plasmodium falciparum CQ-S (Nigerian)
No
[40]
D.R.Congo
Leaves
Water
Very Good
4.84 µg/ml IC50
Plasmodium falciparum K1
No
Alepidea amatymbica
Apiaceae
[22]
South Africa
Whole plant
Dichloromethane/Methanol
Moderate
12.5 µg/ml IC50
Plasmodium falciparum D10
Nd
Aloe marlothii
Xanthorrhoeaceae
[22]
South Africa
Whole plant
Dichloromethane
Very Good
3.5 µg/ml IC50
Plasmodium falciparum D10
Nd
Aloe ferox
Xanthorrhoeaceae
[22]
South Africa
Whole plant
Dichloromethane/Methanol
Good
8 µg/ml IC50
Plasmodium falciparum D10
Nd
Aloe maculata
Xanthorrhoeaceae
[22]
South Africa
Whole plant
Dichloromethane/Methanol
Moderate
12.4 µg/ml IC50
Plasmodium falciparum D10
Nd
Aloe pulcherrima
Xanthorrhoeaceae
[41]
Ethiopia
Roots
N-Hexane, Chloroform, Acetone Ans Methanol
Moderatea
18.6 µg/ml IC50
Plasmodiumfalciparum
Nd
Aloe secundiflora
Xanthorrhoeaceae
[24]
Kenya
Leaves
Methanol
Moderate
15.4 µg/ml IC50
Plasmodium falciparum D6, W2
Nd
Alstonia boonei
Apocynaceae
[42]
Nigeria
Stem barks
Ethanol
Nd
nd
Plasmodium beghei NK-65
No
[43]
Ivory Coast
Stem barks
Ethanol
Moderate
12.3 µg/ml IC50
Plasmodium falciparum FCB1
Nd
Alstonia congensis
Apocynaceae
[44]
D.R. Congo
Leaves, Root Barks, Stem Barks
Water, Methanol
Very Good
2—5 µg/ml IC50
Plasmodium falciparum K1
Nd
Ampelocissus africana
Vitaceae
[20]
Kenya
Whole plant
Ethyl Acetate
Good
9.0 µg/ml IC50
Plasmodium falciparum K1
Nd
Andrographis peniculata
Acanthaceae
[45]
Cambodia
Whole plant
Dichloromethane
Moderate
12.7 µg/ml IC50
Plasmodium falciparum W2
Nd
Annickia kummeriae
Annonaceae
[31]
Tanzania
Leaves
Methanol
Very Good
0.12 µg/ml IC50
Plasmodium falciparum K1
No
Anisopappus chinensis
Compositae
[46]
D.R. Congo
Whole plant
Methanolic and dichloromethane
Good
6.53 µg/ml IC50
Plasmodium falciparum (3D7, W2), Plasmodium berghei berghei
No
Annona reticulata
Annonaceae
[47]
Cameroon
Roots
Ethanol
Very good
1.90 µg/ml IC50
Plasmodium falciparum W2
No
Annona muricata
Annonaceae
[48]
Ivory Coast
Leaves
Pentane
Moderate
8–18 µg/ml IC50
Plasmodium falciparum FCM29, Plasmodium falciparum CQ-S (Nigerian)
Nd
[49]
Cameroon
Leaves
Hexane
Very Good
2.03 µg/ml IC50
Plasmodium falciparum W2
Nd
[47]
Cameroon
Stem barks
Ethanol
Very Good
1.45 µg/ml IC50
Plasmodium falciparum W2
No
Anogeissus leiocarpus
Combretaceae
[50]
Nigeria
Ns
Methanol, Water, Butanol, Ethyl Acetate
Moderate
10.94–13.77 µg/ml IC50
Plasmodium falciparum 3D7, K1
Yes (SI = 121; mouse [NBMH])
[51]
Ivory Coast
Leaves
Methylene Chloride
Very Good
3.8 µg/ml IC50
Plasmodium falciparum K1
No
Anonidium mannii
Annonaceae
[49]
Cameroon
Twigs
Methanol
Very Good
2.04 µg/ml IC50
Plasmodium falciparum W2
Nd
Ansellia africana
Orchidaceae
[20]
Tanzania
Leaves
Ethyl Acetate
Moderate
10 µg/ml IC50
Plasmodium falciparum K1
Nd
Anthocleista grandiflora Gilg
Gentianaceae
[37]
South Africa
Stem barks
Dichloromethane
Good
8.69 µg/ml IC50
Plasmodium falciparum NF54
Nd
Anthocleista nobilis
Gentianaceae
[52]
Burkina Faso
Leaves
Dichloromethane
Moderate
10 µg/ml
Plasmodium falciparum
Nd
Anthocleista vogelii
Gentianaceae
[53]
Nigeria
Roots
Petroleum Ether
Good
9.50 µg/ml IC50
Plasmodium falciparum D10
Nd
Arenga engleri
Arecaceae
[25]
South Africa
Stem barks
Dichloromethane
Very Good
1.7 µg/ml IC50
Plasmodium falciparum UP1 (CQ-R)
Yes (ID50 = 35 µg/ml; Monkey kidney cells)
Artabotrys monteiroae
Annonaceae
[22]
South Africa
Twigs
Dichloromethane/Methanol
Good
8.7 µg/ml IC50
Plasmodium falciparum D10
Nd
Artemisia afra
Asteraceae
[54]
Zimbabwe
Leaves
Petrolether/Ethylacetate
Moderate
8.9–15.3 µg/ml IC50
Plasmodium falciparum Pow, Dd2
Nd
[22]
South Africa
Leaves
Dichloromethane
Good
5 µg/ml IC50
Plasmodium falciparum D10
Nd
[24]
Kenya
Leaves
Methanol
Good
3.9–9.1 µg/ml C50
Plasmodium falciparum D6, W2
Nd
Artemisia annua L
Asteraceae
[24]
Kenya
Leaves
Methanol
Good
4.7–5.5 µg/ml C50
Plasmodium falciparum D6, W2
Nd
Artocarpus communis
Moraceae
[55]
Cameroon
Stems, Leaves
Ethanol, Water, Dichloromethane, Methanol, Hexane
Very Good
0.67–8.20 µg/ml IC50
Plasmodium falciparum W2
Nd
Asparagus virgatus
Asparagaceae
[22]
South Africa
Whole plant
Dichloromethane/Methanol
Good
8 µg/ml IC50
Plasmodium falciparum D10
Nd
Aspilia africana
Asteraceae
[56]
Uganda
Shoots
Ethyl Acetate
Moderate
9.3–11.5 µg/ml IC50
Plasmodium falciparum D10, K1
Nd
Aspilia pruliseta
Compositae
[24]
Kenya
Root BARKS
Methanol
Good
6.8–9.7 µg/ml C50
Plasmodium falciparum D6, W2
Nd
Asystasia gangetica
Acanthaceae
[22]
South Africa
Twigs
Dichloromethane/Methanol
Moderate
16 µg/ml IC50
Plasmodium falciparum D10
Nd
Azadirachta indica
Meliaceae
[57]
Ivory Coast
Stems, leaves
Water
Very Good
2.35–6.8 µg/ml IC50
Plasmodium falciparum Fcb1 & F32
Nd
[45]
Cambodia
Barks
Dichloromethane
Very Good
4.7 µg/ml IC50
Plasmodium falciparum W2
Nd
[58]
Sudan
Leaves
Methanol
Very Good
1.7–5.8 µg/ml IC50
Plasmodium falciparum 3D7, Dd5
Nd
[59]
Togo
Leaves
Ethanol
Very Good
2.48–2.5 µg/ml IC50
Plasmodium falciparum W2, D6
Nd
Azanza garckeana
Malvaceae
[60]
Malawi
Leaves
Dichloromethane
Moderate
11·79 µg/ml IC50
Plasmodium falciparum, Vl/S
Nd
Balanites aegyptiaca
Zygophyllaceae
[24]
Kenya
Root barks
Methanol
Good
8.9 µg/ml C50
Plasmodium falciparum D6, W2
Nd
[21]
Kenya
Root barks
Methanol
Very good
3.49 µg/ml IC50
Plasmodium falciparum D6
No
Balanites maughamii
Zygophyllaceae
[25]
South Africa
Stem barks
Dichloromethane
Very good
1.94 µg/ml IC50
Plasmodium falciparum UP1 (CQ-R)
Nd
Barringtonia racemosa
Lecythidaceae
[22]
South Africa
Twigs
Dichloromethane/Methanol
Good
5.7 µg/ml IC50
Plasmodium falciparum D10
Nd
Berberis holstii
Berberidaceae
[61]
Malawi
Roots
Dichloromethane/Methanol
Very good
0.17 µg/ml IC50
Plasmodium falciparum 3D7
Nd
[24]
Kenya
Root barks
Methanol
Very Good
 < 5 µg/ml C50
Plasmodium falciparum D6, W2
Nd
Bergia suffruticosa
Elatinaceae
[62]
Burkina Faso
Whole plant
Dichloromethane
Moderate
19.53 µg/ml IC50
Plasmodium falciparum 3D7 & W2
Nd
Berula erecta
Apiaceae
[22]
South Africa
Whole plant
Dichloromethane/Methanol
Good
6.6 µg/ml IC50
Plasmodium falciparum D10
Nd
[24]
Kenya
Leaves
Methanol
Good
9.9 µg/ml C50
Plasmodium falciparum D6, W2
Nd
[22]
South Africa
Leaves
Methanol
Good
5 µg/ml IC50
Plasmodium falciparum D10
Nd
Bidens engleri
Compositae
[63]
Senegal
Leaves
Petroleum ether
Moderate
9–18 µg/ml IC50
Plasmodium falciparum FcM29, FcB1, Plasmodium vinckei petteri
Yes (IC50 = 10 µg/ml; Vero cells)
Bixa orellana
Bixaceae
[45]
Cambodia
Leaves
Water
Good
9.3 µg/ml IC50
Plasmodium falciparum W2
Nd
Boscia angustifolia
Capparaceae
[24]
Kenya
Stem barks
Water
Very good
1.4–4.7 µg/ml C50
Plasmodium falciparum D6, W2
Nd
Boscia salicifolia
Capparaceae
[26]
Kenya
Stem barks
Methanol
good
1.1–8.8 µg/ml IC50
Plasmodium falciparum D6, W2
Nd
Boswellia dalzielii
Burseraceae
[50]
Nigeria
Ns
Methanol, Water, Butanol, Ethyl Acetate
Moderate
14.59–15.1 µg/ml IC50
Plasmodium falciparum 3D7, K1
Yes (SI ≥ 101; Mouse [NBMH]
[62]
Burkina Faso
Leaves
Methanol
Moderate
18.85 µg/ml IC50
Plasmodium falciparum 3D7 & W2
Nd
Bridelia micrantha
Phyllanthaceae
[26]
Kenya
Stem Barks
Methanol
Moderate
14.2–19.4 µg/ml IC50
Plasmodium falciparum D6, W2
Nd
Bridelia mollis Hutch
Phyllanthaceae
[37]
South Africa
Roots
Dichloromethane
Very good
3.06 µg/ml IC50
Plasmodium falciparumNF54
Nd
Brucea javanica
Simaroubaceae
[45]
Cambodia
Roots
Dichloromethane
Very good
1.0 µg/ml IC50
Plasmodium falciparum W2
Nd
Bruguiera gymnorhiza
Rhizophoraceae
[22]
South Africa
Twigs
Dichloromethane/Methanol
Moderate
11.7 µg/ml IC50
Plasmodium falciparum D10
Nd
Burchellia bubalina
Rubiaceae
[22]
South Africa
Twigs
Dichloromethane/Methanol
Moderate
18 µg/ml IC50
Plasmodium falciparum D10
Nd
Caesalpinia bonducella
Fabaceae
[64]
Nigeria
Aerial Parts
Ethyl Acetate
Moderate
16 µg/ml EC50
Plasmodium falciparum
Yes (SI = 0.29–0.69; mouse mammary tumour [FM3A])
Canthium setosum
Rubiaceae
[65]
Benin
Aerial Parts
Methylene Chloride
Very good
2.77–4.80 µg/ml IC50
Plasmodium falciparum 3D7 & K1
Nd
Capparis tomentosa Lam
Capparaceae
[37]
South Africa
Roots
Dichloromethane
Very good
2.19 µg/ml IC50
Plasmodium falciparum NF54
Nd
Cardiospermum halicacabum
Sapindaceae
[22]
South Africa
Whole Plant
Dichloromethane/Methanol
Moderate
20 µg/ml IC50
Plasmodium falciparum D10
Nd
Carica papaya
Caricaceae
[66]
Nigeria
Leaves
Ethyl Acetate
Very good
2.96 µg/ml IC50
Plasmodium falciparum D10, DD2
No
Carissa edulis
Apocynaceae
[21]
Kenya
Root barks
Methanol
Good
6.41 µg/ml IC50
Plasmodium falciparum D6
No
Carpolobia alba
Polygalaceae
[53]
Nigeria
Roots
Dichloromethane
Good
7.10 µg/ml IC50
Plasmodium falciparum D10
Nd
Cassia abbreviata
Fabaceae
[60]
Malawi
Roots
Dichloromethane
Very Good
2·88 µg/ml IC50
Plasmodium falciparum Vl/S
Nd
Cassia alata
Fabaceae
[67]
D.R.Congo
Leaves
Ethanol, Methanol, Petroleum Ether, Chloroform
Very Good
 < 0.1—5.4 µg/ml IC50
Plasmodium Falciparum
Nd
Senna occidentalis L
Fabaceae
[68]
Mozambique And Portugal
Roots
N-Hexane
Moderate
19.3 µg/ml IC50
Plasmodium falciparum 3D7
Nd
[26]
Kenya
Root Barks
Methanol
Moderate
18.8 µg/ml IC50
Plasmodium falciparum D6, W2
Nd
[69]
D.R. Congo
Leaves
Petroleum Ether
Very Good
1.5 µg/ml IC50
Plasmodium falciparum
Nd
[67]
D.R. Congo
Leaves
Ethanol, Methanol, Petroleum Ether, Chloroform
Very Good
 < 0.1—0.25 µg/ml IC50
Plasmodium falciparum
Nd
Cassia siamea
Fabaceae
[70]
Togo
Leaves
Water
Good
 < 7 µg/ml IC50
Plasmodium falciparum
Nd
[27]
Burkina Faso
Leaves
Crude Alkaloid
Good
4–10 µg/ml IC50
Plasmodium falciparum W2
Nd
Cassia tora
Fabaceae
[23]
Sudan
Aerial parts
Methanol
Good
3.3–5.2 µg/ml IC50
Plasmodium falciparum 3D7, Dd2
No
Catha edulis
Celastraceae
[22]
South Africa
Roots
Dichloromethane
Very Good
0.68 µg/ml IC50
Plasmodium falciparum D10
Nd
Cedrelopsis grevei
Rutaceae
[71]
Madagascar
Leaves
Water
Moderate
17.5 mg/L IC50
Plasmodium falciparum
Nd
Celtis integrifolia
Cannabaceae
[52]
Burkina Faso
Leaves
Dichloromethane
Very Good
3.7 µg/ml IC50
Plasmodiumfalciparum
Yes (SI ≥ 0.5; HepG2 cells)
Centella asiatica
Apiaceae
[22]
South Africa
Leaves
Dichloromethane/Methanol
Good
8.3 µg/ml IC50
Plasmodium falciparum D10
Nd
[72]
Kenya
Root Barks
Dichloromethane
Moderate
14.9–15.4 µg/ml IC50
Plasmodium falciparum K1, NF54
Nd
Cephalanthus natalensis
Rubiaceae
[22]
South Africa
Twigs
Dichloromethane/Methanol
Moderate
16.5 µg/ml IC50
Plasmodium falciparum D10
Nd
Ceratotheca sesamoides
Pedaliaceae
[63]
Senegal
Leaves
Petroleum ether
Moderate
15–23 µg/ml IC50
Plasmodium falciparum FcM29, FcB1, Plasmodium vinckei petteri
Yes (IC50 = 50 µg/ml; Vero cells)
Chrysophyllum perpulchrum
Sapotaceae
[43]
Ivory Coast
Stem Barks
Ethanol
Moderate
12.8 µg/ml IC50
Plasmodium falciparumFCB1
Nd
Cinchona succirubra
Rubiaceae
[73]
S. Tome´ And Prı ´Ncipe
Barks
Petroleum Ether, Dichloromethane, Ethyl Acetate, Methanol
Good
 < 10 µg/ml IC50
Plasmodium falciparum3D7 And Dd2
Nd
Cinnamonum camphora
Lauraceae
[57]
Ivory Coast
Cortex
Water
Moderate
9.37–16.6 µg/ml IC50
Plasmodium falciparumFcb1 & F32
Nd
Cissampelos mucronata
Menispermaceae
[20]
Tanzania
Roots
Ethyl Acetate
Very Good
0.38 µg/ml IC50
Plasmodium falciparumK1
Nd
[26]
Kenya
Leaves
Methanol
Very Good
4.4 µg/ml IC50
Plasmodium falciparumD6, W2
Nd
Cissampelos pareira
Menispermaceae
[24]
Kenya
Root Barks
Methanol
Good
5.2–6.5 µg/ml C50
Plasmodium falciparumD6, W2
Nd
[74]
Kenya
Root
Methanol
Good
5.85–7.70 µg/ml IC50
Plasmodium falciparumNF54, ENT30
Nd
Cissus populnea
Vitaceae
[50]
Nigeria
Ns
Methanol, Water, Butanol, Ethyl Acetate
Moderate
15.81–19.91 µg/ml IC50
Plasmodium falciparum3D7, K1
Yes (SI ≥ 84, Mouse [NBMH])
Citropsis articulata
Rutaceae
[75]
Uganda
Root Barks
Ethyl Acetate
Nd
nd
Plasmodium falciparumFcb1
Nd
Clausena anisota
Rutaceae
[24]
Kenya
Stem Barks
Methanol
Good
8.4–9.2 µg/ml C50
Plasmodium falciparumD6, W2
Nd
[22]
South Africa
Twigs
Dichloromethane/Methanol
Moderate
18 µg/ml IC50
Plasmodium falciparumD10
Nd
Clematis brachiata Thunb
Ranunculaceae
[37]
South Africa
Roots
Dichloromethane
Good
5.36 µg/ml IC50
Plasmodium falciparumNF54
Nd
[21]
Kenya
Root Barks
Methanol
Very Good
4.15 µg/ml IC50
Plasmodium falciparumD6
No
Clerodendrum eriophyllum
Lamiaceae
[72]
Kenya
Root Barks
Dichloromethane
Very Good
2.7–5.3 µg/ml IC50
Plasmodium falciparumK1, NF54
Nd
[24]
Kenya
Leaves
Methanol
Very Good
 < 1.8–3.9 µg/ml C50
Plasmodium falciparumD6, W2
Nd
Clerodendrum glabrum E. Mey
Lamiaceae
[37]
South Africa
Leaves
Dicloromethane
Good
8.89 µg/ml IC50
Plasmodium falciparumNF54
Nd
Clerodendrum glabrum var. glabrum
Lamiaceae
[22]
South Africa
Twigs
Dichloromethane/Methanol
Moderate
19 µg/ml IC50
Plasmodium falciparumD10
Nd
Clerodendrum johnstonii
Lamiaceae
[24]
Kenya
Root Barks
Methanol
Good
8.5 µg/ml C50
Plasmodium falciparumD6, W2
Nd
Rotheca myricoides
Lamiaceae
[76]
Kenya
Root Barks
Methanol
Good
4.0—8.4 µg/ml IC50
Plasmodium falciparum(K39, ENT30, NF54, V1/S)
Nd
[26]
Kenya
Root Barks
Methanol
Good
4.7–8.3 µg/ml IC50
Plasmodium falciparumD6, W2
Nd
[20]
Tanzania
Root Barks
Ethyl Acetate
Moderate
11 µg/ml IC50
Plasmodium falciparumK1
Nd
[72]
Kenya
Root Barks
Dichloromethane
Moderate
10.9–15.8 µg/ml IC50
Plasmodium falciparumK1, NF54
Nd
Clerodendrum rotundifolium
Lamiaceae
[24]
Kenya
Leaves
Dichloromethane
Good
 < 3.9–15.7 µg/ml C50
Plasmodium falciparumD6, W2
Nd
[77]
Uganda
Leaves
Ethyl Acetate
Very Good
0.03–0.21 µg/ml IC50
Plasmodium falciparumNF54 & FCR3
Nd
Clutia abyssinica
Peraceae
[24]
Kenya
Leaves
Methanol
Moderate
7.8–11.3 µg/ml IC50
Plasmodium falciparum D6, W2
Nd
Clutia hirsuta
Peraceae
[22]
South Africa
Whole Plant
Dichloromethane/Methanol
Moderate
15 µg/ml IC50
Plasmodium falciparum D10
Nd
Clutia robusta
Peraceae
[24]
Kenya
Leaves
Methanol
Good
3.4–7.5 µg/ml IC50
Plasmodium falciparum D6, W2
Nd
Cochlospermum planchonii
Bixaceae
[78]
Burkina Faso
Rhizomes
Methanol, Dichloromethane
Gooda
2.4–11.5 μg/ml IC50
Plasmodium falciparum 3D7
Nd
[51]
Ivory Coast
Roots
Methylene Chloride
Very Good
4.4 µg/ml IC50
Plasmodium falciparum K1
No
Cochlospermum tinctorium
Bixaceae
[79]
Burkina Faso
Tubecles
Ns
Very Good
1–2 µg/ml IC50
Plasmodium falciparum
Nd
[79]
Burkina Faso
Tubercles
Water
Very Good
0.4–1.56 µg/ml IC50
Plasmodium falciparum Fcbl And F32
Nd
Cola caricaefolia
Malvaceae
[48]
Ivory Coast
Leaves
Pentane
Moderate
11–16 µg/ml IC50
Plasmodium falciparum FCM29, CQ-S (Nigerian)
No
Combretum collinum
Combretaceae
[52]
Burkina Faso
Leaves
Dichloromethane
Very Good
0.2 µg/ml IC50
Plasmodiumfalciparum
Nd
Combretum micranthum
Combretaceae
[57]
Ivory Coast
Stem, Leaves
Water
Very Good
0.88–1.7 µg/ml IC50
Plasmodium falciparum Fcb1 & F32
Nd
Combretum psidioides subsp. Psilophyllum
Combretaceae
[20]
Tanzania
Root Barks
Ethyl Acetate
Good
6.5 µg/ml IC50
Plasmodium falciparum K1
Nd
Combretum zeyheri
Combretaceae
[22]
South Africa
Twigs
Dichloromethane/Methanol
Moderate
15 µg/ml IC50
Plasmodium falciparum D10
Nd
Commiphora africana
Burseraceae
[24]
Kenya
Stem Barks
Methanol
Good
9.6–10.2 µg/ml IC50
Plasmodium falciparum D6, W2
Nd
Commiphora schimperi
Burseraceae
[26]
Kenya
Stem Barks
Methanol
Very Good
3.9–5.2 µg/ml IC50
Plasmodium falciparum D6, W2
Nd
[21]
Kenya
Inner Barks
Methanol
Very Good
4.63 µg/ml IC50
Plasmodium falciparum D6
No
Conyza albida
Asteraceae
[22]
South Africa
Whole Plant
Dichloromethane/Methanol
Very Good
2 µg/ml IC50
Plasmodium falciparum D10
Nd
Conyza podocephala
Asteraceae
[22]
South Africa
Whole Plant
Dichloromethane/Methanol
Good
6.8 µg/ml IC50
Plasmodium falciparum D10
Nd
Conyza scabrida
Asteraceae
[22]
South Africa
Flower
Dichloromethane/Methanol
Good
7.8 µg/ml IC50
Plasmodium falciparum D10
Nd
Copaifera religiosa
Fabaceae
[33]
Gabon
Leaves
Dichloromethane
Moderate
8.5–13.4 µg/ml IC50
Plasmodium falciparum FCB, 3D7
Yes (CC50 = 4.87 µg/ml; human embryonic lung cells [MRC-5])
Cordia myxa
Boraginaceae
[52]
Burkina Faso
Leaves
Dichloromethane
Good
6.2 µg/ml IC50
Plasmodiumfalciparum
Yes (SI = 0.5–0.9; HrpG2 cells)
Coula edulis
Olacaceae
[80]
Cameroon
Stem Barks
Methanol
Good
5.79–13.8 µg/ml IC50
Plasmodium falciparum 3D7, DD2
No
Crossopteryx febrifuga
Rubiaceae
[27]
Burkina Faso
Leaves
Crude Alkaloid
Good
4–10 µg/ml IC50
Plasmodium falciparum W2
Nd
Crotalaria burkeana
Fabaceae
[22]
South Africa
Roots
Dichloromethane
Good
9.5 µg/ml IC50
Plasmodium falciparum D10
Nd
Croton gratissimus var. subgratissimus
Euphorbiaceae
[22]
South Africa
Leaves
Dichloromethane
Very Good
3.5 µg/ml IC50
Plasmodium falciparum D10
Nd
Croton lobatus
Euphorbiaceae
[65]
Benin
Roots
Methanol
Good
2.80–6.56 µg/ml IC50
Plasmodium falciparum 3D7 & K1
Nd
Croton macrostachyus
Euphorbiaceae
[30]
Kenya
Leaves, Stems
Dichloromethane
Very Good
2.72 µg/ml IC50
Plasmodium falciparum W2, D6
Nd
Croton menghartii
Euphorbiaceae
[22]
South Africa
Leaves
Dichloromethane/Methanol
Very Good
1.7 µg/ml IC50
Plasmodium falciparum D10
Nd
Croton pseudopulchellus
Euphorbiaceae
[25]
South Africa
Stem Barks
Chloroform
Very Good
3.45 µg/ml IC50
Plasmodium falciparum UP1 (CQ-R)
Nd
Croton zambesicus
Euphorbiaceae
[55]
Cameroon
Stem Barks
Ethanol, Water, Dichloromethane, Methanol, Hexane
Good
0.88–9.14 µg/ml IC50
Plasmodium falciparum W2
Nd
[34]
Sudan
Fruits
Petroleum Ether/Chloroform
Very Good
 < 5 µg/ml IC50
Plasmodium falciparum
Nd
Cryptolepis sanguinolenta
Apocynaceae
[81]
Guinea-Bissau
Leaves, Roots
Ethanol, Chcl3, Chloroform
Very Good
1.79 µg/ml IC50
Plasmodium falciparum K1, T996
Nd
[82]
Ghana
Roots
Ethanol
Very gooda
0.031 µg/ml IC50
Plasmodium falciparum K1, Plasmodium berghei
Nd
[83]
D.R. Congo
Root barks
Water, ethanol, chloroform
Very good
27–41 ng/ml IC50
Plasmodium falciparum D6, K1, W2, Plasmodium berghei yoelii, Plasmodium berghei berghei
Nd
[84]
Ghana
Roots
Hexane, ethanol, dichloromethane
Very gooda
0.2–0.6 μM IC50
Plasmodium vinckei petteri, Plasmodium berghei ANKA
Nd
Cussonia spicata Thunb
Araliaceae
[22]
South Africa
Fruits
Dichloromethane/Methanol
Moderate
14 µg/ml IC50
Plasmodium falciparum D10
Nd
[37]
South Africa
Root Barks
Dichloromethane
Very Good
3.25 µg/ml IC50
Plasmodium falciparum NF54
Nd
Cussonia zimmermannii
Araliaceae
[20]
Tanzania
Root Barks
Petroleum Ether
Very Good
3.3 µg/ml IC50
Plasmodium falciparum K1
Nd
Cuviera longiflora
Rubiaceae
[80]
Cameroon
Leaves
Dichloromethane/Methanol
Moderate
13.91–20.24 µg/ml IC50
Plasmodium falciparum 3D7, DD2
No
Cyathala prostate
Amaranthaceae
[43]
Ivory Coast
Whole Plant
Ethanol
Moderate
12.4 µg/ml IC50
Plasmodium falciparum FCB1
Nd
Cyathula schimperiana
Amaranthaceae
[24]
Kenya
Root Barks
Methanol
Moderate
5–17.6 µg/ml C50
Plasmodium falciparum D6, W2
Nd
Cymbopogon validus
Poaceae
[22]
South Africa
Whole Plant
Dichloromethane/Methanol
Good
5.8 µg/ml IC50
Plasmodium falciparum D10
Nd
Cyperus articulatus
Cyperaceae
[24]
Kenya
Tubers
Methanol
Good
4.8–8.7 µg/ml C50
Plasmodium falciparum D6, W2
Nd
[74]
Kenya
Rhizomes
Methanol
Good
4.84–8.68 µg/ml IC50
Plasmodium falciparum NF54, ENT30
Nd
Cyphostemma spp
Vitaceae
[86]
Namibia
Whole Plant
Methanol
Very Good
3.276 µg/ml IC50
Plasmodium falciparum 3D7
Nd
Dacryodes edulis
Burseraceae
[80]
Cameroon
Leaves
Dichloromethane/Methanol
Good
6.45–8.62 µg/ml IC50
Plasmodium falciparum 3D7, DD2
No
[85]
Cameroon
Root Barks
Methylene Chloride/Methanol
Very Good
0.37 µg/ml IC50
Plasmodiumfalciparum
No
Dichapetalum guineense
Dichapetalaceae
[65]
Benin
Leaves
Methanol
Moderate
7.35- > 20 µg/ml IC50
Plasmodium falciparum 3D7 & K1
Nd
Dichrostachys cinerea Wight et Arn
Fabaceae
[37]
South Africa
Roots
Dichloromethane
Very Good
2.1 µg/ml IC50
Plasmodium falciparum NF54
Nd
Dicoma tomentosa
Asteraceae
[62]
Burkina Faso
Whole Plant
Dichloromethane, Methanol
Good
7.04–7.90 µg/ml IC50
Plasmodium falciparum 3D7 & W2
Nd
[87]
Burkina Faso
Whole plant
Dichloromethane
Very Good
1.9–3.4 µg/ml IC50
Plasmodium Falcipârum 3D7, W2, Plasmodium berghei
Nd
Diospyros abysinica
Ebenaceae
[75]
Uganda
Leaves
Ethyl Acetate
Nd
nd
Plasmodium falciparum Fcb2
Nd
Diospyros mespiliformis
Ebeneceae
[86]
Namibia
Leaves, Roots
Methanol
Very Good
3.179–3.523 µg/ml IC50
Plasmodium falciparum 3D7
Nd
[37]
South Africa
Roots
Dichloromethane
Very Good
4.40 µg/ml IC50
Plasmodium falciparum NF54
Nd
Diospyros monbuttensis
Ebenaceae
[88]
Nigeria
Leaves
Methanol
Very Good
3.2 nM
Plasmodium falciparum
Nd
Dombeya shupangae
Malvaceae
[20]
Tanzania
Root Barks
Ethyl Acetate
Good
7.5 µg/ml IC50
Plasmodium falciparum K1
Nd
Dorstenia convexa
Moraceae
[56]
Cameroon
Twigs
Ethanol, Water, Dichloromethane, Methanol, Hexane
Good
0.28–8.95 µg/ml IC50
Plasmodium falciparum W2
Nd
Dorstenia klaineana
Moraceae
[33]
Gabon
Stems
Methanol
Moderate
16.7–17.0 µg/ml IC50
Plasmodium falciparum Fcbm, W2
Yes (SI = 16.2–28.89; human embryonic lung cells [MRC-5])
Dracaena cambodiana
Asparagaceae
[45]
Cambodia
Stems
Dichloromethane
Good
8.7 µg/ml IC50
Plasmodium falciparum W2
Nd
Drypetes natalensis
Putranjivaceae
[31]
Tanzania
Roots
Ethanol
Very Good
1.06 µg/ml IC50
Plasmodium falciparum K1
No
Ekebergia capensis
Meliaceae
[22]
South Africa
Fruits
Dichloromethane/Methanol
Moderate
10 µg/ml IC50
Plasmodium falciparum D10
Nd
[76]
Kenya
Stem Barks
Chloroform
Good
3.9—13.4 µg/ml IC50
Plasmodium falciparum K39, ENT30, NF54, V1/S
Nd
[21]
Kenya
Inner Barks
Methanol
Very Good
3.97 µg/ml IC50
Plasmodium falciparum D6
No
[24]
Kenya
Stem Barks
Methanol
Moderate
10.5 µg/ml IC50
Plasmodium falciparum D6, W2
Nd
Elaeis guineensis
Arecaceae
[32]
Ghana
Leaves
Ethanol
Very Good
1.195 µg/ml IC50
Plasmodium falciparum 3D7
Nd
Elaeodendron buchananii
Celastraceae
[24]
Kenya
Stem Barks
Methanol
Moderate
17.1 µg/ml IC50
Plasmodium falciparum D6, W2
Nd
Enantia chlorantha
Annonaceae
[55]
Cameroon
Stem Barks
Ethanol, Water, Dichloromethane, Methanol, Hexane
Good
0.68–14.72 µg/ml IC50
Plasmodium falciparum W2
Nd
[40]
DR Congo
Stem Barks
Water
Good
7.77 µg/ml IC50
Plasmodium falciparum K1
Yes (CC50 = 3.0 µg/ml; human embryonic lung cells [MRC-5])
Entandrophragma angolense
Meliaceae
[89]
Cameroon
Stem Barks
Dichloromethane/Methanol
Moderate
18.4 µg/ml IC50
Plasmodium falciparum W2
Nd
Entandrophragma caudatum
Meliaceae
[25]
South Africa
Stem Barks
Dichloromethane
Very Good
2.9 µg/ml IC50
Plasmodium falciparum UP1 (CQ-R)
No
Entandrophragma palustre
Meliaceae
[46]
D.R. Congo
Stem barks
Methanol
Moderate
15.84 µg/ml IC50
Plasmodium falciparum 3D7, W2, Plasmodium berghei berghei
Nd
Erigeron floribundus
Asteraceae
[48]
Ivory Coast
Leaves
Pentane
Good
4.3-10 µg/ml IC50
Plasmodium falciparum FCM29, Plasmodium falciparum CQ-S (Nigerian)
Nd
Erioglossum edule
Sapindaceae
[45]
Cambodia
Barks
Dichloromethane
Very Good
1.7 µg/ml IC50
Plasmodium falciparum W2
Nd
Erythrina abyssinica
Fabaceae
[75]
Uganda
Barks
Ethyl Acetate
Nd
nd
Plasmodium falciparum Fcb3
Nd
Erythrina lysistemon
Fabaceae
[25]
South Africa
Stem Barks
Acetone
Very Good
4.8 µg/ml IC50
Plasmodium falciparum UP1 (CQ-R)
Nd
Erythrina sacleuxii
Fabaceae
[20]
Tanzania
Root Barks
Ethyl Acetate
Very Good
3.0 µg/ml IC50
Plasmodium falciparum K1
Nd
Erythrococca anomala
Euphorbiaceae
[43]
Ivory Coast
Leaves
Ethanol
Moderate
13.1 µg/dl IC50
Plasmodium falciparum FCB1
Nd
Euclea divinorum
Ebenaceae
[24]
Kenya
Root Barks
Methanol
Good
6.9–12.4 µg/ml IC50
Plasmodium falciparum D6, W2
Nd
Euclea natalensis
Ebenaceae
[22]
South Africa
Twigs
Dichloromethane/Methanol
Very Good
4.6 µg/ml IC50
Plasmodium falciparum D10
Nd
Eucomis autumnalis
Asparagaceae
[22]
South Africa
Bulbs
Dichloromethane/Methanol
Good
9.5 µg/ml IC50
Plasmodium falciparum D10
Nd
Euphorbia hirta
Euphorbiaceae
[90]
D.R. Congo
Aerial Parts
Methanol, Hexane: Ethyl Acetate
Gooda
1.1—5.4 µg/ml IC50
Plasmodium falciparum
No
[70]
D.R. Congo
Whole Plant
Petroleum Ether
Very Good
1.2 µg/ml IC50
Plasmodium falciparum
Nd
Euphorbia tirucalli
Euphorbiaceae
[22]
South Africa
Leaves
Dichloromethane
Moderate
12 µg/ml IC50
Plasmodium falciparum D10
Nd
Fadogia agrestis
Rubiaceae
[27]
Burkina Faso
Leaves
Crude Alkaloid
Good
4–10 µg/ml IC50
Plasmodium falciparum W2
Nd
Fagara macrophylla
Rutaceae
[28]
Ivory Coast
Stem Barks
Ethanol
Very Good
2.3 µg/ml IC50
Plasmodium falciparum Fcb1/Colombia Strain
No
Fagaropsis angolensis
Rutaceae
[24]
Kenya
Stem Barks
Methanol
Good
4.2–6.9 µg/ml IC50
Plasmodium falciparum D6, W2
Nd
Fagraea fragrans
Gentianaceae
[45]
Cambodia
Stems
Dichloromethane
Moderate
12.8 µg/ml IC50
Plasmodium falciparum W2
Nd
Ficus capraefolia
Moraceae
[52]
Burkina Faso
Leaves
Dichloromethane
Very Good
1.8 µg/ml IC50
Plasmodium falciparum
Yes (SI = 0.4; HepG2 cells)
Ficus platyhylla
Moraceae
[50]
Nigeria
Ns
Methanol, Water, Butanol, Ethyl Acetate
Moderate
13.77–15.28 µg/ml IC50
Plasmodium falciparum 3D7, K1
Yes (SI ≥ 77; mouse [NBMH])
Ficus sur
Moraceae
[24]
Kenya
Stem Barks
Methanol
Moderate
8.5–15.9 µg/ml IC50
Plasmodium falciparum D6, W2
Nd
[76]
Kenya
Stem Barks
Chloroform, Hexane
Moderate
9.0–19.2 µg/ml IC50
Plasmodium falciparum K39 (CQ-S), ENT30, NF54, V1/S
Nd
Ficus thonningii
Moraceae
[29]
Republic Of Congo
Leaves
Methanol, Ethanol
Good
9.61 µg/ml IC50
Plasmodium falciparum
No
[50]
Nigeria
Ns
Methanol, Water, Butanol, Ethyl Acetate
Moderate
14.09–25.06 µg/ml IC50
Plasmodium falciparum 3D7, K1
Yes (SI ≥ 103; mouse [NBMH])
Ficus sycomorus
Moraceae
[27]
Burkina Faso
Leaves
Crude Alkaloid
Good
4–10 µg/ml IC50
Plasmodium falciparum W2
Nd
Flueggea virosa
Phyllanthaceae
[91]
Comoros
Leaves
Water/Methanol
Very Good
2 µg/ml IC50
Plasmodium falciparum W2
No
[26]
Kenya
Stem Barks
Methanol
Very Good
2.2–3.6 µg/ml IC50
Plasmodium falciparum D6, W2
Nd
[22]
South Africa
Leaves, Twigs
Water
Moderate
11.4 µg/ml IC50
Plasmodium falciparum D10
Nd
Fuerstia africana
Lamiaceae
[92]
Rwanda
Leaves, Stems
Methanol
Good
4.1–6.9 µg/ml IC50
Plasmodium falciparum 3D7, W2
Yes (SI = 1.9; human normal foetal lung fibroblast [WI-38)
[21]
Kenya
Leaves
Methanol
Very Good
3.76 µg/ml IC50
Plasmodium falciparum D6
No
[24]
Kenya
Whole Plant
Methanol
Very Good
0.9–2.4 µg/ml IC50
Plasmodium falciparum D6, W2
Nd
Funtumia elastica
Apocynaceae
[43]
Ivory Coast
Stem Barks
Ethanol
Very Good
3.6 µg/ml IC50
Plasmodium falciparum FCB1
Nd
[28]
Ivory Coast
Stem Barks
Ethanol
Very Good
3.3 µg/ml IC50
Plasmodium falciparum Fcb1/Colombia Strain
No
Funtumia latifolia
Apocynaceae
[75]
Uganda
Leaves
Ethyl Acetate
Nd
nd
Plasmodium falciparum Fcb4
Nd
Garcinia kola
Clusiaceae
[67]
D.R. Congo
Seeds
Ethanol, Methanol, Petroleum Ether, Chloroform
Good
1.02—15.75 µg/ml IC50
Plasmodium falciparum
Nd
[69]
D.R. Congo
Stem Barks
Petroleum Ether
Very Good
1.6 µg/ml IC50
Plasmodium falciparum
Nd
Gardenia lutea
Rubiaceae
[23]
Sudan
Leaves
Methanol
Good
3.3–5.2 µg/ml IC50
Plasmodium falciparum 3D7, Dd2
No
Gardenia sokotensis
Rubiaceae
[62]
Burkina Faso
Leaves
Dichloromethane
Moderate
14.01 µg/ml IC50
Plasmodium falciparum 3D7 & W2
Nd
Glinus oppositifolius
Molluginaceae
[93]
Mali
Aerial parts
Chloroform
Moderate
15.52–18.70 µg/ml IC50
Plasmodium falciparum W2 & 3D7
No
Gloriosa superba
Colchicaceae
[22]
South Africa
Whole plant
Dichloromethane/Methanol
Moderate
17 µg/ml IC50
Plasmodium falciparum D10
Nd
Gnidia cuneata
Thymelaeaceae
[22]
South Africa
Stems
Dichloromethane
Moderate
15.9 µg/ml IC50
Plasmodium falciparum D10
Nd
Gnidia kraussiana var. kraussiana
Thymelaeaceae
[22]
South Africa
Leaves, Twigs
Dichloromethane/Methanol
Moderate
10.8 µg/ml IC50
Plasmodium falciparum D10
Nd
Gomphrena celosioides
Amaranthaceae
[65]
Benin
Aerial Parts
Methanol
Good
4.26–14.97 µg/ml IC50
Plasmodium falciparum 3D7 & K1
Nd
[70]
Togo
Aerial Parts
Water
Moderate
 < 15 µg/ml IC50
Plasmodium falciparum
Nd
[20]
Tanzania
Whole plant
Ethyl Acetate
Moderate
15 µg/ml IC50
Plasmodium falciparum K1
Nd
Guiera senegalensis
Combretaceae
[57]
Ivory Coast
Stem, Leave
Water
Good
0.79–7.03 µg/ml IC50
Plasmodium falciparum Fcb1 & F32
Nd
[94]
Mali
Roots
Chloroform
Very Gooda
 < 4 µg/ml IC50
Plasmodium falciparum
Nd
Gutenbergia cordifolia
Asteraceae
[21]
Kenya
Leaves
Methanol
Very Good
4.40 µg/ml IC50
Plasmodium falciparum D6
No
Gynandropsis gynandra
Cleomaceae
[20]
Tanzania
Roots
Ethyl Acetate
Moderate
14 µg/ml IC50
Plasmodium falciparum K1
Nd
H. suaveolens
Lamiaceae
[53]
Nigeria
Leaves
Petroleum Ether
Very Good
2.54 µg/ml IC50
Plasmodium falciparum D10
Nd
Haplophyllum tuberculatum
Rutaceae
[23]
Sudan
Aerial Parts
Methanol
Very Good
1.2–1.5 µg/ml IC50
Plasmodium falciparum 3D7, Dd2
No
Harrisonia abyssinica
Rutaceae
[58]
Sudan
Stem Barks
Methanol
Good
4.7–10 µg/ml IC50
Plasmodium falciparum 3D7, Dd3
Nd
[72]
Kenya
Stem Barks
Dichloromethane
Good
4.4–5.6 µg/ml IC50
Plasmodium falciparum K1, NF54
Nd
[26]
Kenya
Root Barks
Methanol
Good
7.8–11.4 µg/ml IC50
Plasmodium falciparum D6, W2
Nd
[95]
Kenya
Barks/Roots/Stem
Water
Very Good
1.0 µg/ml IC50
Plasmodium Knowlesi
Nd
Harrisonia perforata
Rutaceae
[45]
Cambodia
StemS
Dichloromethane
Good
6.0 µg/ml IC50
Plasmodium falciparum W2
Nd
Harungana madagascariensis
Hypericaceae
[40]
D.R.Congo
Stem Barks
Water
Good
9.64 µg/ml IC50
Plasmodium falciparum K1
No
[20]
Tanzania
Roots
Ethyl Acetate
Very Good
4.0 µg/ml IC50
Plasmodium falciparum K1
Nd
Helichrysum gymnocephalum
Asteraceae
[96]
Madagascar
Leaves
Essential Oil
In Active
25 mg/l
Plasmodium falciparum Fcb1
Nd
Helichrysum cymosum
Asteraceae
[97]
South Africa
Leaves
Water, Essential Oil
Very Gooda
1.25 µg/ml IC50
Plasmodium falciparum FCR-3
Yes
Helichrysum nudifolium
Asteraceae
[22]
South Africa
Whole plant
Dichloromethane/Methanol
Good
6.8 µg/ml IC50
Plasmodium falciparum D10
Nd
Hermannia depressa
Malvaceae
[22]
South Africa
Whole plant
Dichloromethane/Methanol
Good
6.9 µg/ml IC50
Plasmodium falciparum D10
Nd
Hexalobus crispiflorus
Annonaceae
[98]
Cameroon
Stem Barks
Water
Very Gooda
2.0 µg/ml IC50
Plasmodium falciparum W6
Nd
Hippobromus pauciflorus
Sapindaceae
[22]
South Africa
Twigs
Dichloromethane/Methanol
Good
5.9 µg/ml IC50
Plasmodium falciparum D10
Nd
Holarrhena floribunda
Apocynaceae
[99]
Cameroon
Stem Barkss
Water, Ethanol
Good
1.02 − 18.53 μg/mL IC50
Plasmodium falciparum W2,D6, FCR-3, 3D7
Nd
Hoslundia opposita
Lamiaceae
[20]
Tanzania
Root Barks
Petroleum Ether
Moderate
10 µg/ml IC50
Plasmodium falciparum K1
Nd
[26]
Kenya
Leaves
Methanol
Moderate
15.2–25.6 µg/ml IC50
Plasmodium falciparum D6, W2
Nd
[75]
Uganda
Leaves
Ethyl Acetate
Nd
nd
Plasmodium falciparum Fcb5
Nd
Hunteria eburnea
Apocynaceae
[43]
Ivory Coast
Stem Barks
Ethanol
Very Good
2.2 µg/ml IC50
Plasmodium falciparum FCB1
Nd
Hybanthus enneaspermus
Violaceae
[65]
Benin
Aerial Parts
Methanol
Moderate
2.57- > 20 µg/ml IC50
Plasmodium falciparum 3D7 & K1
Nd
Hymenocardia acida
Phyllanthaceae
[51]
Ivory Coast
Leaves
Methylene Chloride
Good
6.9 µg/ml IC50
Plasmodium falciparum K1
Yes (SI = 6–10; rat skeletal muscle myoblast [L6])
Hypericum aethiopicum
Hypericaceae
[22]
South Africa
Leaves/Flowers
Dichloromethane/Methanol
Very Good
1.4 µg/ml IC50
Plasmodium falciparum D10
Nd
Hypericum lanceolatum
Hypericaceae
[80]
Cameroon
Stem Barks
Methanol, N-Hexane, Ethyl Acetate, N-Butanol
Very Good
3.98 µg/ml IC50
Plasmodium falciparum W2, SHF4
Nd
Hypoestes forskaolii
Acanthaceae
[24]
Kenya
Root Barks
Methanol
Good
4.3–6.7 µg/ml IC50
Plasmodium falciparum D6, W2
Nd
Hyptis pectinata
Lamiaceae
[22]
South Africa
Leaves, Stem, Flower
Dichloromethane/Methanol
Moderate
17.5 µg/ml IC50
Plasmodium falciparum D10
Nd
Icacina senegalensis
Icacinaceae
[100]
Senegal
Leaves
Methanol
Good
4.7–8 µg/ml IC50
Plasmodium falciparum 3D7, 7G8
No
Isolona hexaloba
Annonaceae
[40]
D.R. Congo
Root Barks
Water
Moderate
15.28 µg/ml IC50
Plasmodium falciparum K1
No
Khaya grandifoliola
Meliaceae
[101]
Cameroon
Barks, Seeds
Methanol-Methylene Chloride
Gooda
1.25—9.63 μg/ml IC50
Plasmodium falciparum W2
Nd
Khaya senegalensis
Meliaceae
[50]
Nigeria
Ns
Methanol, Water, Butanol, Ethyl Acetate
Moderate
15.46–28.12 µg/ml IC50
Plasmodium falciparum 3D7, K1
Yes (SI ≥ 69; mouse [NBMH])
Kigelia africana
Bignoniaceae
[24]
Kenya
Leaves
Methanol
Moderate
15.9 µg/ml IC50
Plasmodium falciparum D6, W2
Nd
[80]
Cameroon
Stem Barks
Ethyl Acetate
Moderate
11.15 μg/mL IC50
Plasmodium falciparum W2
No
Kirkia wilmsii
Kirkiaceae
[22]
South Africa
Leaves
Dichloromethane/Methanol
Very Good
3.7 µg/ml IC50
Plasmodium falciparum D10
Nd
Kniphofia foliosa
Xanthorrhoeaceae
[102]
Ethiopia
Roots
Dichloromethane
Very Good
3.8 µg/mL ED50
Plasmodium falciparum 3D7
No
Landolphia lanceolata
Apocynaceae
[103]
Congo Brazzaville
Roots
Dichloromethane
Moderate
11 µg/ml IC50
Plasmodium falciparum Fcm29-Cameroon
Nd
Lannea edulis
Anacardiaceae
[20]
Kenya
Whole Plant
Ethyl Acetate
Moderate
17 µg/ml IC50
Plasmodium falciparum K1
Nd
Lantana camara
Verbenaceae
[22]
South Africa
Leaves, Twigs
Dichloromethane/Methanol
Moderate
11 µg/ml IC50
Plasmodium falciparum D10
Nd
Leonotis mollissima
Lamiaceae
[20]
Tanzania
Leaves
Ethyl Acetate
Good
9 µg/ml IC50
Plasmodium falciparum K1
Nd
Leonotis africana
Lamiaceae
[33]
Gabon
Stems
Dichloromethane
Moderate
15.2–27.1 µg/ml IC50
Plasmodium falciparum Fcbm W2
Yes (SI = 6.07–6.82; human embryonic lung cells [MRC-5])
Leonotis leonurus
Lamiaceae
[22]
South Africa
Leaves, Twigs
Dichloromethane/Methanol
Good
5.4 µg/ml IC50
Plasmodium falciparum D10
Nd
Leonotis nepetifolia
Lamiaceae
[22]
South Africa
Whole Plant
Dichloromethane/Methanol
Moderate
15 µg/ml IC50
Plasmodium falciparum D10
Nd
Leonotis ocymifolia
Lamiaceae
[22]
South Africa
Leaves
Dichloromethane/Methanol
Good
6.1 µg/ml IC50
Plasmodium falciparum D10
Nd
Leptadenia madagascariensis
Apocynaceae
[91]
Comoros
Ns
Dichloromethane
Good
9 µg/ml IC50
Plasmodium falciparum W2
No
Leucas calostachys
Lamiaceae
[95]
Kenya
Whole Plant
Water
Very Good
0.79 µg/ml IC50
Plasmodium Knowlesi
Nd
Leucas martinicensis
Lamiaceae
[22]
South Africa
Whole Plant
Dichloromethane/Methanol
Moderate
13.3 µg/ml IC50
Plasmodium falciparum D10
Nd
Lippia javanica
Verbenaceae
[24]
Kenya
Root Barks
Methanol
Good
5.9 µg/ml IC50
Plasmodium falciparum D6, W2
Nd
[104]
Kenya
Roots
Dichloromethane/Ethyl Acetate
Moderate
16.7—19.2 µg/ml IC50
Plasmodium falciparum K39, V1/S
Nd
[22]
South Africa
Roots
Dichloromethane
Very Good
3.8 µg/ml IC50
Plasmodium falciparum D10
Nd
[25]
South Africa
Leaves
Acetone
Very Good
4.26 µg/ml IC50
Plasmodium falciparum UP1 (CQ-R)
Nd
Lippia multiflora
Verbenaceae
[57]
Ivory Coast
Leaves
Water
Very Good
1.18—2.34 µg/ml IC50
Plasmodium falciparum Fcb1 & F32
Nd
Lophira lanceolata
Ochnaceae
[52]
Burkina Faso
Leaves
Dichloromethane
Very Good
4.7 µg/ml IC50
Plasmodium falciparum
Nd
Ludwigia erecta
Onagraceae
[24]
Kenya
Whole plant
Methanol
Very Good
0.9–1.6 µg/ml IC50
Plasmodium falciparum D6, W2
Nd
Macrostylis squarrosa
Rutaceae
[22]
South Africa
Stems
Dichloromethane/Methanol
Moderate
16 µg/ml IC50
Plasmodium falciparum D10
Nd
Maesa lanceolata
Primulaceae
[22]
South Africa
Twigs
Dichloromethane/Methanol
Good
5.9 µg/ml IC50
Plasmodium falciparum D10
Nd
Markhamia lutea
Bignognaceae
[76]
Uganda
Leaves
Ethyl Acetate
Nd
Nd
Plasmodium falciparum Fcb6
Nd
Maytenus heterophylla
Celastraceae
[24]
Kenya
Root barks
Methanol
Very Good
1.8–3.9 µg/ml IC50
Plasmodium falciparum D6, W2
Nd
Maytenus obtusifolia
Celastraceae
[24]
Kenya
Root barks
Methanol
Good
 < 1.9–5.8 µg/ml IC50
Plasmodium falciparum D6, W2
Nd
Maytenus putterlickioides
Celastraceae
[26]
Kenya
Root Barks
Methanol
Good
4.4–10.2 µg/ml IC50
Plasmodium falciparum D6, W2
Nd
Maytenus senegalensis
Celastraceae
[58]
Sudan
Stem barks
Methanol
Nd
3.9–10 µg/ml IC50
Plasmodium falciparum 3D7, Dd9
Nd
[26]
Kenya
Root barks
Methanol
Good
4.7–9.8 µg/ml IC50
Plasmodium falciparum D6, W2
Nd
[22]
South Africa
Roots
Dichloromethane
Moderate
15.5 µg/ml IC50
Plasmodium falciparum D10
Nd
[20]
Tanzania
Stem barks
Ethyl Acetate
Very Good
0.16 µg/ml IC50
Plasmodium falciparum K1
Nd
[31]
Tanzania
Roots
Ethanol
Very Good
2.05 µg/ml IC50
Plasmodium falciparum K1
No
Maytenus undata
Celastraceae
[26]
Kenya
Leaves
Water
Very Good
0.95–1.9 µg/ml IC50
Plasmodium falciparum D6, W2
Nd
Melia azedarach
Meliaceae
[46]
D.R. Congo
Leaves
Dichloromethane
Moderate
19.14 µg/ml IC50
Plasmodium falciparum 3D7, W2, Plasmodium berghei berghei
Nd
Microdesmis keayana
Pandaceae
[51]
Ivory Coast
Leaves
Methylene Chloride
Moderate
12.2 µg/ml IC50
Plasmodium falciparum K1
No
Microglossa pyrifolia
Asteraceae
[24]
Kenya
Leaves
Methanol
Moderate
10.4 µg/ml IC50
Plasmodium falciparum D6, W2
Nd
[77]
Uganda
Leaves
Ethyl Acetate
Very Good
0.03–0.05 µg/ml IC50
Plasmodium falciparum NF54 & FCR3
Nd
[92]
Rwanda
Leaves
Dichloromethane
Very Good
1.5–2.4 µg/ml IC50
Plasmodium falciparum 3D7, W2
Yes (SI = 3.2; human normal foetal lungfibroblast [WI-38])
Mikania cordata
Compositae
[20]
Tanzania
Leaves
Ethyl Acetate
Moderate
14 µg/ml IC50
Plasmodium falciparum K1
Nd
Millettia zechiana
Fabaceae
[28]
Ivory Coast
Stem Barks
Ethanol
Moderate
16.1 µg/ml IC50
Plasmodium falciparum Fcb1/Colombia Strain
Nd
[43]
Ivory Coast
Stem Barks
Ethanol
Moderate
14.1 µg/ml IC50
Plasmodium falciparum FCB1
Nd
Momordica balsamina
Cucurbitaceae
[22]
South Africa
Stems
Dichloromethane/Methanol
Good
5.3 µg/ml IC50
Plasmodium falciparum D10
Nd
[68]
Mozambique
Aerial Parts
Ns
Very Gooda
1 μM
Plasmodium berghei, Plasmodium falciparum
Nd
Momordica charantia
Cucurbitaceae
[88]
Nigeria
Leaves
Methanol
Very Good
12.5 nM
Plasmodium falciparum
Nd
Momordica foetida
Cucurbitaceae
[77]
Uganda
Leaves
Water
Good
0.35–6.16 µg/ml IC50
Plasmodium falciparum NF54 & FCR3
Nd
Monodora myristica
Annonaceae
[33]
Gabon
Stem
Methanol
Good
5.5–6.1 µg/ml IC50
Plasmodium falciparum Fcbm W2
No
[49]
Cameroon
Leaves
Methanol
Good
9.03 µg/ml IC50
Plasmodium falciparum W2
Nd
Morinda lucida
Rubiaceae
[74]
S. Tome´ And Prı ´Ncipe
Barks
Ethanol
Good
 < 10 µg/ml IC50
Plasmodium falciparum 3D7 and Dd2
Nd
[88]
Nigeria
Leaves
Methanol
Very Good
25 nM
Plasmodium falciparum
Nd
[53]
Nigeria
Roots
Dichloromethane
Moderate
13.37 µg/ml IC50
Plasmodium falciparum D10
Nd
Morinda morindoides
Rubiaceae
[43]
Ivory Coast
Leaves
Ethanol
Good
9.8 µg/ml IC50
Plasmodium falciparum FCB1
Nd
[28]
Ivory Coast
Leaves
Ethanol
Moderate
11.6 µg/ml IC50
Plasmodium falciparum Fcb1/Colombia Strain
Nd
Moringa oleifera
Moringaceae
[26]
Kenya
Leaves
Methanol
Moderate
9.8 µg/ml IC50
Plasmodium falciparum D6, W2
Nd
Motandra guineensis
Apocynaceae
[43]
Ivory Coast
Leaves
Ethanol
Moderate
16.3 µg/ml IC50
Plasmodium falciparum FCB1
Nd
Mundulea sericea
Fabaceae
[86]
Namibia
Leaves, Shoots
Methanol
Very Good
3.279–3.352 µg/ml IC50
Plasmodium falciparum 3D7
Nd
Mitragyna inermis
Rubiaceae
[93]
Mali
Leaves
Chloroform
Very Good
4.36–4.82 µg/ml IC50
Plasmodium falciparum W2 & 3D7
No
Nauclea latifolia
Rubiaceae
[93]
Mali
Barks
Chloroform
Good
5.36–6.2 µg/ml IC50
Plasmodium falciparum W2 & 3D7
Yes (IC50 = 50 µg/ml; BALB/C mouse)
[28]
Ivory Coast
Barks
Ethanol
Good
8.9 µg/ml IC50
Plasmodium falciparum Fcb1/Colombia Strain
No
[106]
Ivory Coast
Roots, Stem
Water
Good
0.6–7.5 µg/ml IC50
Plasmodium falciparum Fcb1- Colombian And Nigerian Strains
Nd
[43]
Ivory Coast
Root Barks
Ethanol
Good
7.3 µg/ml IC50
Plasmodium falciparum FCB1
Nd
Nauclea pobeguinii
Rubiaceae
[107]
D.R.Congo
Stem Barks
Ethanol
In Active
32 µg/ml IC50
Plasmodium falciparum, Plasmodium yeolii, Plasmodium berghei
No
Neoboutonia glabrescens
Euphorbiaceae
[55]
Cameroon
Leaves
Ethanol, Water, Dichloromethane, Methanol, Hexane
Good
7.56 µg/ml IC50
Plasmodium falciparum W2
Nd
Neorautanenia mitis
Fabaceae
[31]
Tanzania
Tubers
Ethanol
Very Good
1.58 µg/ml IC50
Plasmodium falciparum K1
No
Newbouldia laevis
Bignognaceae
[108]
Togo
Leaves
Ethanol
Moderate
12.6 µg/ml IC50
Plasmodium falciparum
Nd
[109]
Nigeria
Leaves
Water
Moderate
19.5 µg/ml IC50
Plasmodium falciparum
Nd
[53]
Nigeria
Roots
Dichloromethane
Good
5.00 µg/ml IC50
Plasmodium falciparum D10
Nd
Ocimum americana
Lamiaceae
[24]
Kenya
Whole Plant
Methanol
Moderate
8.9–12.1 µg/ml IC50
Plasmodium falciparum D6, W2
Nd
[22]
South Africa
Whole Plant
Dichloromethane/Methanol
Very Good
4.2 µg/ml IC50
Plasmodium falciparum D10
Nd
Ocimum basilicum
Lamiaceae
[159]
D.R. Congo
Leaves
Ethanol, Methanol, Petroleum Ether, Chloroform
Good
 < 0.35–18 µg/ml IC50
Plasmodium falciparum
Nd
[26]
Kenya
Leaves
Methanol
Moderate
16.4 µg/ml IC50
Plasmodium falciparum D6, W2
Nd
Ocimum gratissimum
Lamiaceae
[30]
Kenya
Leaves, Twigs
Dichloromethane
Good
8.616 µg/ml IC50
Plasmodium falciparum W2, D6
Nd
[40]
DR Congo
Leaves
Water
Good
7.25 µg/ml IC50
Plasmodium falciparum K1
No
[26]
Kenya
Leaves
Methanol
Good
5.9 µg/ml IC50
Plasmodium falciparum D6, W2
Nd
Ocimum kilimandscharicum
Lamiaceae
[30]
Kenya
Leaves, Twigs
Dichloromethane
Very Good
0.843–1.547 µg/ml IC50
Plasmodium falciparum W2, D6
Nd
Olax gambecola
Olacaceae
[43]
Ivory Coast
Whole Plant
Ethanol
Good
5.2 µg/ml IC50
Plasmodium falciparum FCB1
Nd
Olea europaea
Oleaceae
[24]
Kenya
Stem Barks
Methanol
Moderate
17.3 µg/ml IC50
Plasmodium falciparum D6, W2
Nd
[21]
Kenya
Inner Barks
Methanol
Good
9.48 µg/ml IC50
Plasmodium falciparum D6
No
[22]
South Africa
Leaves
Dichloromethane/Methanol
Moderate
12 µg/ml IC50
Plasmodium falciparum D10
Nd
Opilia celtidifolia
Opiliaceae
[52]
Burkina Faso
Leaves
Dichloromethane
Very Good
2.8 µg/ml IC50
Plasmodium falciparum
Yes (SI = 0.4; HepG2 cells)
Ormocarpum trachycarpum
Fabaceae
[77]
Kenya
Stem Barks
Dichloromethane/Ethyl Acetate
Moderate
17.5—19.6 µg/ml IC50
Plasmodium falciparum K39, V1/S
Nd
Osteospermum imbricatum
Asteraceae
[22]
South Africa
Stems
Dichloromethane/Methanol
Good
7.3 µg/ml IC50
Plasmodium falciparum D10
Nd
Phyllanthus amarus
Phyllanthaceae
[53]
Nigeria
Leaves
Petroleum Ether
Very Good
4.99 µg/ml IC50
Plasmodium falciparum D10
Nd
Pachypodanthium confine
Annonaceae
[98]
Cameroon
Stem Barks
Water
Moderatea
16.6 µg/ml IC50
Plasmodium falciparum W3
Nd
Pappea capensis Eckl.& Zeyh
Sapindaceae
[37]
South Africa
Twigs
Dichloromethane
Good
5.47 µg/ml IC50
Plasmodium falciparum NF54
Nd
Parinari curatellifolia
Chrysobalanaceae
[22]
South Africa
Roots
Dichloromethane
Good
5.3 µg/ml IC50
Plasmodium falciparum D10
Nd
[24]
Kenya
Root Barks
Methanol
Good
3.9–7.9 µg/ml IC50
Plasmodium falciparum D6, W2
Nd
[37]
South Africa
Stem Barks
Dichloromethane
Good
6.99 µg/ml IC50
Plasmodium falciparum NF54
Nd
Parinari excelsa
Chrysobalanaceae
[20]
Tanzania
Stem Barks
Ethyl Acetate
Moderate
10 µg/ml IC50
Plasmodium falciparum K1
Nd
[75]
Uganda
Barks
Ethyl Acetate
Nd
Nd
Plasmodium falciparum Fcb7
Nd
Parkinsonia aculeata
Fabaceae
[22]
South Africa
Twigs
Dichloromethane/Methanol
Good
9 µg/ml IC50
Plasmodium falciparum D10
Nd
Pavetta corymbosa
Rubiaceae
[65]
Benin
Aerial parts
Methanol
Moderate
5.54–20 µg/ml IC50
Plasmodium falciparum 3D7 & K1
Nd
[110]
Togo
Aerial parts
Methanol
Very Good
2.042 µg/ml IC50
Plasmodium falciparum
Nd
[110]
Togo
Aerial part
Methanol
Very Good
2.042 µg/ml IC50
Plasmodium falciparum
Nd
Pavetta crassipes
Rubiaceae
[27]
Burkina Faso
Leaves
Crude Alkaloid
Very Good
 < 4 µg/ml IC50
Plasmodium falciparum W2
Nd
[71]
Togo
Aerial parts
Water
Good
 < 7 µg/ml IC50
Plasmodium falciparum
Nd
Pelargonium alchemilloides
Geraniaceae
[22]
South Africa
Whole plant
Dichloromethane/Methanol
Moderate
15 µg/ml IC50
Plasmodium falciparum D10
Nd
Pentas lanceolata
Rubiaceae
[21]
Kenya
Root barks
Methanol
Good
5.15 µg/ml IC50
Plasmodium falciparum D6
No
Pentas longiflora
Rubiaceae
[26]
Kenya
Root barks
Methanol
Moderate
13.3 µg/ml IC50
Plasmodium falciparum D6, W2
Nd
Pentzia globosa
Asteraceae
[22]
South Africa
Roots
Dichloromethane
Good
8 µg/ml IC50
Plasmodium falciparum D10
Nd
Phyllanthus amarus
Phyllanthaceae
[111]
Ghana
Whole Plant
Ethanol
Moderate
11.7 µg/ml IC50
Plasmodium falciparum Dd2
No
Phyllanthus fraternus
Phyllanthaceae
[112]
Ghana
Whole plant
Methanol
Very Good
0.44 µg/ml IC50
Plasmodium falciparum 3D7, W2
No
Phyllanthus muellerianus
Phyllanthaceae
[28]
Ivory Coast
Leaves
Ethanol
Good
9.4 µg/ml IC50
Plasmodium falciparum Fcb1/Colombia Strain
No
[43]
Ivory Coast
Leaves
Ethanol
Moderate
10.3 µg/ml IC50
Plasmodium falciparum FCB1
Nd
Phyllanthus niruri
Phyllanthaceae
[69]
D.R.Congo
Whole Plant
Petroleum Ether
Very Good
1.3 µg/ml IC50
Plasmodium falciparum
Nd
Phyllanthus urinaria
Phyllanthaceae
[45]
Cambodia
Whole Plant
Water
Very Good
2.4 µg/ml IC50
Plasmodium falciparum W2
Nd
Physalis angulata
Solanaceae
[28]
Ivory Coast
Whole Plant
Ethanol
Good
7.9 µg/ml IC50
Plasmodium falciparum Fcb1/Colombia Strain
Nd
[43]
Ivory Coast
Whole Plant
Ethanol
Good
7.9 µg/ml IC50
Plasmodium falciparum FCB1
Nd
[44]
D.R. Congo
Leaves
Methanolic and dichloromethane
Very good
1.27 µg/ml IC50
Plasmodium falciparum 3D7, W2, Plasmodium berghei berghei
No
Picralima nitida
Apocynaceae
[53]
Nigeria
Roots
Ethanol
Good
6.29 µg/ml IC50
Plasmodium falciparum D10
Nd
[113]
Nigeria
Stems
Methanol
Good
6.0–6.3 µg/ml IC50
Plasmodium falciparum D6, W2
No
[89]
Cameroon
Seeds
Methanol
Moderate
10.9 µg/ml IC50
Plasmodium falciparum W2
Nd
[114]
Ivory Coast
Root, Stem Barks Ans Fruit Rins
Ns
Very Good
0.188–1.581 μg/ml IC50
Plasmodium falciparum
Nd
Piper capense
Piperaceae
[91]
Comoros
Ns
Dichloromethane
Good
7 µg/ml IC50
Plasmodium falciparum W2
No
Piptadeniastrum africanum
Leguminosae
[40]
D.R. Congo
Stem Barks
Water
Good
6.11 µg/ml IC50
Plasmodium falciparum K1
Yes (SI = 1.4–1.5; human embryonic lung cells [MRC-5])
[40]
D.R.Congo
Stem Barks
Water
Good
6.11 µg/ml IC50
Plasmodium falciparum K1
No
Piptostigma calophyllum
Annonaceae
[49]
Cameroon
Leaves
Methanol
Good
6.72 µg/ml IC50
Plasmodium falciparum W2
Nd
Pittosporum viridiflorum
Pittosporaceae
[24]
Kenya
Leaves
Methanol
Moderate
17.6–18.9 µg/ml iC50
Plasmodium falciparum D6, W2
Nd
[22]
South Africa
Whole Plant
Dichloromethane
Very Good
3 µg/ml IC50
Plasmodium falciparum D10
Nd
Plumbago zeylanica
Plumbaginaceae
[22]
South Africa
Leaves
Dichloromethane
Very Good
3 µg/ml IC50
Plasmodium falciparum D10
Nd
Podocarpus latifolius
Podocarpaceae
[21]
Kenya
Root Barks
Methanol
Good
6.43 µg/ml IC50
Plasmodium falciparum D6
No
Pollichia campestris
Caryophyllaceae
[22]
South Africa
Twigs
Dichloromethane/Methanol
Good
6.8 µg/ml IC50
Plasmodium falciparum D10
Nd
Polyalthia longifolia
Annonaceae
[115]
Ghana
Stem Barks
Ethanol, N-Hexane,Dichloromethane, Ethyl Acetate, Methanol-Ethyl Acetate
Gooda
3–6 µg/ml IC50
Plasmodium falciparum K1
No
[116]
Ghana
Stem Barks
Methanol, Chloroform, Cyclohexane, Ethyl Acetate
Gooda
4.53–10.17 µM IC50
Plasmodium falciparum 3D8
Nd
Polyalthia oliveri
Annonaceae
[55]
Cameroon
Stem Barks
Ethanol, Water, Dichloromethane, Methanol, Hexane
Very Good
4.30 µg/ml IC50
Plasmodium falciparum W2
Nd
[49]
Cameroon
Stem Barks
Methanol
Very Good
3.43 µg/ml IC50
Plasmodium falciparum W2
Nd
Polyalthia suaveolens
Annonaceae
[49]
Cameroon
Twigs
Methanol
Very Good
3.23 µg/ml IC50
Plasmodium falciparum W2
Nd
Polygonatum verticillatum
Asparagaceae
[117]
Kenya
Rhizome
N-Hexane, Chloroform
Very Good
2.33—4.62 μg/ml IC50
Plasmodium
falciparum
No
Premna chrysoclada
Lamiaceae
[26]
Kenya
Leaves
Methanol
Moderate
11.1 µg/ml IC50
Plasmodium falciparum D6, W2
Nd
Prosopis africana
Fabaceae
[50]
Nigeria
Ns
Methanol, Water, Butanol, Ethyl Acetate
Moderate
14.97–15.28 µg/ml IC50
Plasmodium falciparum 3D7, K1
Yes (SI ≥ 99; mouse heart-derived cells [NBMH])
Prunus africana
Rosaceae
[24]
Kenya
Stem Barks
Methanol
Moderate
17.3 µg/ml IC50
Plasmodium falciparum D6, W2
Nd
Pseudospondias microcarpa
Anacardiaceae
[31]
Tanzania
Roots
Ethanol
Very Good
1.13 µg/ml IC50
Plasmodium falciparum K1
No
Psiadia punctulata
Asteraceae
[22]
South Africa
Twigs
Dichloromethane
Good
9 µg/ml IC50
Plasmodium falciparum D10
Nd
Psidium guajava
Myrtaceae
[40]
DR Congo
Leaves
Water
Good
5.46 µg/ml IC50
Plasmodium falciparum K1
No
[20]
Tanzania
Leaves
Ethyl Acetate
Moderate
10 µg/ml IC50
Plasmodium falciparum K1
Nd
Psorospermum senegalense
Hypericaceae
[63]
Burkina Faso
Leaves
Dichloromethane
Moderate
10.03 µg/ml IC50
Plasmodium falciparum 3D7 & W2
No
Ptaeroxylon obliquum
Rutaceae
[22]
South Africa
Stems
Dichloromethane/Methanol
Good
5.5 µg/ml IC50
Plasmodium falciparum D10
Nd
Pterocarpus angolensis
Fabaceae
[22]
South Africa
Roots
Dichloromethane
Moderate
10.6 µg/ml IC50
Plasmodium falciparum D10
Nd
Pterocarpus erinaceus
Fabaceae
[118]
Burkina Faso
Leaves Ans Barks
Ethanol, Chloroform
Very Good
1.93 µg/ml IC50
Plasmodium falciparum 3D7 And Dd2
Nd
Pulicaria crispa
Asteraceae
[34]
Sudan
Whole Plant
Petroleum Ether/Chloroform
Very Good
 < 5 µg/ml IC50
Plasmodium falciparum
Nd
Pycnanthus angolensis
Myristicaceae
[28]
Ivory Coast
Stem Barks
Ethanol
Moderate
18.2 µg/ml IC50
Plasmodium falciparum Fcb1/Colombia Strain
Nd
[74]
S. Tome´ And Prı ´Ncipe
Barks
Ethanol
Very Good
 < 5 µg/ml IC50
Plasmodium falciparum 3D7 And Dd2
Nd
Pyrenacantha grandiflora Baill
Icacinaceae
[37]
South Africa
Roots
Dichloromethane
Good
5.82 µg/ml IC50
Plasmodium falciparum NF54
Nd
Quassia africana
Simaroubaceae
[103]
Congo Brazzaville
Leaves
Water, Ethanol, Dichloromethane
Very Good
0.1–2.2 µg/ml IC50
Plasmodium falciparum Fcm29-Cameroon
Yes (IC50 = 6.7 µg/ml; KB cells)
[40]
D.R. Congo
Root Barks
Water
Very Good
0.46 µg/ml IC50
Plasmodium falciparum K1
No
Ranunculus multifidus
Ranunculaceae
[22]
South Africa
Whole Plant
Dichloromethane/Methanol
Very Good
2.3 µg/ml IC50
Plasmodium falciparum D10
Nd
Rauvolfia caffra Sond
Apocynaceae
[37]
South Africa
Roots
Dichloromethane
Very Good
2.13 µg/ml IC50
Plasmodium falciparum NF54
Nd
Rauvolfia nombasiana
Apocynaceae
[26]
Kenya
Root Barks
Methanol
Good
9.1 µg/ml IC50
Plasmodium falciparum D6, W2
Nd
Rauvolfia vomitoria
Apocynaceae
[53]
Nigeria
Roots
Dichloromethane
Very Good
4.78 µg/ml IC50
Plasmodium falciparum D10
Nd
[28]
Ivory Coast
Barks
Ethanol
Very Good
2.5 µg/ml IC50
Plasmodium falciparum Fcb1/Colombia Strain
No
[43]
Ivory Coast
Root Barks
Ethanol
Very Good
2.5 µg/ml IC50
Plasmodium falciparum FCB1
Nd
Rhamnus prinoides
Rhamnaceae
[77]
Kenya
Roots
Methanol
Moderate
15.1 µg/ml IC50
Plasmodium falciparum K39 (CQ-S), ENT30, NF54, V1/S
Nd
[21]
Kenya
Root Barks
Methanol
Very Good
3.53 µg/ml IC50
Plasmodium falciparum D6
No
Rhizophora mucronata
Rhizophoraceae
[22]
South Africa
Twigs
Dichloromethane/Methanol
Good
5.6 µg/ml IC50
Plasmodium falciparum D10
Nd
Ricinus communis var. communis
Euphorbiaceae
[22]
South Africa
Stems
Water
Good
8.0 µg/ml IC50
Plasmodium falciparum D10
Nd
Rubia cordifolia
Rubiaceae
[95]
Kenya
Leaves/Seeds/Stems
Methanol
Very Good
1.20 µg/ml IC50
Plasmodium Knowlesi
Nd
[24]
Kenya
Whole Plant
Methanol
Very Good
 < 5 µg/ml IC50
Plasmodium falciparum D6, W2
Nd
Rumex abyssinicus
Polygonaceae
[92]
Rwanda
Roots
Water
Very Good
3.1–4.3 µg/ml IC50
Plasmodium falciparum 3D7, W2
Yes (SI = 3.1; human normal foetal lung fibroblast [WI-38])
Rumex crispus
Polygonaceae
[22]
South Africa
Roots
Dichloromethane
Moderate
14 µg/ml IC50
Plasmodium falciparum D10
Nd
Salacia madagascariensis
Celastraceae
[20]
Tanzania
Roots
Petroleum Ether
Very Good
0.8 µg/ml IC50
Plasmodium falciparum K1
Nd
Salvia africana-lutea
Lamiaceae
[120]
South Africa
Aerial Parts
Methanol/Chloroform
Moderate
15.863 µg/ml IC50
Plasmodium falciparum FCR-3
Nd
Salvia albicaulis
Lamiaceae
[120]
South Africa
Aerial Parts
Methanol/Chloroform
Moderate
15.833 µg/ml IC50
Plasmodium falciparum FCR-3
Nd
Salvia aurita
Lamiaceae
[120]
South Africa
Aerial Parts
Methanol/Chloroform
Good
8.923 µg/ml IC50
Plasmodium falciparum FCR-3
Nd
Salvia chamelaeagnea
Lamiaceae
[120]
South Africa
Aerial Parts
Methanol/Chloroform
Good
8.713 µg/ml IC50
Plasmodium falciparum FCR-3
Nd
Salvia dolomitica
Lamiaceae
[120]
South Africa
Aerial Parts
Methanol/Chloroform
Good
7.623 µg/ml IC50
Plasmodium falciparum FCR-3
Nd
Salvia garipensis
Lamiaceae
[120]
South Africa
Aerial Parts
Methanol/Chloroform
Moderate
13.953 µg/ml IC50
Plasmodium falciparum FCR-3
Nd
Salvia muirii
Lamiaceae
[120]
South Africa
Aerial Parts
Methanol/Chloroform
Moderate
11.873 µg/ml IC50
Plasmodium falciparum FCR-3
Nd
Salvia radula
Lamiaceae
[120]
South Africa
Aerial Parts
Methanol/Chloroform
Very Good
3.913 µg/ml IC50
Plasmodium falciparum FCR-3
Yes (IC50 = 20.12 µg/ml; Kidney cells)
Salvia repens
Lamiaceae
[120]
South Africa
Aerial Parts
Methanol/Chloroform
Good
8.253 µg/ml IC50
Plasmodium falciparum FCR-3
Nd
[22]
South Africa
Whole Plant
Dichloromethane/Methanol
Moderate
10.8 µg/ml IC50
Plasmodium falciparum D10
Nd
Salvia runcinata
Lamiaceae
[120]
South Africa
Aerial Parts
Methanol/Chloroform
Moderate
16.613 µg/ml IC50
Plasmodium falciparum FCR-3
Nd
Salvia schlechteri
Lamiaceae
[120]
South Africa
Aerial Parts
Methanol/Chloroform
Moderate
17.513 µg/ml IC50
Plasmodium falciparum FCR-3
Nd
Salvia stenophylla
Lamiaceae
[120]
South Africa
Aerial Parts
Methanol/Chloroform
Good
6.53 µg/ml IC50
Plasmodium falciparum FCR-3
Yes (IC50 = 12.12 µg/ml; Kidney cells)
Sonchus schweinfurthi
Compositae
[95]
Kenya
Barks/Roots
Methanol
Very Good
2.10 µg/ml IC50
Plasmodium Knowlesi
Nd
Scaevola plumieri
Goodeniaceae
[22]
South Africa
Twigs
Dichloromethane
Moderate
11 µg/ml IC50
Plasmodium falciparum D10
Nd
Schefflera umbellifera
Araliaceae
[22]
South Africa
Leaves
Dichloromethane/Methanol
Very Good
3.7 µg/ml IC50
Plasmodium falciparum D10
Nd
Schizozygia coffaeoides
Apocynaceae
[26]
Kenya
Leaves
Methanol
Moderate
10.5 µg/ml IC50
Plasmodium falciparum D6, W2
Nd
Schkuhria pinnata
Compositae
[24]
Kenya
Whole Plant
Methanol
Good
1.3–6.8 µg/ml IC50
Plasmodium falciparumD6, W2
Nd
Schrankia leptocarpa
Fabaceae
[65]
Benin
Aerial Parts
Methanol
Moderate
3.38- > 20 µg/ml IC50
Plasmodium falciparum 3D7 & K1
Nd
Sclerocarya birrea
Anacardiaceae
[24]
Kenya
Stem Barks
Methanol
Moderate
5.9–24.9 µg/ml IC50
Plasmodium falciparum D6, W2
Nd
Secamone afzelii
Apocynaceae
[65]
Benin
Aerial Parts
Methanol
Moderate
6.48- > 20 µg/ml IC50
Plasmodium falciparum 3D7 & K1
Nd
Securidaca longipedunculata
Polygalaceae
[121]
Mali
Leaves
Dichloromethane
Good
6.9 µg/ml IC50
Plasmodium falciparum 3D7
Nd
Securinega virosa
Phyllanthaceae
[52]
Burkina Faso
Leaves
Dichloromethane
Good
7.1 µg/ml IC50
Plasmodium falciparum
Nd
Senecio oxyriifolius
Asteraceae
[22]
South Africa
Whole plant
Dichloromethane/Methanol
Moderate
13 µg/ml IC50
Plasmodium falciparum D10
Nd
Senecio stuhlmannii
Asteraceae
[56]
Uganda
Shoots
Ethyl Acetate
Moderate
14.0–15.2 µg/ml IC50
Plasmodium falciparum D10, K1
Nd
Senna didymobotrya
Fabaceae
[22]
South Africa
Twigs
Dichloromethane/Methanol
Good
9.5 µg/ml IC50
Plasmodium falciparum D10
Nd
Senna petersiana
Fabaceae
[22]
South Africa
Twigs
Dichloromethane/Methanol
Moderate
13 µg/ml IC50
Plasmodium falciparum D10
Nd
[59]
Malawi
Leaves
Methanol
Very Good
2·67 µg/ml IC50
Plasmodium falciparum Vl/S
Nd
Sericocomopsis hildebrandtii
Amaranthaceae
[21]
Kenya
Root Barks
Methanol
Very Good
3.78 µg/ml IC50
Plasmodium falciparum D6
No
Setaria megaphylla
Poaceae
[22]
South Africa
Whole plant
Dichloromethane/Methanol
Very Good
4.5 µg/ml IC50
Plasmodium falciparum D10
Nd
Sida acuta
Malvaceae
[118]
Burkina Faso
Whole Plant
Ethanol, Chloroform, Water
Very Good
0.87–0.92 µg/ml IC50
Plasmodium falciparum 3D7 And Dd2
Nd
[38]
Ivory Coast
Ns
Ethanol
Good
3.9–5.4 µg/ml IC50
Plasmodium falciparum
No
Solanum panduriforme
Solanaceae
[25]
South Africa
Leaves
Acetone
Very Good
3.62 µg/ml IC50
Plasmodium falciparum UP1 (CQ-R)
Nd
Solanecio mannii
Asteraceae
[92]
Rwanda
Leaves
Dichloromethane
Moderate
12.7–18.2 µg/ml IC50
Plasmodium falciparum 3D7, W2
No
Spilanthes mauritiana
Asteraceae
[22]
South Africa
Stems
Dichloromethane/Methanol
Good
5.3 µg/ml IC50
Plasmodium falciparum D10
Nd
Staudtia gabonensis
Myristicaceae
[33]
Gabon
Stems
Methanol
Very Good
0.8 µg/ml IC50
Plasmodium falciparum Fcbm W2
No
Stephania abyssinica
Menispermaceae
[24]
Kenya
Root Barks
Methanol
Good
4.7–6.1 µg/ml IC50
Plasmodium falciparum D6, W2
Nd
Stephania rotunda
Menispermaceae
[45]
Cambodia
Tubers
Dichloromethane
Very Good
1.0 µg/ml IC50
Plasmodium falciparum W2
Nd
Struchium sparganophorum
Asteraceae
[73]
S. Tome´ And Prı ´Ncipe
Leaves
Petroleum Ether
Good
 < 10 µg/ml IC50
Plasmodium falciparum 3D7 And Dd2
Nd
Strychnopsis thouarsii
Menispermaceae
[122]
Madagascar
Stem Barks
Methanol
Very Gooda
3.1—4.2 µM
Plasmodium falciparum NF54, Plasmodium yoelli 265 BY
No
Strychnos henningsii
Loganiaceae
[72]
Kenya
Twigs
Methanol
Moderate
14.6–17.9 µg/ml IC50
Plasmodium falciparum K1, NF54
Nd
Strychnos pungens
Loganiaceae
[22]
South Africa
Leaves
Dichloromethane
Moderate
12.6 µg/ml IC50
Plasmodium falciparum D10
Nd
Strychnos spinosa
Loganiaceae
[123]
Senegal
Leaves, Stem
Methanol, Water
Moderate
15 µg/ml IC50
Plasmodiumfalciparum
Nd
Strychnos icaja
Loganiaceae
[46]
D.R. congo
Root barks
Methanolic and dichloromethane
Very good
0.69 µg/ml IC50
Plasmodium falciparum 3D7, W2, Plasmodium berghei berghei
Nd
Suregada zanzibariensis
Euphorbiaceae
[26]
Kenya
Leaves
Methanol
Good
5.8–6.7 µg/ml IC50
Plasmodium falciparum D6, W2
Nd
[124]
Kenya
Leaves
Methanol
Very Good
1.82–4.66 µg/ml IC50
Plasmodium falciparum D6&W2
Nd
[124]
Kenya
Leaves
Methanol
Very Good
1.82–4.66 µg/ml IC50
Plasmodium falciparum D6, W2
No
Syzygium cordatum subsp. cordatum
Myrtaceae
[22]
South Africa
Twigs
Dichloromethane/Methanol
Moderate
14.7 µg/ml IC50
Plasmodium falciparum D10
Nd
 
[37]
South Africa
Leaves
Dichloromethane
Good
6.15 µg/ml IC50
Plasmodium falciparum NF54
Nd
Tabernaemontana elegans
Apocynaceae
[37]
South Africa
Roots
Dichloromethane
Very Good
0.33 µg/ml IC50
Plasmodium falciparum NF54
Nd
Tabernaemontana pachysiphon
Apocynaceae
[26]
Kenya
Flower
Methanol
Very Good
4.4–4.8 µg/ml IC50
Plasmodium falciparum D6, W2
Nd
Tagetes minuta
Asteraceae
[75]
Uganda
Leaves
Ethyl Acetate
Nd
Nd
Plasmodium falciparum Fcb8
Nd
Tamarindus indica
Fabaceae
[23]
Sudan
Stem Barks
Methanol
Moderate
10 µg/ml IC50
Plasmodium falciparum 3D7, Dd2
No
[110]
Togo
Fruits
Water
Very Good
4.786 µg/ml IC50
Plasmodium falciparum
Nd
Tapinanthus dodoneifolius
Loranthaceae
[52]
Burkina Faso
Leaves
Methanol
Good
5.2 µg/ml IC50
Plasmodium falciparum
Nd
Tarchonanthus camphoratus
Asteraceae
[22]
South Africa
Whole Plant
Dichloromethane/Methanol
Good
6 µg/ml IC50
Plasmodium falciparum D10
Nd
Teclea nobilis
Rutaceae
[24]
Kenya
Stem Barks
Methanol
Moderate
3.9–20.4 µg/ml IC50
Plasmodium falciparum D6, W2
Nd
[75]
Uganda
Barks
Ethyl Acetate
Nd
Nd
Plasmodium falciparum Fcb9
Nd
Tecoma capensis
Bignoniaceae
[22]
South Africa
Twigs
Dichloromethane/Methanol
Moderate
10.2 µg/ml IC50
Plasmodium falciparum D10
Nd
Tectona grandis
Lamiaceae
[112]
Ghana
Leaves
Methanol
Very Good
0.92 µg/ml IC50
Plasmodium falciparum 3D7, W2
No
Terminalia avicennioides
Combretaceae
[50]
Nigeria
Ns
Methanol, Water, Butanol, Ethyl Acetate
Moderate
12.28–14.09 µg/ml IC50
Plasmodium falciparum 3D7, K1
Yes (SI ≥ 114; mouse heart-derived cells [NBMH])
[52]
Burkina Faso
Leaves
Methanol
Very Good
1.9 µg/ml IC50
Plasmodium falciparum
Nd
Terminalia glaucescens
Combretaceae
[39]
Ivory Coast
Stem, Leave
Water, Ethanol, Pentane
Very Good
2.34–4.83 µg/ml IC50
Plasmodium falciparum Fcm29, Fcb1, CQ-S (Nigerian)
No
Terminalia ivorensis
Combretaceae
[32]
Ghana
Stem Barks
Ethanol
Good
6.949 µg/ml IC50
Plasmodium falciparum 3D7
Nd
[112]
Ghana
Leaves
Methanol
Good
5.70 µg/ml IC50
Plasmodium falciparum 3D7, W2
No
Terminalia macroptera
Combretaceae
[27]
Burkina Faso
Root Barks
Water
Very Good
1 µg/ml IC50
Plasmodium falciparum W2
Nd
Terminalia mollis
Combretaceae
[92]
Rwanda
Root Barks
Methanol
Moderate
11.7–26.3 µg/ml IC50
Plasmodium falciparum 3D7, W2
No
Terminalia spinosa
Combretaceae
[26]
Kenya
Stem Barks
Methanol
Good
7.9 µg/ml IC50
Plasmodium falciparum D6, W2
Nd
Tetracera poggei Gilg
Dilleniaceae
[69]
DR Congo
Leaves
Petroleum Ether
Very Good
1.7 µg/ml IC50
Plasmodium falciparum
Nd
Tetrapleura tetraptera
Fabaceae
[33]
Gabon
Leaves
Dichloromethane
Moderate
10.1–13.0 µg/ml IC50
Plasmodium falciparum FCB, 3D7
No
Thalia geniculata
Marantaceae
[65]
Benin
Roots
Methanol
Moderate
2.83- > 20 µg/ml IC50
Plasmodium falciparum 3D7 & K1
Nd
Tinospora bakis
Menispermaceae
[34]
Sudan
Whole Plant
Petroleum Ether/Chloroform
Very Good
 < 5 µg/ml IC50
Plasmodium falciparum
Nd
Tithonia diversifolia
Asteraceae
[73]
S. Tome´ And Prı ´Ncipe
Aerial Parts
Petroleum Ether, Dichloromethane
Good
 < 10 µg/ml IC50
Plasmodium falciparum 3D7 And Dd2
Nd
[92]
Rwanda
Flowers
Dichloromethane
Very Good
1.0–1.1 µg/ml IC50
Plasmodium falciparum 3D7, W2
No
Toddalia asiatica
Rutaceae
[26]
Kenya
Root Barks
Methanol
Good
6.82–13.9 µg/ml IC50
Plasmodium falciparum D6, W2
Nd
[125]
Kenya
Root Barks
Dichloromethane + Methanol
Very Gooda
9 – 100 ng/ml IC50
Plasmodium falciparum
Nd
Trichilia emetica
Meliaceae
[121]
Mali
Leaves
Dichloromethane
Moderate
11.9 µg/ml IC50
Plasmodium falciparum 3D7
Nd
[58]
Sudan
Leaves
Methanol
Good
2.5–17.5 µg/ml IC50
Plasmodium falciparum 3D7, Dd6
Nd
[24]
Kenya
Stem Barks
Methanol
Moderate
13.3 µg/ml C50
Plasmodium falciparum D6, W2
Nd
[25]
South Africa
Stem Barks
Acetone
Very Good
3.29 µg/ml IC50
Plasmodium falciparum UP1 (CQ-R)
Nd
[22]
South Africa
Leaves, Twigs
Dichloromethane/Methanol
Very Good
3.5 µg/ml IC50
Plasmodium falciparum D10
Nd
Triclisia dictyophylla
Menispermaceae
[40]
D.R. Congo
Leaves
Water
Good
5.13 µg/ml IC50
Plasmodium falciparum K1
No
Tridax procumbens
Asteraceae
[22]
South Africa
Whole Plant
Dichloromethane/Methanol
Moderate
17 µg/ml IC50
Plasmodium falciparum D10
Nd
[26]
Kenya
Whole Plant
Methanol
Moderate
15.4 µg/ml IC50
Plasmodium falciparum D6, W2
Nd
Triumfetta welwitschii var. hirsuta
Malvaceae
[22]
South Africa
Leaves
Dichloromethane/Methanol
Very Good
3.6 µg/ml IC50
Plasmodium falciparum D10
Nd
Turraea floribunda
Meliaceae
[22]
South Africa
Leaves
Dichloromethane/Methanol
Good
8.8 µg/ml IC50
Plasmodium falciparum D10
Nd
[26]
Kenya
Stem Barks
Methanol
Good
5.5 µg/ml IC50
Plasmodium falciparum D6, W2
Nd
Turraea robusta
Meliaceae
[72]
Kenya
Root Barks
Methanol
Very Good
2.4–3.5 µg/ml IC50
Plasmodium falciparum K1, NF54
Nd
[24]
Kenya
Stem Barks
Methanol
Good
2.1–10.3 µg/ml IC50
Plasmodium falciparum D6, W2
Nd
Tylosema fassoglensis
Fabaceae
[30]
Kenya
Tubers
Dichloromethane
Very Good
0.77–0.896 µg/ml IC50
Plasmodium falciparum W2, D6
Nd
Uapaca paludosa
Phyllanthaceae
[103]
Congo Brazzaville
Barks
Dichloromethane
Good
8 µg/ml IC50
Plasmodium falciparum Fcm29-Cameroon
Nd
Uvaria acuminata
Annonaceae
[26]
Kenya
Root Barks
Methanol
Good
6.9–8.9 µg/ml IC50
Plasmodium falciparum D6, W2
Nd
Uvaria scheffleri
Annonaceae
[26]
Kenya
Leaves
Methanol
Good
6.8 µg/ml IC50
Plasmodium falciparum D6, W2
Nd
Uvaria afzelii
Annonaceae
[48]
Ivory Coast
Roots
Pentane
Moderate
9–22 µg/ml IC50
Plasmodium falciparum FCM29, CQ-S (Nigerian)
No
Uvariastrum zenkeri
Annonaceae
[49]
Cameroon
Twigs
Ethanol
Very Good
1.89 µg/ml IC50
Plasmodium falciparum W2
Nd
Uvariodendron molundense
Annonaceae
[49]
Cameroon
Twigs
Methanol
Very Good
4.79 µg/ml IC50
Plasmodium falciparum W2
Nd
Uvariopsis congolana
Annonaceae
[55]
Cameroon
Stems
Ethanol, Water, Dichloromethane, Methanol, Hexane
Very Good
4.47 µg/ml IC50
Plasmodium falciparum W2
Nd
Vangueria infausta Burch. subsp. Infausta
Rubiaceae
[37]
South Africa
Roots
Dichloromethane
Very Good
1.84 µg/ml IC50
Plasmodium falciparum NF54
Nd
Vepris lanceolata
Rutaceae
[20]
Kenya
Root Barks
Ethyl Acetate
Good
7.0 µg/ml IC50
Plasmodium falciparum K1
Nd
Vernonia amygdalina
Asteraceae
[74]
S. Tome´ And Prı ´Ncipe
Leaves
Ethyl Acetate
Moderate
10 µg/ml IC50
Plasmodium falciparum 3D7 And Dd2
Nd
[80]
Cameroon
Leaves
Dichloromethane
Moderate
8.72–11.27 µg/ml IC50
Plasmodium falciparum 3D7, DD2
No
[126]
Nigeria
Leaves
Ethanol
Good
9.83 µg/ml IC50
Plasmodium falciparum 3D7, NF-54
Yes (SI = 6.14; C-1008 kidney fibroblast
[26]
Kenya
Leaves
Methanol
Good
4.9–7.2 µg/ml IC50
Plasmodium falciparum D6, W2
Nd
[127]
Nigeria
Leaves
Ethanol
Moderate
11.2 µg/ml IC50
Plasmodium falciparum
Yes (LD50 = 1950 mg/kg; rat)
[69]
D.R. Congo
Leaves
Petroleum Ether
Very Good
2.5 µg/ml IC50
Plasmodium falciparum
Nd
Vernonia brachycalyx
Asteraceae
[104]
Kenya
Leaves
Dichloromethane/Ethyl Acetate
Good
6.6—8.4 µg/ml IC50
Plasmodium falciparum K39, V1/S
Nd
Vernonia cinerea
Asteraceae
[45]
Cambodia
Whole Plant
Dichloromethane
Moderate
18.3 µg/ml IC50
Plasmodium falciparum W2
Nd
Vernonia colorata
Asteraceae
[57]
Ivory Coast
Stems, Leaves
Water
Good
2.35–9.38 µg/ml IC50
Plasmodium falciparum Fcb1 & F32
Nd
[54]
Zimbabwe
Leaves
Petrolether/Ethylacetate
Moderate
12.1–17.8 µg/ml IC50
Plasmodium falciparum Pow, Dd2
Nd
[91]
Comoros
Roots
Dichloromethane
Very Good
3 µg/ml IC50
Plasmodium falciparum W2
No
[22]
South Africa
Leaves
Dichloromethane/Methanol
Very Good
4.7 µg/ml IC50
Plasmodium falciparum D10
Nd
Vernonia fastigiata
Asteraceae
[22]
South Africa
Leaves
Dichloromethane/Methanol
Moderate
10 µg/ml IC50
Plasmodium falciparum D10
Nd
Vernonia guineensis
Asteraceae
[128]
Cameroon
Leaves
Dichloromethane
Very Good
1.635—1.823 µg/ml IC50
Plasmodium falciparum
No
Vernonia lasiopus
Compositae
[12]
Kenya
Leaves
Chloroform, Ethylacetate, Methanol
Very Good
1.0–3.2 µg/ml IC50
Plasmodium falciparum K39 (CQ-S), ENT30, NF54, V1/S
Nd
[73]
Kenya
Root Barks
Dichloromethane
Very Good
4.7–4.9 µg/ml IC50
Plasmodium falciparum K1, NF54
Nd
Vernonia myriantha
Asteraceae
[22]
South Africa
Leaves
Dichloromethane/Methanol
Very Good
3 µg/ml IC50
Plasmodium falciparum D10
Nd
Vernonia oligocephala
Asteraceae
[22]
South Africa
Leaves
Dichloromethane/Methanol
Very Good
3.5 µg/ml IC50
Plasmodium falciparum D10
Nd
Vismia guineensis
Hypericaceae
[48]
Ivory Coast
Leaves
Pentane
Moderate
15–20 µg/ml IC50
Plasmodium falciparum FCM29, CQ-S (Nigerian)
Nd
Warburgia ugandensis
Canellaceae
[72]
Kenya
Stem Barks
Dichloromethane
Very Good
1.4–2.2 µg/ml IC50
Plasmodium falciparum K1, NF54
Nd
[24]
Kenya
Root Barks
Methanol
Good
4.1–6.1 µg/ml IC50
Plasmodium falciparum D6, W2
Nd
Warburgia stuhlmannii
Canellaceae
[26]
Kenya
Stem Barks
Methanol
Very Good
1.8–2.3 µg/ml IC50
Plasmodium falciparum D6, W2
Nd
Ximenia americana
Olacaceae
[57]
Ivory Coast
Stem, Leave
Water
Very Good
0.6–2.6 µg/ml IC50
Plasmodium falciparum Fcb1 & F32
Nd
Xylopia aethiopica
Annonaceae
[98]
Cameroon
Stem Barks
Water
Moderatea
17.8 µg/ml IC50
Plasmodium falciparum W5
Nd
[49]
Cameroon
Leaves
Methanol
Very Good
3.75 µg/ml IC50
Plasmodium falciparum W2
Nd
Xylopia africana
Annonaceae
[49]
Cameroon
Stem Barks
Methanol
Very Good
1.07 µg/ml IC50
Plasmodium falciparum W2
Nd
Xylopia parviflora (A.Rich.)Benth.Oliv
Annonaceae
[37]
South Africa
Roots
Dichloromethane
Very Good
2.19 µg/ml IC50
Plasmodium falciparum NF54
Nd
[49]
Cameroon
Leaves
Methanol
Very Good
3.44 µg/ml IC50
Plasmodium falciparum W2
Nd
Xylopia phloiodora
Annonaceae
[98]
Cameroon
Stem Barks
Water
Moderatea
17.9 µg/ml IC50
Plasmodium falciparum W2
Nd
Xysmalobium undulatum
Apocynaceae
[22]
South Africa
Whole Plant
Dichloromethane/Methanol
Good
6 µg/ml IC50
Plasmodium falciparum D10
Nd
Zanthoxylum chalybeum
Rutaceae
[137]
Kenya
Root Barks
Water
Good
2.32–5.52 µg/ml IC50
Plasmodium falciparum NF54, ENT30
Nd
[77]
Uganda
Stem Barks
Ethyl Acetate
Very Good
0.57–3.21 µg/ml IC50
Plasmodium falciparum NF54 & FCR3
Nd
[92]
Rwanda
Root Barks
Methanol
Very Good
1.9–4.2 µg/ml IC50
Plasmodium falciparum 3D7, W2
No
[20]
Tanzania
Root Barks
Ethyl Acetate
Very Good
4.2 µg/ml IC50
Plasmodium falciparum K1
Nd
[26]
Kenya
Root Barks
Methanol
Very Good
2.9–3.7 µg/ml IC50
Plasmodium falciparum D6, W2
Nd
Zanthoxylum gilletii
Rutaceae
[43]
Ivory Coast
Stem Barks
Ethanol
Very Good
2.8 µg/ml IC50
Plasmodium falciparum FCB1
Nd
Zanthoxylum heitzii
Rutaceae
[129]
Republic Of Congo
Barkss
Hexane
Very Gooda
0.0089 µg/ml IC50
Plasmodium falciparum, Plasmodium berghei
Nd
Zanthoxylum tsihanimposa
Rutaceae
[130]
Madagascar
Stem Barks
Dichloromethane + Methanol
Very Gooda
98.4 µM IC50
Plasmodium falciparum FCM29
Nd
Zanthoxylum usambarense
Rutaceae
[24]
Kenya
Root Barks
Methanol
Good
3.2–5.5 µg/ml IC50
Plasmodium falciparum D6, W2
Nd
Zea mays
Poaceae
[131]
Nigeria
Leaves
Ethanol, ethyl acetate
Good
3.69—9.31 µg/ml IC50
Plasmodium falciparum 3D7, INDO, Plasmodium berghei
Nd
Zehreria scabra
Cucurbitaceae
[22]
South Africa
Whole Plant
Dichloromethane/Methanol
Good
5.6 µg/ml IC50
Plasmodium falciparum D10
Nd
[26]
Kenya
Whole Plant
Methanol
Good
9.8 µg/ml IC50
Plasmodium falciparum D6, W2
Nd
Ziziphus abyssica
Rhamnaceae
[24]
Kenya
Leaves
Methanol
Moderate
17.5 µg/ml IC50
Plasmodium falciparum D6, W2
Nd
Ziziphus mucronata
Rhamnaceae
[22]
South Africa
Leaves
Dichloromethane
Moderate
12 µg/ml IC50
Plasmodium falciparum D10
Nd
[25]
South Africa
Stem Barks
Acetone
Very Good
4.13 µg/ml IC50
Plasmodium falciparum UP1 (CQ-R)
Nd
Ziziphus cambodiana
Rhamnaceae
[45]
Cambodia
Stems
Dichloromethane
Moderate
19.0 µg/ml IC50
Plasmodium falciparum W2
Nd
Nd Not done, Ns Not specified, SI Selectivity index
aActivity determined using pure compounds isolated from plant
Table 2
In vivo antimalarial activity of African medicinal plants
Plant species
Plant family
Source
Country of study
Part of plant used
Extraction solvent
Antimalarial activity
Parasite suppression rate
Strain of Plasmodium tested
Toxicity (value; assay)
Acacia nilotica
Fabaceae
[132]
Nigeria
Roots
Water
Moderate
79.5% at 400 mg/kg/day
Plasmodium berghei NK65
No
[133]
Nigeria
Roots
Methanol
Very good
62.59% at 150 mg/kg/day
Plasmodium berghei NK65
No
Adansonia digitata
Malvaceae
[134]
Nigeria
Stem barks
Methanol
Moderatea
90.18% at 400 mg/kg/day
Plasmodium berghei
Nd
[135]
Kenya
Stem barks
Ethanol
Very good
 > 60% at 100 mg/kg/day
Plasmodium berghei
No
[135]
Kenya
Stem barks
Water
Very good
60.47% at 100 mg/kg/day
Plasmodium berghei
No
Ageratum conyzoides
Asteraceae
[136]
Nigeria
Leaves
Water
Moderate
89.87% at 400 mg/kg/day
Plasmodium berghei NK65
Nd
Albizia gummifera
Fabaceae
[137]
Kenya
Root barks
Methanol
Very gooda
72.9% at 20 mg/kg.day
Plasmodium falciparum NF54 and ENT36
Nd
Allophylus africanus
Sapindaceae
[138]
Nigeria
Stems, roots
Ns
Very good
92.82–97.81 at 50 mg/kg/day
Plasmodium berghei NK-65
Nd
Aloe pulcherrima
Xanthorrhoeaceae
[139]
Ethiopia
Leaves
Methanol
Gooda
56.2 at 200 mg/kg/day
Plasmodium berghei
No
Anthocleista djalonensis
Gentianaceae
[140]
Nigeria
Roots
Chloroform, ethyl acetate, methanol
Moderate
64.81–87.66% at 500 mg/kg/day
Plasmodium beghei ANKA
No
[140]
Nigeria
Roots
Ethanol, chloroform, ethyl acetate, methanol
Moderate
67.92% at 500 mg/kg/day
Plasmodium berghei ANKA
No
Artemisia macivarae
Asteraceae
[141]
Nigeria
Whole plant
Chloroform
Very good
80% at 100 mg/kg
Plasmodium berghei
Nd
Aspilia africana
Asteraceae
[142]
Nigeria
Leaves
Ethanol
Moderate
92.23% at 400 mg/kg/day
Plasmodium berhhei NK65
No
Azadirachta indica
Meliaceae
[143]
Kenya
Leaves
Methanol
Good
83.48% at 250 mg/kg/day
Plasmodium falciparum D6 and W2
No
[144]
Cameroon
Leaves
Ethanol
Moderate
69.28% at 300 mg/kg/day
Plasmodium berghei NK65
No
[145]
Nigeria
Leaves
Methanol
Very good
56 – 87% at 50 mg/kg/day
Plasmodium berghei ANKA
No
Balanites rotundifolia
Zygophyllaceae
[146]
Ethiopia
Leaves
Methanol
Moderate
67% at 400 mg/dl
Plasmodium berghei
No
Blighia sapida
Sapindaceae
[147]
Nigeria
Leaves
Ethanol
Good
57% at 200 mg/kg/day
Plasmodium berghei ANKA
No
Bombax buonopozense
Malvaceae
[148]
Nigeria
Root barks
Water
Good
93% at 200 mg/kg/day
Plasmodium berghei NK65
Nd
Brassica nigra
Brassicaceae
[149]
Ethiopia
Seeds
Methanol
Moderate
53.13% at 400 mg/kg/day
Plasmodium berghei ANKA
Nd
Calpurnia aurea
Fabaceae
[150]
Ethiopia
Leaves
Hydroalcohol
Very good
51.15% at 60 mg/kg
Plasmodium berghei
No
Carica papaya
Caricaceae
[151]
Nigeria
Leaves
Ethanol
Good
59.29% at 200 mg/kg
Plasmodim berghei NK65
Nd
Senna occidentalis
Fabaceae
[152]
D.R. Congo
Root barks
Ethanol
Good
68% at 200 mg/kg
Plasmodium berghei ANKA
No
Cassia sieberiana
Fabaceae
[153]
Nigeria
Stems
Ethanol
Good
63.9% at 300 g/kg/day
Plasmodium berghei NK65
No
Cassia singueana
Fabaceae
[154]
Nigeria
Root barks
Methanol
Good
79.06% at 200 mg/kg/day
Plasmodium berghei
Yes (LD50 = 847 mg/kg; mice)
Chrozophora senegalensis
Euphorbiaceae
[155]
Nigeria
Whole plant
Methanol
Very good
51.8% at 75 mg/kg/day
Plasmodium berghei
Nd
Chrysophyllum albidum
Sapotaceae
[156]
Nigeria
Seeds, pulp juice
Ethanol
Moderate
72.97% at 500 mg/kg
Plasmodium berghei
No
Clausena anisota
Rutaceae
[157]
Nigeria
Leaves
Ethanol
Very good
82.02% at 78 mg/kg/day
Plasmodium berghei
Yes (LD50 = 393.7 mg/kg; albino mice)
Combretum molle
Combretaceae
[158]
Ethiopia
Seeds
Methanol
Good
63.5% at 250 mg/kg/day
Plasmodium berghei ANKA
Nd
Commiphora africana
Burseraceae
[159]
Tanzania
Stem barks
Dichloromethane
Moderate
64.24% at 400 mg/kg/day
Plasmodium falciparum (D6, Dd2), Plasmodium berghei
No
Crossopteryx febrifuga
Rubiaceae
[160]
Nigeria
Stem barks
Ethanol
Good
63.65% at 200 mg/kg/day
Plasmodium berghei var. ANKA
Nd
Croton macrostachyus
Euphorbiaceae
[161]
Kenya
Stem barks
Ethyl acetate
Moderate
82% at 500 mg/kg/day
Plasmodium berghei ANKA
Nd
Cryptolepis sanguinolenta
Apocynaceae
[162]
Congo
Root barks
Ethanol
Moderate
75.07% at 400 mg/kg/day
Plasmodium falciparum, Plasmodium berghei berghei
Nd
[84]
Ghana
Roots
Hexane, ethanol, dichloromethane
Very good*
 > 80% at 2.5 mg/kg/day
Plasmodium vinckei petteri, Plasmodium berghei ANKA
Nd
Cucumis metuliferus
Cucurbitaceae
[163]
Tanzania
Leaves
Chloroform
Moderate
70.69% at 600 mg/kg/day
Plasmodium berghei ANKA
Nd
Dichrostachys cinerea
Fabaceae
[159]
Tanzania
Stem barks
Methanol
Moderate
53.12% at 400 mg/kg/day
Plasmodium falciparum (D6, Dd2), Plasmodium berghei
No
Dodonaea angustifolia
Sapindaceae
[164]
Ethiopia
Roots
N-butanol
Moderate
55.8% at 400 mg/kg/day
Plasmodium berghei
Nd
Enantia chlorantha Oliv
Annonaceae
[165]
Nigeria
Stem barks
Ethanol
Moderate
75.23% at 500 mg/kg
Plasmodium berghei NK-65
Nd
Erigeron floribundus
Asteraceae
[144]
Cameroon
Whole plant
Ethanol
Good
62.4% at 240 mg/kg/day
Plasmodium berghei NK65
No
Euphorbia cordifolia
Euphorbiaceae
[166]
Cameroon
Whole plant
Aqueous
Very good
94.70% at 200 mg/kg/day
Plasmodium berghei
No
Euphorbia hirta L
Euphorbiaceae
[162]
Congo
Whole plant
Ethanol
Moderate
69.44% at 400 mg/kg/day
Plasmodium falciparum, Plasmodium berghei berghei
Nd
Faidherbia albida
Fabaceae
[167]
Nigeria
Stem barks
Ethanol
Moderate
89.5 at 400 mg/kg/day
Plasmodium berghei NK65
Nd
Grewia plagiophylla
Malvaceae
[143]
Kenya
Leaves
Methanol
Moderate
77.9 at 250 mg/kg/day
Plasmodium falciparum D6 and W2
Nd
Grewia trichocarpa
Malvaceae
[168]
Kenya
Root
Water
Good
35.8% at 10 mg/kg/day
Plasmodium berghei
Yes (LD50 = 545.8 µg/ml; brine shrimp)
Garcinia kola
Clusiaceae
[169]
Nigeria
Seeds
Petroleum ether
Very good*
93% at 200 mg/kg/day
Plasmodium berghei
Nd
Hippocratea africana
Celastraceae
[170]
Nigeria
Nd
Ethanol
Moderate
90.9% at 600 mg/kg/day
Plasmodium berghei berghei
Yes (LD50 = 2449 mg/kg; mice)
Hoslundia opposita
Lamiaceae
[143]
Kenya
Leaves
Methanol
Moderate
79.67% at 250 mg/kg/day
Plasmodium falciparum D6 and W2
Yes (CC50 = 37 µg/ml; Vero E6 cells)
Icacina senegalensis
Icacinaceae
[171]
Nigeria
Leaves
Methanol
Very good
80% at 100 mg/kg/day
Plasmodium berghei
Yes (LD50 > 2000 mg/kg; mice)
Indigofera spicata
Fabaceae
[172]
Ethiopia
Roots
Methanol
Moderate
53.42% at 600 mg/kg/day
Plasmodium berghei ANKA
Nd
Lannea schweinfurthii
Anacardiaceae
[143]
Kenya
Leaves
Methanol
Moderate
83.48% at 250 mg/kg/day
Plasmodium falciparum D6 and W2
Yes (CC50 = 76 µg/ml; Vero E6 cells)
Lippia kituiensis
Verbenaceae
[163]
Tanzania
Leaves
Ethyl acetate
Moderate
70.14% at 600 mg/kg/day
Plasmodium berghei ANKA
Nd
Lophira lanceolata
Ochnaceae
[173]
Nigeria
Leaves
Methanol
Moderate
80% at 400 mg/kg/day
Plasmodium berghei
No
Maerua crassifolia
Capparaceae
[174]
Nigeria
Leaves
Methanol
Moderate
86% at 400 mg/kg/day
Plasmodium berghei NK65
No
Maytenus senegalensis
Celastraceae
[175]
Tanzania
Root barks
Ethanol
Very good
98.1% at 100 mg/kg/day
Plasmodium berghei
No
Morinda morindoides
Rubiaceae
[152]
D.R. Congo
Leaves
Dichloromethane
Good
74% at 200 mg/kg/day
Plasmodium berghei ANKA
No
Mucuna pruriens
Fabaceae
[176]
Nigeria
Leaves
Water
Good
71.75% at 270 mg/kg/day
Plasmodium berghei NK65
No
Nauclea latifolia
Rubiaceae
[177]
Nigeria
Leaves
Ethanol
Moderate
60.63% at 500 mg/kg/day
Plasmodium berghei
No
[165]
Nigeria
Roots
Ethanol
Moderate
71.15% at 500 mg/kg/day
Plasmodium berghei NK-65
Nd
Oldenlandia affinis
Rubiaceae
[178]
Nigeria
Aerial parts
Methanol, water, dichloromethane
Moderate
75% at 400 mg/kg/day
Plasmodium berghei
No
Peschiera fuchsiaefolia
Apocynaceae
[179]
Madagascar
Stem barks
Ns
Good*
43.4% at 10 mg/kg/day
Plasmodium yoelii N67, Plasmodium falciparum FMC29
Nd
Phyllanthus amarus
Phyllanthaceae
[180]
Nigeria
Whole plant
Water and ethanol
Good
79% at 1600 mg/kg/day
Plasmodium yoelii
Nd
Phyllanthus niruri
Phyllanthaceae
[152]
D.R. Congo
Whole plant
Ethanol
Good
73% at 200 mg/kg/day
Plasmodium berghei ANKA
No
[181]
Nigeria
Aerial parts
Methanol/chloroform
Very good
90.48% at 100 mg/kg/day
Plasmodium berghei berghei NK 65
Nd
Phytolacca dodecandra
Phytolaccaceae
[182]
Ethiopia
Leaves
Methanol
Moderate
55.24% at 400 mg/kg/day
Plasmodium berghei
Nd
Picralima nitida
Apocynaceae
[183]
Nigeria
Seeds
Ethanol
Good
73% at 115 mg/kg/day
Plasmodium berghei berghei
Yes (LD50 = 87.29 µg/ml; albino mice)
Piliostigma thonningii
Fabaceae
[184]
Nigeria
Leaves
Ethanol
Moderate
91% at 400 mg/kg/day
Plasmodium berghei NK65
No
Premna chrysoclada
Lamiaceae
[143]
Kenya
Leaves
Methanol
Good
65.08% at 250 mg/kg/day
Plasmodium falciparum D6 and W2
Nd
Pseudocedrela kotschyi
Meliaceae
[185]
Nigeria
Leaves
Ethanol
Moderate
90% at 400 mg/kg/day
Plasmodium berghei (NK65
No,
Rhus natalensis
Anacardiaceae
[143]
Kenya
Leaves
Methanol
Moderate
82.7% at 250 mg/kg/day
Plasmodium falciparum D6 and W2
Nd
Salacia nitida
Celastraceae
[165]
Nigeria
Roots
Ethanol
Moderate
71.15% at 250 mg/kg/day
Plasmodium berghei NK-65
Nd
Stachytarpheta cayennensis
Verbenaceae
[186]
Nigeria
Leaves
Ethanol
Good
78.2% at 270 mg/kg/day
Plasmodium berghei berghei
Yes (LD50 = 938.08 mg/kg; albino mice)
Telfairia occidentalis
Cucurbitaceae
[187]
Nigeria
Leaves
Water
Good
72.17% at 200 mg/kg/day
Plasmodium berghei ANKA
No
Tithonia diversifolia
Asteraceae
[160]
Nigeria
Aerial parts
Ethanol
Good
74.97% at 200 mg/kg/day
Plasmodium berghei var. ANKA I
Nd
Toddalia asiatica
Rutaceae
[188]
Kenya
Root barks
Methanol
Moderate
59.3% at 500 mg/kg/day
Plasmodium berghei NK66
Nd
Trema orientalis
Cannabaceae
[189]
Nigeria
Stem barks
Methanol
Good
70% at 200 mg/kg/day
Plasmodium berghei
Nd
Trichilia megalantha
Meliaceae
[190]
Nigeria
Stem barks
Methanol, chloroform
Good
89.1–100% at 200 mg/kg/day
Plasmodium berghei berghei ANKA
Nd
Triphyophyllum peltatum
Dioncophyllaceae
[191]
Ivory Coast
Roots, stem barks
Dichloromethane
Very good*
99% at 50 mg/kg/day
Plasmodium berghei ANKA CRS
Nd
Uvaria acuminata
Annonaceae
[143]
Kenya
Roots
Methanol
Good
27.0% at 250 mg/kg/day
Plasmodium falciparum D6 and W2
Nd
Uvaria chamae P. Beauv
Annonaceae
[170]
Nigeria
Nd
Ethanol
Moderate
72.2% at 600 mg/kg/day
Plasmodium berghei berghei
Yes (LD50 = 3464 mg/kg; mice)
Verbena hastata
Verbenaceae
[192]
Nigeria
Leaves
Ethanol
Moderate
70% at 400 mg/kg/day
Plasmodium berghei
No
Vernonia amygdalina
Asteraceae
[193]
Uganda
Leaves
Water
Good
73% at 200 mg/kg/day
Plasmodium berghei
No
[194]
Nigeria
Leaves
Water
Good
50.78—62.66% at 125 mg/kg/day
Plasmodium berghei ANKA
Nd
[195]
Botswana
Leaves and root barks
Ethanol
Moderate
67% at 500 mg/kg/day
Plasmodium berghei
Nd
Vernonia lasiopus
Asteraceae
[188]
Kenya
Root barks
Methanol
Moderate
59.3% at 500 mg/kg/day
Plasmodium berghei NK67
Nd
Withania somnifera
Solanaceae
[196]
Ethiopia
Leaves
Methanol
Moderate
57% at 300 mg/kg/day
Plasmodium berghei ANKA
Nd
Xylopia aethiopica
Annonaceae
[141]
Nigeria
Fruits
Chloroform
Very good
60% at 100 mg/kg/day
Plasmodium berghei
Nd
Artemisia abyssinica
Asteraceae
[197]
Ethiopia
Aerial parts
Hydroalcohol
Good
64.7% at 200 mg/kg/day
Plasmodium berghei
Nd
Rotheca myricoides
Lamiaceae
[198]
Ethiopia
Leaves
Methanol
Good
54.14% at 200 mg/kg/day
Plasmodium berghei
No
Dodonaea angustifolia
Sapindaceae
[198]
Ethiopia
Roots
Methanol
Good
57.74% at 200 mg/kg/day
Plasmodium berghei
No
Clutia abyssinica
Peraceae
[199]
Kenya
Leaves
Methanol
Moderate
40.45% at 100 mg/kg/day
Plasmodium falciparum, Plasmodium berghei ANKA
No
Pittosporum viridiflorum
Pittosporaceae
[199]
Kenya
Leaves
Methanol
Moderate
54.77% at 100 mg/kg/day
Plasmodium falciparum D6 &W2, Plasmodium berghei ANKA
Yes (SI = 2.51; Vero E6 cells)
Nd Not done, Ns Not specified, SI Selectivity index
aActivity determined using pure compounds isolated from plant
Table 3
In vitro and in vivo studies on African medicinal plants
Plant species
Plant family
Source
Country of study
Part of plant used
Extraction solvent
Overall activity
In vitro
In vivo
IC50 or ED50 or LD50
Strain of Plasmodium tested
parasite suppression rate
Toxicity (value; assay)
Sphaeranthus suaveolens
Compositae
[199]
Kenya
Whole plant
Methanol
Moderate
Moderate
In active
7.93–56.73 µg/ml IC50
Plasmodium falciparum D6 and W2, Plasmodium berghei ANKA
46.74% at 100 mg/kg/day
No
Abutilon grandiflorum
Malvaceae
[200]
Tanzania
Roots
Ethyl acetate
Good
Moderate
Very good
9–14 µg/mL IC50
Plasmodium falciparum HB3 and FCB, Plasmodium vinckei vinckei
83–87% at 20 ug/ml/day
Yes (IC50 = 36 µg/ml; human colon carcinoma cell line [HT29])
Alchornea laxiflora
Euphorbiaceae
[131]
Nigeria
Roots
Ethyl acetate, dichloromethane
Good
Inactive
Very good
38.44—40.17 µg/ml IC50
Plasmodium falciparum 3Dè, INDO, Plasmodium berghei
65.73% at 150 mg/kg/day
Yes (LD50 = 748.33 mg/kg; HeLa cells)
Annona senegalensis
Annonaceae
[201]
Nigeria
Leaves
Methanol
Moderate
In active
Very good
28.8 µg/ml IC50
Plasmodium berghei
 > 57% at 100 mg/kg/day
No
Boscia angustifolia
Capparaceae
[199]
Kenya
Stem barks
Methanol
Moderate
Moderate
Very good
7.43–35.93 µg/ml IC50
Plasmodium falciparum D6 &W2, Plasmodium berghei ANKA
60.12% at 100 mg/kg/day
No
Chrozophora senegalensis
Euphorbiaceae
[64]
Senegal
Leaves
Water
Very good
Very good
Very good
1.6–1.9 µg/ml IC50
Plasmodium falciparum FcM29, FcB1, Plasmodium vinckei petteri
65% at 10 mg/kg/day
No
Clerodendrum eriophyllum
Lamiaceae
[199]
Kenya
Root barks
Methanol
Moderate
Good
Very good
9.51–10.56 µg/ml IC50
Plasmodium falciparum D6 & W2, Plasmodium berghei ANKA
90.13% at 100 mg/kg/day
No
Cocos nucifera
Arecaceae
[202]
Nigeria
Husk
Ethyl acetate
Moderate
Moderate
Very good
10.94 µg/ml IC50
Plasmodium falciparum W2, Plasmodium berghei NK65
98.6% at 125 mg/kg/day
Nd
Commiphora africana
Burseraceae
[159]
Tanzania
Stem barks
Dichloromethane
Moderate
Very good
Moderate
4.54 µg/ml IC50
Plasmodium falciparum D6, Dd2, Plasmodium berghei
64.24% at 400 mg/kg/day
No
Ficus thonningii
Moraceae
[203]
Nigeria
Whole plant
Hexane
Moderate
Good
Moderate
2.7–10.4 µg/ml IC50
Plasmodium falciparum NF54, K1, Plasmodium berghei NK65
84.5% at 500 mg/kg/day
No
Flueggea virosa
Phyllanthaceae
[199]
Kenya
Leaves
Methanol
Very good
Very good
Very good
2.28–3.64 µg/ml IC50
Plasmodium falciparum D6 and W2, Plasmodium berghei ANKA
70.91% at 100 mg/kg/day
No
Fuerstia africana
Lamiaceae
[199]
Kenya
Whole plant
Methanol
Very good
Very good
Very good
0.98–2.40 µg//ml IC50
Plasmodium falciparum D6 and W2, Plasmodium berghei ANKA
61.85% at 100 mg/kg/day
No
Harungana madagascariensis
Hypericaceae
[199]
Kenya
Leaves
Water
Moderate
Inactive
Very good
39.07–43.7 µg/ml IC50
Plasmodium falciparum D6 and W2, Plasmodium berghei ANKA
88.04% at 100 mg/kg/day
No
[204]
Nigeria
Stem barks
Ethanol
Very good
Very good
Inactive
0.052—0.517 μg/ml IC50
Plasmodium yoelii nigeriensis N67, Plasmodium falciparum
28.6–44.8%
Nd
Lannea schweinfurthii
Anacardiaceae
[205]
Kenya
Stem barks
Methanol
Moderate
Moderate
Very good
11.38–36.26 µg/ml IC50
Plasmodium falciparum D6, W2, Plasmodium berghei
91.37% at 100 mg/kg/day
Yes (SI = 6.21–19.79; Vero cells)
Lophira alata
Ochnaceae
[203]
Nigeria
Whole plant
Hexane
Good
Very good
Moderate
2.5 µg/ml IC50
Plasmodium falciparum NF54, K1, Plasmodium berghei NK65
74.45% at 500 mg/kg/day
No
Ludwigia erecta
Onagraceae
[199]
Kenya
Whole plant
Water
Very good
Very good
In active
0.93–1.61 µg/ml IC50
Plasmodium falciparum D6 & W2, Plasmodium berghei ANKA
49.64% at 100 mg/kg/day
No
Maytenus putterlickioides
Celastraceae
[199]
Kenya
Root barks
Methanol
Good
Good
Very good
4.41–10.26 µg/ml IC50
Plasmodium falciparum D6 and W2, Plasmodium berghei ANKA
78.66% at 100 mg/kg/day
No
Maytenus undata
Celastraceae
[199]
Kenya
Leaves
Methanol
Good
Good
Very good
7.4–9.89 µg/ml IC50
Plasmodium falciparum D6 and W2, Plasmodium berghei ANKA
76.29% at 100 mg/kg/day
No
Mimusops caffra
Sapotaceae
[206]
South Africa
Leaves
Dichloromethane
Good
Very good
Moderate
2.14 µg/ml IC50
Plasmodium falciparum D10, Plasmodium berghei
94.01% at 400 mg/kg/day
Nd
Schkuhria pinnata
Compositae
[199]
Kenya
Whole plant
Methanol
Good
Good
In actice
1.3–6.83 µg/ml IC50
Plasmodium falciparum D6 & W2, Plasmodium berghei ANKA
49.9% at 100 mg/kg/day
No
Sclerocarya birrea
Anacardiaceae
[205]
Kenya
Stem barks
Methanol
Moderate
Moderate
Very good
5.91–24.96 µg/ml IC50
Plasmodium falciparum D6, W2, Plasmodium berghei
63.49% at 100 mg/kg/day
No
Toddalia asiatica
Rutaceae
[117]
Kenya
Fruits
Ethyl acetate
Very good
Very good
Moderate
1.87 μg/ml IC50
Plasmodium falciparum W2 & D6, Plasmodium berghei
81.34% at 500 mg/kg/day
No
Turraea robusta
Meliaceae
[205]
Kenya
Root barks
Methanol
Good
Good
Very good
2.09–10.32 µg/ml IC50
Plasmodium falciparum D6, W2, Plasmodium berghei
78.2% at 100 mg/kg/day
Yes (SI = 2.36–11.67; Vero cells)
Uapaca nitida
Phyllanthaceae
[207]
Tanzania
Root barks
Ethanol
Moderate*
Inactive
Inactive
19.6—25.9 µg/mL IC50
Plasmodium falciparum K1, T9-96 & Plasmodium berghei
poor
No
Vernonia ambigua
Asteraceae
[208]
Nigeria
Ns
Water
Very good
Inactive
Very good
31.26–50 µg/ml IC50
Plasmodium berghei, Plasmodium falciparum
60% at 100 mg/kg/day
No
[209]
Republic of Congo
Leaves
Methanol
Moderate
Very good
Moderate
3.58 µg/ml IC50
Plasmodium falciparum. Plasmodium yoelii
61.28% at 500 mg/kg/day
No
Warburgia stuhlmannii
Camellaceae
[199]
Kenya
Stem barks
Water
Very good
Very good
Very good
1.81–2.33 µg/ml IC50
Plasmodium falciparum D6 and W2, Plasmodium berghei ANKA
84.95% at 100 mg/kg/day
No
Azadirachta indica
Meliaceae
[143]
Kenya
Leaves
Methanol
Good
Good
Good
6.24–7.53 µg/ml IC50
Plasmodium falciparum D6 and W2
83.48% at 250 mg/kg/day
No
Dichrostachys cinerea
Fabaceae
[159]
Tanzania
Stem barks
Methanol
Moderate
Good
Moderate
2.37–11.92 µg/ml IC50
Plasmodium falciparum D6, Dd2, Plasmodium berghei
53.12% at 400 mg/kg/day
No
Grewia plagiophylla
Malvaceae
[143]
Kenya
Leaves
Methanol
Moderate
Moderate
Good
13.28–34.2 µg/ml IC50
Plasmodium falciparum D6 and W2
77.9% at 250 mg/kg/day
Nd
Hoslundia opposita
Lamiaceae
[143]
Kenya
Leaves
Methanol
Moderate
Good
Good
12.8–13.22 µg/ml IC50
Plasmodium falciparum D6 and W2
79.67% at 250 mg/kg/day
Yes (SI = 0.58; Vero E6 cells)
Lannea schweinfurthii
Anacardiaceae
[143]
Kenya
Leaves
Methanol
Moderate
Inactive
Good
38.87–54.15 µg/ml IC50
Plasmodium falciparum D6 and W2
83.48% at 250 mg/kg/day
Yes (SI = 1.4; Vero E6 cells)
Premna chrysoclada
Lamiaceae
[143]
Kenya
Leaves
Methanol
Good
Good
Good
7.75–9.02 µg/ml IC50
Plasmodium falciparum D6 and W2
65.08% at 250 mg/kg/day
Nd
Rhus natalensis
Anacardiaceae
[143]
Kenya
Leaves
Methanol
Moderate
Inactive
Good
43.93–51.2 µg/ml IC50
Plasmodium falciparum D6 and W2
82.7% at 250 mg/kg/day
Nd
Triphyophyllum peltatum
Dioncophyllaceae
[191]
Ivory coast
Roots, stem barks
Dichloromethane
Very good*
Very good
Very good
1.90 mg/kg for Dioncophylline C and 10.71 mg/kg for dioncophylline A
Plasmodium berghei ANKA CRS
99% at 50 mg/kg/day
Nd
Uvaria acuminata
Annonaceae
[143]
Kenya
Roots
Methanol
Good
Good
In active
6.90–8.89 µg/ml IC50
Plasmodium falciparum D6 and W2
27.0% at 250 mg/kg/day
Nd
Nd Not done, Ns Not specified, SI Selectivity index
aActivity determined using pure compounds isolated from plant
Table 4
Clinical trial on African medicinal plants
Plant species
Plant family
Source
Country of study
Part of plant used
Extraction solvent
Crude extract?
Antimalarial activity
Parasite suppression rate
Strain of Plasmodium tested
Toxicity
Cochlospermum planchonii
Bixaceae
[210]
Burkina Faso
Roots
Ns
Yes
Moderate
52 at 600 ml/day
Plasmodium falciparum
No
Nd Not done, Ns Not specified

Family and species distribution of plants evaluated

From 722 studies, the most frequent plant families studied included Fabaceae 47 (6.5%), Euphorbiaceae 45 (6.2%), Annonaceae 37 (5.1%), Rubiaceae 37 (5.1%), Rutaceae 37 (5.1%), Meliaceae 30 (4.2%), and Lamiaceae 12 (1.7%). Five hundred and two (502) plant species were investigated in this study. Of them, the most investigated were: Azadirachta indica, Zanthoxylum chalybeum, Picrilima nitida, and Nauclea latifolia. The most frequent parts of the plants tested were the leaves, roots, root barkss, stems, and the whole plant. A majority of the studies used the crude extracts of the plants compared to pure compounds (95.7% vs. 4.3%). In descending order, methanol 322 (44.7%), dichloromethane 207 (28.7%), ethanol 103 (14.3%), water 85 (11.7%) and ethyl acetate 62 (8.6%) were the most frequent extraction solvent used.

In vitro and in vivo activities of the plants evaluated

Overall, 248 (34.3%) of the studies reported activity that was very good (IC50 values < 5 µg/ml or suppression rate of ≥ 50% at 100 mg/kg body weight/day), 241 (33.4%) reported good activity and 233 (32.3%) reported moderate activity. For the in vitro studies, a majority 228 (38.6%) reported very good activity; 206 (34.9%) reported good activity and 187 (31.6%) reported moderate activity. Meanwhile for the in vivo studies, a majority 19 (21.1%) reported moderate activity, 16 (17.8%) reported very good activity and 13 (14.4%) reported good activity. For studies reporting both the in vitro and in vivo activity, a majority of 17 (42.5%) reported only moderate activity, 13 (32.5%) studies reported very good activity and 10 (25.0%) reported good activity. Among the plants with very good activity, only one species demonstrated very good activity both in vitro and in vivo (Table 3).
Among the studies, the most frequent plant species demonstrating very good antiplasmodial activity were: Alchornea cordifolia [3/3, 100%], Flueggea virosa [3/3, 100%], Cryptolepis sanguinolenta [¾, 75%], Zanthoxylum chalbeum [4/5, 80%] and Maytenus senegalensis [3/6, 50%]. Plant families with the most active species include Rutaceae [13/25, 52.0%], Apocynaceae [13/26, 50%], Celastraceae [7/15, 46.7%], Annonaceae [17/37, 45.9%], Euphorbiaceae [21/48, 43.8], Combretaceae [7/16, 43.8%], Fabaceae [18/47, 38.3%], Lamiaceae [8/23, 34.8%], Asteraceae [23/69, 33.3%], and Rubiaceae [8/37, 21.6%]. The fractions are derived from the count of studies reporting very good antiplasmodial activity (numerator) divided by the total number of studies that assessed the activity of that plant species (denominator).
Azadirachta indica and Vernonia amygdalina were the most frequently reported inactive species (Additional file 1: Table S1). Furthermore, Fabaceae, Rubiaceae, Euphorbiaceae, and Asteraceae were the plant families containing the most frequently reported inactive plants. A majority of 95.7% (691/722) of the studies used the crude extract of the plants. The antiplasmodial and/or anti-malarial activity was significantly higher (p = 0.044) in studies using pure compounds compared to those using crude preparations.

Toxicity of plants evaluated for their antiplasmodial and anti-malarial activity

Out of the 198 plants evaluated in toxicity assays, 52 (26.3%) were found to demonstrate some degree of toxicity. The most frequently reported plants with toxicity were Azadirachta indica and Vernonia amygdalina. Plant families harboring the most toxic species were Lamiaceae, Anacardiaceae, Moraceae, Meliaceae, Asteraceae, and Fabaceae. Approximately 33% of the plants tested demonstrated some toxicity in vitro and 26.7% had some degree of toxicity in vivo. Among plants with very good, good, and moderate antiplasmodial activity, 17.8%, 28.3%, and 35.4% had some degree of toxicity, respectively. The leaf was the plant part with the most frequently reported toxicity. Albino mice and Vero E6 cells were the most commonly used assays for the assessment of the toxicity of the plants.

Discussion

Resistance to the frontline anti-malarial drugs is increasing and is now a global concern. With this rising rate of resistance, there is a need to accelerate research into the discovery and development of new anti-malarial drugs. Unfortunately, from this study, it is evident that the progress into the discovery of a new anti-malarial drug in Africa is slothful. Despite a considerable number of plant species that have demonstrated significant antiplasmodial activity in vitro, fewer plants have been evaluated in vivo and only one clinical trial with Cochlospermum planchonii (Bixaceae) has been conducted so far. This reinforces the need for basic and clinical research in the region. Van Wyk [213] had also arrived at the same conclusion.
This review revealed research articles from 31 African countries. Most of the articles were from Nigeria. This is suggestive that Nigeria is leading the podium in research on anti-malarial drug discovery and development, deservedly so, because she is probably the most affected country in the world. It is noteworthy that South Africa which is generally more technologically advanced than Nigeria had very few (8) articles. The African region is the most affected in the world recording the greatest number of cases and malaria attributed deaths. However, the distribution of malaria in Africa is not even, with sub-Saharan Africa harboring disproportionately the greatest number of cases. This is suggestive that research to identify new anti-malarial drugs may be related to the burden of the disease, thus the government policy to control the disease. There is, therefore, the need for policy-driven research into new anti-malarial all across the African region. In this review, IC50 values of < 20 µg/ml were considered as the cutoff of significant anti-malarial activity. This cutoff is considered the minimum to qualify as a first-pass “hit” in anti-malarial drugs screening [214]. Five hundred and two (502) plant species from 169 families were observed to have moderate to very good anti-malarial activity. The most investigated plant families were Euphorbiaceae, Fabaceae, Rubiaceae, and Annonaceae. However, the plant families containing the most active plants were Apocynaceae, Celestraceae, and Rutaceae. This finding suggests that more emphasis should be given to plants in these families for anti-malarial drug discovery. Besides, the most investigated plant species were Azadirachta indica, Nauclea latifolia, Picralima nitida, and Zanthoxylum chalybeum. Alchornea cordifolia, Flueggea virosa, Crytolepis sanguinolenta, and Zanthoxylum chalybeum were the only plant species with consistently very good antiplasmodial and anti-malarial activities between studies. This is very surprising that no clinical trial using any of these plants has been conducted. Further studies on these plant species should be performed.
This study revealed that overall, a majority of the plants investigated had very good antiplasmodial activity in vitro. That activity decreases as you move to in vivo in most studies, with a majority of plants demonstrating only moderate activity. For example, Gathirwa et al. [146] showed that the activity of Uvaria acuminate decreased from good activity in vitro to inactive in vivo. However, a few studies show that plant activity could also increase from in vitro to in vivo. For example, Ngbolua et al. [211] showed that the activity of Vernonia ambigua increased from in vitro to in vivo analysis. Other examples include studies by Muthaura et al. [20] using Boscia angustifolia, Kweyamba et al. [162] using Commiphora Africana, and Ajaiyeoba et al. [204] using Annona senegalensis. This suggests that plants could still have significant anti-malarial activity in vivo although they failed to in vitro. Most investigators usually progress to in vivo studies only when they observe significant antiplasmodial activity in vitro. This may explain the findings of a smaller number of in vivo studies in the current study. The investigation of the anti-malarial activities of plants should continue in vivo despite the dismal performance of the plants in vitro.
The current study revealed substantial inter-study variation in the antiplasmodial activity of several plant species. For example, considerable variation in the antiplasmodial activity was observed for Senna occidentalis, Adansonia digitata, Acanthospermum hispidum, Rotheca myricoides, Anogeissus leocarpus, Annona muricata, Ageratum conyzoides, Albizia coriaria, Ekebergia capensis, Flueggea virosa, Lippia javanica, Maytenus senegalensis, Morinda lucida, Picralima nitida, Trichilia emetica, Vernonia amydalina, and Vernonia colorata. The factors that could have accounted for these differences may include differences in the extraction solvent thus the extraction yield and extracted metabolite. With dichloromethane, mainly the apolar metabolites are extracted. In contrast, with methanol, from polar to moderate apolar metabolites are extracted.
Most (95.7%) of the studies used crude extract for their investigation and rarely the pure compounds (Additional file 1: Table S2 presents a summary of active compounds that have been identified from some of the plants). The finding of a majority of studies in Africa using only the crude extract of plants may be attributed to the absence of the necessary infrastructure to process the plant materials to get the pure compounds. Furthermore, there may be geographical differences in the areas where the plants were collected and this may also affect the activity of the same plant species. For example, despite using the same extraction solvent, the antiplasmodial activity of Acacia nilotica was moderate in South Africa and very good in Sudan. There was also variation between the different assay types. For example, the activities of Vernonia ambigua [211] and Annona senegalensis [204] have been reported to increase from inactive in vitro to very good in vivo. However, a few plant species including Alchornea cordifolia, and Zanthoxylum chalybeum, were observed to be consistently very good between studies. These plant species should be exploited further for their antiplasmodial activity. The activities of the plants were equally observed to increase with the isolation of the active compounds thus reinforcing the need for research into identifying the active compounds of African medicinal plants. The marked difference in the antiplasmodial activity of the crude extract of Artemisia annua and the pure compounds points out the issue that even the compounds which show only low potency and may be discarded from the initial screen for further development may still have active components with therapeutic potential [215]. The strain of the Plasmodium used may also be another factor accounting for the inter-study variation observed; studies using chloroquine-sensitive strains of the parasite like P. falciparum 3D7, D6, NF54 tend to report higher antiplasmodial activity compared to studies using chloroquine-resistant strains like P. falciparum W2, Dd5, K1 or D10.
This study revealed that only a few (26.3%) of the plants demonstrated some degree of toxicity. The families hosting the most toxic plant species were Lamiaceae, Anacardiaceae, Moraceae, and Meliaceae. The most toxic plants were Azadirachta indica and Vernonia amygdalina. The former [168] is one of the few plant species that demonstrated very good antiplasmodial activity in some studies. Other plants with high toxicity but very good antiplasmodial/anti-malarial activities include Arenga engleri [25], Celtis integrifolia [52], Ficus platyhylla [50], Gutenbergia cordifolia [21], Helchrysum cymosum [97], Microglossa pyrifolia [92], Opilia celtidifolia [52], Quassia Africana [103], Rumex abyssinicus [92], Clausena anisota [157], Icacina senegalensis [171], Abutilon grandiflorum [200], and Lannea schweinfurthii [205]. The isolation of the active compounds, which has to be done, could eliminate the toxicity, if not all, to a certain degree. For example, Salvia radula crude extract (of aerial parts) has been shown to demonstrate some degree of toxicity, but betulafolientriol oxide isolated from the plant was very active with little or no toxicity against human kidney epithelial cells [120]. There was also considerable variation in the toxicity between the assay types (in vitro or in vivo). As many as 32.8% of the plants demonstrated some level of toxicity in vitro meanwhile 26.7% were toxic in vivo. Since it is customary to evaluate toxicity at the in vitro level and toxic plants are discarded before in vivo evaluation, that may explain while fewer plants were toxic in vivo. Toxicity varied within the same plant species from study to study and could be attributed to differences in the study design as well as differences in the parts of the plants used for testing. From this study, the most toxicity was observed with the leaves. Also, a relationship could be established between toxicity and antiplasmodial activity; as the activity of the plant increases, the toxicity, on the other hand, was observed to decrease. Furthermore, albino mice and Vero E6 cells were the most commonly used assays in the evaluation of toxicity. Unfortunately, the authors could nt make a meaningful relationship between the type of assay and toxicity because of the fewer studies assessing the toxicity of the medicinal plants.
This study, however, is limited in that the analyses may have been compounded by the substantial inter-study variation in the methodologies used by different independent studies for the extraction of plant material, the overall extraction yield, the diversity of extracted metabolites as well as the geographical variations in the different sites used in the plant collection. However, the study has provided important baseline data that may be exploited by researchers in the field for the discovery and development of new anti-malarial drugs.

Conclusion

This study has revealed the slothful progress in the discovery and development of new anti-malarial drugs from African medicinal plants. Despite the encouraging activities demonstrated by the plants in vitro, fewer plants have been evaluated in vivo and just one clinical trial has been conducted so far with Cochlospermum planchonii (Bixaceae). The study also revealed considerable inter-study variation in the antiplasmodial activities of the plants, however, the activity of some plants including Alchornea cordifolia, Azadirachta indica, and Zanthoxylum chalybeum was consistently very good. The study demonstrates a relationship between antiplasmodial activity and toxicity whereby the toxicity of the plants decreases as the antiplasmodial activity increases. Besides, the active compounds were identified in just a handful of the plants. Therefore, there is a need for a policy-driven approach in the discovery and development of new anti-malarial drugs to subvert the rising resistance to the frontline anti-malarial drugs in the world.

Acknowledgements

I would like to express my special appreciation and thanks to Professor Dr. Wanderley de Souza for his helpful comments.

Declarations

Not applicable.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
2.
Zurück zum Zitat Kwenti ET. Malaria and HIV coinfection in sub-Saharan Africa: prevalence, impact, and treatment strategies. Res Rep Trop Med. 2018;9:123–36.PubMedPubMedCentral Kwenti ET. Malaria and HIV coinfection in sub-Saharan Africa: prevalence, impact, and treatment strategies. Res Rep Trop Med. 2018;9:123–36.PubMedPubMedCentral
3.
Zurück zum Zitat Kwenti ET, Kukwah TA, Kwenti TDB, Nyassa BR, Dilonga MH, Enow-Orock G, et al. Comparative analysis of IgG and IgG subclasses against Plasmodium falciparum MSP-119 in children from five contrasting bioecological zones of Cameroon. Malar J. 2019;18:16.PubMedPubMedCentralCrossRef Kwenti ET, Kukwah TA, Kwenti TDB, Nyassa BR, Dilonga MH, Enow-Orock G, et al. Comparative analysis of IgG and IgG subclasses against Plasmodium falciparum MSP-119 in children from five contrasting bioecological zones of Cameroon. Malar J. 2019;18:16.PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Dondorp AM, Nosten F, Yi P, Das D, Phyo AP, Tarning J, et al. Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2009;361:455–67.PubMedPubMedCentralCrossRef Dondorp AM, Nosten F, Yi P, Das D, Phyo AP, Tarning J, et al. Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2009;361:455–67.PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Murray CJ, Rosenfeld LC, Lim SS, Andrews KG, Foreman KJ, Haring D, et al. Global malaria mortality between 1980 and 2010: a systematic analysis. Lancet. 2012;379:413–31.PubMedCrossRef Murray CJ, Rosenfeld LC, Lim SS, Andrews KG, Foreman KJ, Haring D, et al. Global malaria mortality between 1980 and 2010: a systematic analysis. Lancet. 2012;379:413–31.PubMedCrossRef
6.
Zurück zum Zitat Nagendrappa PB, Annamalai P, Naik M, Mahajan V, Mathur A, Susanta G, et al. A prospective comparative field study to evaluate the efficacy of a traditional plant-based malaria prophylaxis. J Intercult Ethnopharmacol. 2017;6:36–41.PubMedCrossRef Nagendrappa PB, Annamalai P, Naik M, Mahajan V, Mathur A, Susanta G, et al. A prospective comparative field study to evaluate the efficacy of a traditional plant-based malaria prophylaxis. J Intercult Ethnopharmacol. 2017;6:36–41.PubMedCrossRef
8.
Zurück zum Zitat Cragg GM, Grothaus PG, Newman DJ. Impact of natural products on developing new anti-cancer agents. Chem Rev. 2009;109:3012–43.PubMedCrossRef Cragg GM, Grothaus PG, Newman DJ. Impact of natural products on developing new anti-cancer agents. Chem Rev. 2009;109:3012–43.PubMedCrossRef
9.
Zurück zum Zitat Willcox ML. A clinical trial of “AM”, a Ugandan herbal remedy for malaria. J Public Health Med. 1999;21:318–24.PubMedCrossRef Willcox ML. A clinical trial of “AM”, a Ugandan herbal remedy for malaria. J Public Health Med. 1999;21:318–24.PubMedCrossRef
10.
Zurück zum Zitat Suswardany DL, Sibbritt DW, Supardi S, Pardosi JF, Chang S, Adams J. A cross-sectional analysis of traditional medicine use for malaria alongside free antimalarial drugs treatment amongst adults in high-risk malaria endemic provinces of Indonesia. PLoS One. 2017;12:e0173522.PubMedPubMedCentralCrossRef Suswardany DL, Sibbritt DW, Supardi S, Pardosi JF, Chang S, Adams J. A cross-sectional analysis of traditional medicine use for malaria alongside free antimalarial drugs treatment amongst adults in high-risk malaria endemic provinces of Indonesia. PLoS One. 2017;12:e0173522.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Ibrahima HA, Imama IA, Bellob AM, Umara U, Muhammada S, Abdullahia SA. The potential of Nigerian medicinal plants as antimalarial agent: a review. Int J Sci Technol. 2012;2:600–5. Ibrahima HA, Imama IA, Bellob AM, Umara U, Muhammada S, Abdullahia SA. The potential of Nigerian medicinal plants as antimalarial agent: a review. Int J Sci Technol. 2012;2:600–5.
12.
Zurück zum Zitat Zofou D, Kuete V, Titanji VPK. Antimalarial and other antiprotozoal products from African Medicinal plants. In: Medicinal plant research in Africa: pharmacology and chemistry. Kuete V, Ed. Chapt. 17. Amsterdam, Elsevier, 2013;661–709. Zofou D, Kuete V, Titanji VPK. Antimalarial and other antiprotozoal products from African Medicinal plants. In: Medicinal plant research in Africa: pharmacology and chemistry. Kuete V, Ed. Chapt. 17. Amsterdam, Elsevier, 2013;661–709.
13.
Zurück zum Zitat Lawal B, Shittu OK, Kabiru AY, Jigam AA, Umar MB, Berinyuy EB, et al. Potential antimalarials from African natural products: a review. J Intercult Ethnopharmacol. 2015;4:318–43.PubMedPubMedCentralCrossRef Lawal B, Shittu OK, Kabiru AY, Jigam AA, Umar MB, Berinyuy EB, et al. Potential antimalarials from African natural products: a review. J Intercult Ethnopharmacol. 2015;4:318–43.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Van Wyk BE. A review of commercially important African medicinal plants. J Ethnopharmacol. 2015;176:118–34.PubMedCrossRef Van Wyk BE. A review of commercially important African medicinal plants. J Ethnopharmacol. 2015;176:118–34.PubMedCrossRef
15.
Zurück zum Zitat Kaur R, Kaur H. Plant derived antimalarial agents. J Med Plants Studies. 2017;5:346–63. Kaur R, Kaur H. Plant derived antimalarial agents. J Med Plants Studies. 2017;5:346–63.
16.
Zurück zum Zitat Lemma MT, Ahmed AM, Elhady MT, Ngo HT, Vu TL, Sang TK, et al. Medicinal plants for in vitro antiplasmodial activities: a systematic review of literature. Parasitol Int. 2017;66:713–20.PubMedCrossRef Lemma MT, Ahmed AM, Elhady MT, Ngo HT, Vu TL, Sang TK, et al. Medicinal plants for in vitro antiplasmodial activities: a systematic review of literature. Parasitol Int. 2017;66:713–20.PubMedCrossRef
17.
Zurück zum Zitat Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: the PRISMA statement. PLoS Med. 2009;6:1000097.CrossRef Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: the PRISMA statement. PLoS Med. 2009;6:1000097.CrossRef
18.
Zurück zum Zitat Deharo E, Bourdy G, Quenevo C, Munoz V, Ruiz G, Sauvain M. A search for natural bioactive compounds in Bolivia through multidisciplinary approach. Part V. Evaluation of the antimalarial activity of plants used by the Tacana Indians. J Ethnopharmacol. 2001;77:91–8.PubMedCrossRef Deharo E, Bourdy G, Quenevo C, Munoz V, Ruiz G, Sauvain M. A search for natural bioactive compounds in Bolivia through multidisciplinary approach. Part V. Evaluation of the antimalarial activity of plants used by the Tacana Indians. J Ethnopharmacol. 2001;77:91–8.PubMedCrossRef
19.
Zurück zum Zitat Becker JVW, van der Merwe MM, van Brummelen AC, Pillay P, Crampton BG, Mmutlane EM, et al. In vitro anti-plasmodial activity of Dicoma anomala subsp gerrardii (Asteraceae): identification of its main active constituent, structure-activity relationship studies, and gene expression profiling. Malar J. 2011;10:295.PubMedPubMedCentralCrossRef Becker JVW, van der Merwe MM, van Brummelen AC, Pillay P, Crampton BG, Mmutlane EM, et al. In vitro anti-plasmodial activity of Dicoma anomala subsp gerrardii (Asteraceae): identification of its main active constituent, structure-activity relationship studies, and gene expression profiling. Malar J. 2011;10:295.PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Gessler MC, Nkunya MH, Mwasumbi LB, Heinrich M, Tanner M. Screening Tanzanian medicinal plants for antimalarial activity. Acta Trop. 1994;56:65–77.PubMedCrossRef Gessler MC, Nkunya MH, Mwasumbi LB, Heinrich M, Tanner M. Screening Tanzanian medicinal plants for antimalarial activity. Acta Trop. 1994;56:65–77.PubMedCrossRef
21.
Zurück zum Zitat Koch A, Tamez P, Pezzuto J, Soejarto D. Evaluation of plants used for antimalarial treatment by the Maasai of Kenya. J Ethnopharmacol. 2005;101:95–9.PubMedCrossRef Koch A, Tamez P, Pezzuto J, Soejarto D. Evaluation of plants used for antimalarial treatment by the Maasai of Kenya. J Ethnopharmacol. 2005;101:95–9.PubMedCrossRef
22.
Zurück zum Zitat Clarkson C, Maharaj VJ, Crouch NR, Grace OM, Pillay P, Matsabisa MG, et al. In vitro antiplasmodial activity of medicinal plants native to or naturalised in South Africa. J Ethnopharmacol. 2004;92:177–91.PubMedCrossRef Clarkson C, Maharaj VJ, Crouch NR, Grace OM, Pillay P, Matsabisa MG, et al. In vitro antiplasmodial activity of medicinal plants native to or naturalised in South Africa. J Ethnopharmacol. 2004;92:177–91.PubMedCrossRef
23.
Zurück zum Zitat El Tahir A, Satti GM, Khalid SA. Antiplasmodial activity of selected Sudanese medicinal plants with emphasis on Maytenus senegalensis (Lam.) Exell. J Ethnopharmacol. 1999;64:227–33.PubMedCrossRef El Tahir A, Satti GM, Khalid SA. Antiplasmodial activity of selected Sudanese medicinal plants with emphasis on Maytenus senegalensis (Lam.) Exell. J Ethnopharmacol. 1999;64:227–33.PubMedCrossRef
24.
Zurück zum Zitat Muthaura CN, Keriko JM, Mutai C, Yenesew A, Gathirwa JW, Irungu BN, et al. Antiplasmodial potential of traditional phytotherapy of some remedies used in treatment of malaria in Meru-Tharaka Nithi County of Kenya. J Ethnopharmacol. 2015;175:315–23.PubMedCrossRef Muthaura CN, Keriko JM, Mutai C, Yenesew A, Gathirwa JW, Irungu BN, et al. Antiplasmodial potential of traditional phytotherapy of some remedies used in treatment of malaria in Meru-Tharaka Nithi County of Kenya. J Ethnopharmacol. 2015;175:315–23.PubMedCrossRef
25.
Zurück zum Zitat Prozesky EA, Meyer JJ, Louw AI. In vitro antiplasmodial activity and cytotoxicity of ethnobotanically selected South African plants. J Ethnopharmacol. 2001;76:239–45.PubMedCrossRef Prozesky EA, Meyer JJ, Louw AI. In vitro antiplasmodial activity and cytotoxicity of ethnobotanically selected South African plants. J Ethnopharmacol. 2001;76:239–45.PubMedCrossRef
26.
Zurück zum Zitat Muthaura CN, Keriko JM, Mutai C, Yenesew A, Gathirwa JW, Irungu BN, et al. Antiplasmodial potential of traditional antimalarial phytotherapy remedies used by the Kwale community of the Kenyan Coast. J Ethnopharmacol. 2015;170:148–57.PubMedCrossRef Muthaura CN, Keriko JM, Mutai C, Yenesew A, Gathirwa JW, Irungu BN, et al. Antiplasmodial potential of traditional antimalarial phytotherapy remedies used by the Kwale community of the Kenyan Coast. J Ethnopharmacol. 2015;170:148–57.PubMedCrossRef
27.
Zurück zum Zitat Sanon S, Ollivier E, Azas N, Mahiou V, Gasquet M, Ouattara CT, et al. Ethnobotanical survey and in vitro antiplasmodial activity of plants used in traditional medicine in Burkina Faso. J Ethnopharmacol. 2003;86:143–7.PubMedCrossRef Sanon S, Ollivier E, Azas N, Mahiou V, Gasquet M, Ouattara CT, et al. Ethnobotanical survey and in vitro antiplasmodial activity of plants used in traditional medicine in Burkina Faso. J Ethnopharmacol. 2003;86:143–7.PubMedCrossRef
28.
Zurück zum Zitat Zirihi-Guédé N, Mambu L, Guédé-Guina F, Bodo B, Grellier P. In vitro antiplasmodial activity and cytotoxicity of 33 West African plants used for treatment of malaria. J Ethnopharmacol. 2005;98:281–5.CrossRef Zirihi-Guédé N, Mambu L, Guédé-Guina F, Bodo B, Grellier P. In vitro antiplasmodial activity and cytotoxicity of 33 West African plants used for treatment of malaria. J Ethnopharmacol. 2005;98:281–5.CrossRef
29.
Zurück zum Zitat Koukouikila-Koussounda F, Abena AA, Nzoungani A, Mombouli JV, Ouamba JM, Kun J, et al. In vitro evaluation of antiplasmodial activity of extracts of Acanthospermum hispidum DC (Asteraceae) and Ficus thonningii Blume (Moraceae), two plants used in traditional medicine in the Republic of Congo. Afr J Tradit Complement Altern Med. 2012;10:270–6.PubMedPubMedCentral Koukouikila-Koussounda F, Abena AA, Nzoungani A, Mombouli JV, Ouamba JM, Kun J, et al. In vitro evaluation of antiplasmodial activity of extracts of Acanthospermum hispidum DC (Asteraceae) and Ficus thonningii Blume (Moraceae), two plants used in traditional medicine in the Republic of Congo. Afr J Tradit Complement Altern Med. 2012;10:270–6.PubMedPubMedCentral
30.
Zurück zum Zitat Owuor BO, Ochanda JO, Kokwaro JO, Cheruiyot AC, Yeda RA, Okudo CA, et al. In vitro antiplasmodial activity of selected Luo and Kuria medicinal plants. J Ethnopharmacol. 2012;144:779–81.PubMedCrossRef Owuor BO, Ochanda JO, Kokwaro JO, Cheruiyot AC, Yeda RA, Okudo CA, et al. In vitro antiplasmodial activity of selected Luo and Kuria medicinal plants. J Ethnopharmacol. 2012;144:779–81.PubMedCrossRef
31.
Zurück zum Zitat Malebo HM, Tanja W, Cal M, Swaleh SAM, Omolo MO, Hassanali A, et al. Antiplasmodial, anti-trypanosomal, anti-leishmanial and cytotoxicity activity of selected Tanzanian medicinal plants. Tanzan J Health Res. 2009;11:226–34.PubMed Malebo HM, Tanja W, Cal M, Swaleh SAM, Omolo MO, Hassanali A, et al. Antiplasmodial, anti-trypanosomal, anti-leishmanial and cytotoxicity activity of selected Tanzanian medicinal plants. Tanzan J Health Res. 2009;11:226–34.PubMed
32.
Zurück zum Zitat Annan K, Sarpong K, Asare C, Dickson R, Amponsah KI, Gyan B, et al. In vitro anti-plasmodial activity of three herbal remedies for malaria in Ghana: Adenia cissampeloides (Planch.) Harms., Termina liaivorensis A. Chev, and Elaeis guineensis Jacq. Pharmacognosy Res. 2012;4:225–9.PubMedPubMedCentralCrossRef Annan K, Sarpong K, Asare C, Dickson R, Amponsah KI, Gyan B, et al. In vitro anti-plasmodial activity of three herbal remedies for malaria in Ghana: Adenia cissampeloides (Planch.) Harms., Termina liaivorensis A. Chev, and Elaeis guineensis Jacq. Pharmacognosy Res. 2012;4:225–9.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Lekana-Douki JB, Liabagui SLO, Bongui JB, Zatra R, Lebibi J, Toure-Ndouo FS. In vitro antiplasmodial activity of crude extracts of Tetrapleura tetraptera and Copaifera religiosa. BMC Res Notes. 2011;4:506.PubMedPubMedCentralCrossRef Lekana-Douki JB, Liabagui SLO, Bongui JB, Zatra R, Lebibi J, Toure-Ndouo FS. In vitro antiplasmodial activity of crude extracts of Tetrapleura tetraptera and Copaifera religiosa. BMC Res Notes. 2011;4:506.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Ahmed EHM, Nour BYM, Mohammed YG, Khalid HS. Antiplasmodial activity of some medicinal plants used in Sudanese fFolk-medicine. Environ Health Insights. 2010;4:1–6.PubMedCentralCrossRef Ahmed EHM, Nour BYM, Mohammed YG, Khalid HS. Antiplasmodial activity of some medicinal plants used in Sudanese fFolk-medicine. Environ Health Insights. 2010;4:1–6.PubMedCentralCrossRef
35.
Zurück zum Zitat Kuria KA, Chepkwony H, Govaerts C, Roets E, Busson R, De Witte P, et al. The antiplasmodial activity of isolates from Ajuga remota. J Nat Prod. 2002;65:789–93.PubMedCrossRef Kuria KA, Chepkwony H, Govaerts C, Roets E, Busson R, De Witte P, et al. The antiplasmodial activity of isolates from Ajuga remota. J Nat Prod. 2002;65:789–93.PubMedCrossRef
36.
Zurück zum Zitat Lasisi AA, Olayiwola MA, Balogun SA, Akinloye OA, Ojo DA. Phytochemical composition, cytotoxicity and in vitro antiplasmodial activity of fractions from Alafia barteri olive (Hook F. Icon)-Apocynaceae. J Saudi Chem Soc. 2016;20:2–6.CrossRef Lasisi AA, Olayiwola MA, Balogun SA, Akinloye OA, Ojo DA. Phytochemical composition, cytotoxicity and in vitro antiplasmodial activity of fractions from Alafia barteri olive (Hook F. Icon)-Apocynaceae. J Saudi Chem Soc. 2016;20:2–6.CrossRef
37.
Zurück zum Zitat Bapela MJ, Meyer JJ, Kaiser M. In vitro antiplasmodial screening of ethnopharmacologically selected South African plant species used for the treatment of malaria. J Ethnopharmacol. 2014;156:370–3.PubMedCrossRef Bapela MJ, Meyer JJ, Kaiser M. In vitro antiplasmodial screening of ethnopharmacologically selected South African plant species used for the treatment of malaria. J Ethnopharmacol. 2014;156:370–3.PubMedCrossRef
38.
Zurück zum Zitat Banzouzi JT, Prado R, Menan H, Valentin A, Roumestan C, Mallie M, et al. In vitro antiplasmodial activity of extracts of Alchornea cordifolia and identification of an active constituent: ellagic acid. J Ethnopharmacol. 2002;81:399–401.PubMedCrossRef Banzouzi JT, Prado R, Menan H, Valentin A, Roumestan C, Mallie M, et al. In vitro antiplasmodial activity of extracts of Alchornea cordifolia and identification of an active constituent: ellagic acid. J Ethnopharmacol. 2002;81:399–401.PubMedCrossRef
39.
Zurück zum Zitat Mustofa, Valentin A, Benoit-Vical F, Pélissier Y, Koné-Bamba D, Mallié M. Antiplasmodial activity of plant extracts used in West African traditional medicine. J Ethnopharmacol. 2000;73:145–51. Mustofa, Valentin A, Benoit-Vical F, Pélissier Y, Koné-Bamba D, Mallié M. Antiplasmodial activity of plant extracts used in West African traditional medicine. J Ethnopharmacol. 2000;73:145–51.
40.
Zurück zum Zitat Musuyu Muganza D, Fruth BI, Nzunzu Lami J, Mesia GK, Kambu OK, Tona GL, et al. In vitro antiprotozoal and cytotoxic activity of 33 ethonopharmacologically selected medicinal plants from Democratic Republic of Congo. J Ethnopharmacol. 2012;141:301–8.PubMedCrossRef Musuyu Muganza D, Fruth BI, Nzunzu Lami J, Mesia GK, Kambu OK, Tona GL, et al. In vitro antiprotozoal and cytotoxic activity of 33 ethonopharmacologically selected medicinal plants from Democratic Republic of Congo. J Ethnopharmacol. 2012;141:301–8.PubMedCrossRef
41.
Zurück zum Zitat Abdissa D, Geleta G, Bacha K, Abdissa N. Phytochemical investigation of Aloe pulcherrima roots and evaluation for its antibacterial and antiplasmodial activities. PLoS ONE. 2017;12:e0173882.PubMedPubMedCentralCrossRef Abdissa D, Geleta G, Bacha K, Abdissa N. Phytochemical investigation of Aloe pulcherrima roots and evaluation for its antibacterial and antiplasmodial activities. PLoS ONE. 2017;12:e0173882.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Iyiola OA, Tijani AY, Lateef KM. Antimalarial activity of ethanolic stem barks extract of Alstonia boonei in mice. Asian J Biol Sci. 2011;4:235–43.CrossRef Iyiola OA, Tijani AY, Lateef KM. Antimalarial activity of ethanolic stem barks extract of Alstonia boonei in mice. Asian J Biol Sci. 2011;4:235–43.CrossRef
43.
Zurück zum Zitat Zirihi-Guédé N, N’guessan K, Etien Dibié T, Grellier P. Ethnopharmacological study of plants used to treat malaria, in traditional medicine, by Bete populations of Issia (Côte d’Ivoire). J Pharm Sci Res. 2010;2:216–27. Zirihi-Guédé N, N’guessan K, Etien Dibié T, Grellier P. Ethnopharmacological study of plants used to treat malaria, in traditional medicine, by Bete populations of Issia (Côte d’Ivoire). J Pharm Sci Res. 2010;2:216–27.
44.
Zurück zum Zitat Lumpu SL, Kikueta CM, Tshodi ME, Mbenza AP, Kambu OK, Mbamu BM, et al. Antiprotozoal screening and cytotoxicity of extracts and fractions from the leaves, stem barks and root barks of Alstonia congensis. J Ethnopharmacol. 2013;148:724–7.PubMedCrossRef Lumpu SL, Kikueta CM, Tshodi ME, Mbenza AP, Kambu OK, Mbamu BM, et al. Antiprotozoal screening and cytotoxicity of extracts and fractions from the leaves, stem barks and root barks of Alstonia congensis. J Ethnopharmacol. 2013;148:724–7.PubMedCrossRef
45.
Zurück zum Zitat Hout S, Chea A, Bun SS, Elias R, Gasquet M, Timon-David P, et al. Screening of selected indigenous plants of Cambodia for antiplasmodial activity. J Ethnopharmacol. 2006;107:12–8.PubMedCrossRef Hout S, Chea A, Bun SS, Elias R, Gasquet M, Timon-David P, et al. Screening of selected indigenous plants of Cambodia for antiplasmodial activity. J Ethnopharmacol. 2006;107:12–8.PubMedCrossRef
46.
Zurück zum Zitat Lusakibanza M, Mesia G, Tona G, Karemere S, Lukuka A, Tits M, et al. In vitro and in vivo antimalarial and cytotoxic activity of five plants used in Congolese traditional medicine. J Ethnopharmacol. 2010;129:398–402.PubMedCrossRef Lusakibanza M, Mesia G, Tona G, Karemere S, Lukuka A, Tits M, et al. In vitro and in vivo antimalarial and cytotoxic activity of five plants used in Congolese traditional medicine. J Ethnopharmacol. 2010;129:398–402.PubMedCrossRef
47.
Zurück zum Zitat Yamthe LRT, Fokou PVT, Mbouna CDJ, Keumoe R, Ndjakou BL, Djouonzo PT, et al. Extracts from Annona muricata L. and Annona reticulata L. (Annonaceae) potently and selectively inhibit Plasmodium falciparum. Medicines (Basel). 2015;2:55–66.PubMedPubMedCentralCrossRef Yamthe LRT, Fokou PVT, Mbouna CDJ, Keumoe R, Ndjakou BL, Djouonzo PT, et al. Extracts from Annona muricata L. and Annona reticulata L. (Annonaceae) potently and selectively inhibit Plasmodium falciparum. Medicines (Basel). 2015;2:55–66.PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Ménan H, Banzouzi J-T, Hocquette A, Pélissier Y, Blache Y, Koné M, et al. Antiplasmodial activity and cytotoxicity of plants used in West African traditional medicine for the treatment of malaria. J Ethnopharmacol. 2006;105:131–6.PubMedCrossRef Ménan H, Banzouzi J-T, Hocquette A, Pélissier Y, Blache Y, Koné M, et al. Antiplasmodial activity and cytotoxicity of plants used in West African traditional medicine for the treatment of malaria. J Ethnopharmacol. 2006;105:131–6.PubMedCrossRef
49.
Zurück zum Zitat Boyom FF, Fokou PV, Yamthe LR, Mfopa AN, Kemgne EM, Mbacham WF, et al. Potent antiplasmodial extracts from Cameroonian Annonaceae. J Ethnopharmacol. 2011;134:717–24.PubMedCrossRef Boyom FF, Fokou PV, Yamthe LR, Mfopa AN, Kemgne EM, Mbacham WF, et al. Potent antiplasmodial extracts from Cameroonian Annonaceae. J Ethnopharmacol. 2011;134:717–24.PubMedCrossRef
50.
Zurück zum Zitat Shuaibu MN, Wuyep PA, Yanagi T, Hirayama K, Tanaka T, Kouno I. The use of microfluorometric method for activity-guided isolation of antiplasmodial compound from plant extracts. Parasitol Res. 2008;102:1119–27.PubMedCrossRef Shuaibu MN, Wuyep PA, Yanagi T, Hirayama K, Tanaka T, Kouno I. The use of microfluorometric method for activity-guided isolation of antiplasmodial compound from plant extracts. Parasitol Res. 2008;102:1119–27.PubMedCrossRef
51.
Zurück zum Zitat Vonthron-Sénécheau C, Weniger B, Ouattara M, Bi FT, Kamenan A, Lobstein A, et al. In vitro antiplasmodial activity and cytotoxicity of ethnobotanically selected Ivorian plants. J Ethnopharmacol. 2003;87:221–5.PubMedCrossRef Vonthron-Sénécheau C, Weniger B, Ouattara M, Bi FT, Kamenan A, Lobstein A, et al. In vitro antiplasmodial activity and cytotoxicity of ethnobotanically selected Ivorian plants. J Ethnopharmacol. 2003;87:221–5.PubMedCrossRef
52.
Zurück zum Zitat Sanon S, Gansane A, Ouattara LP, Traore A, OueDRaogo IN, Tiono A, et al. In vitro antiplasmodial and cytotoxic properties of some medicinal plants from western Burkina Faso. Afr J Lab Med. 2013;2:81.PubMedPubMedCentralCrossRef Sanon S, Gansane A, Ouattara LP, Traore A, OueDRaogo IN, Tiono A, et al. In vitro antiplasmodial and cytotoxic properties of some medicinal plants from western Burkina Faso. Afr J Lab Med. 2013;2:81.PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat Chukwujekwu JC, van Staden J, Smith P, Meyer JJM. Antibacterial, anti-inflammatory, and antimalarial activities of some Nigerian medicinal plants. S Afr J Bot. 2005;71:316–25.CrossRef Chukwujekwu JC, van Staden J, Smith P, Meyer JJM. Antibacterial, anti-inflammatory, and antimalarial activities of some Nigerian medicinal plants. S Afr J Bot. 2005;71:316–25.CrossRef
54.
Zurück zum Zitat Kraft C, Jenett-Siems K, Siems K, Jakupovic J, Mavi S, Bienzle U, et al. In vitro antiplasmodial evaluation of medicinal plants from Zimbabwe. Phytother Res. 2003;17:123–8.PubMedCrossRef Kraft C, Jenett-Siems K, Siems K, Jakupovic J, Mavi S, Bienzle U, et al. In vitro antiplasmodial evaluation of medicinal plants from Zimbabwe. Phytother Res. 2003;17:123–8.PubMedCrossRef
55.
Zurück zum Zitat Boyom FF, Kemgne EM, Tepongning R, Ngouana V, Mbacham WF, Tsamo E, et al. Antiplasmodial activity of extracts from seven medicinal plants used in malaria treatment in Cameroon. J Ethnopharmacol. 2009;123:483–8.PubMedCrossRef Boyom FF, Kemgne EM, Tepongning R, Ngouana V, Mbacham WF, Tsamo E, et al. Antiplasmodial activity of extracts from seven medicinal plants used in malaria treatment in Cameroon. J Ethnopharmacol. 2009;123:483–8.PubMedCrossRef
56.
Zurück zum Zitat Waako PJ, Katuura E, Smith P, Folb P. East African medicinal plants as a source of lead compounds for the development of new antimalarial drugs. Afr J Ecol. 2007;45:102–6.CrossRef Waako PJ, Katuura E, Smith P, Folb P. East African medicinal plants as a source of lead compounds for the development of new antimalarial drugs. Afr J Ecol. 2007;45:102–6.CrossRef
57.
Zurück zum Zitat Benoit F, Valentin A, Pelissier Y, Diafouka F, Marion C, Kone-Bamba D, et al. In vitro antimalarial activity of vegetal extracts used in West African traditional medicine. Am J Trop Med Hyg. 1996;54:67–71.PubMedCrossRef Benoit F, Valentin A, Pelissier Y, Diafouka F, Marion C, Kone-Bamba D, et al. In vitro antimalarial activity of vegetal extracts used in West African traditional medicine. Am J Trop Med Hyg. 1996;54:67–71.PubMedCrossRef
58.
Zurück zum Zitat El-Tahir A, Satti GM, Khalid SA. Antiplasmodial activity of selected Sudanese medicinal plants with emphasis on Acacia nilotica. Phytother Res. 1999;13:474–8.PubMedCrossRef El-Tahir A, Satti GM, Khalid SA. Antiplasmodial activity of selected Sudanese medicinal plants with emphasis on Acacia nilotica. Phytother Res. 1999;13:474–8.PubMedCrossRef
59.
Zurück zum Zitat MacKinnon S1, Durst T, Arnason JT, Angerhofer C, Pezzuto J, SanchezVindas PE, et al. Antimalarial activity of tropical Meliaceae extracts and Gedunin derivatives. J Nat Prod. 1997;60:336–41. MacKinnon S1, Durst T, Arnason JT, Angerhofer C, Pezzuto J, SanchezVindas PE, et al. Antimalarial activity of tropical Meliaceae extracts and Gedunin derivatives. J Nat Prod. 1997;60:336–41.
60.
Zurück zum Zitat Connelly MP, Fabiano E, Patel IH, Kinyanjui SM, Mberu EK, Watkins WM. Antimalarial activity in crude extracts of Malawian medicinal plants. Ann Trop Med Parasitol. 1996;90:597–602.PubMedCrossRef Connelly MP, Fabiano E, Patel IH, Kinyanjui SM, Mberu EK, Watkins WM. Antimalarial activity in crude extracts of Malawian medicinal plants. Ann Trop Med Parasitol. 1996;90:597–602.PubMedCrossRef
61.
Zurück zum Zitat Ngwira KJ, Maharaj VJ, Mgani QA. In vitro antiplasmodial and HIV-1 neutralization activities of root and leaf extracts from Berberis holstii. J Herb Med. 2015;5:30–5.CrossRef Ngwira KJ, Maharaj VJ, Mgani QA. In vitro antiplasmodial and HIV-1 neutralization activities of root and leaf extracts from Berberis holstii. J Herb Med. 2015;5:30–5.CrossRef
62.
Zurück zum Zitat Jansen O, Angenot L, Tits M, Nicolas JP, De Mol P, Nikiéma JB, et al. Evaluation of 13 selected medicinal plants from Burkina Faso for their antiplasmodial properties. J Ethnopharmacol. 2010;130:143–50.PubMedCrossRef Jansen O, Angenot L, Tits M, Nicolas JP, De Mol P, Nikiéma JB, et al. Evaluation of 13 selected medicinal plants from Burkina Faso for their antiplasmodial properties. J Ethnopharmacol. 2010;130:143–50.PubMedCrossRef
63.
Zurück zum Zitat Benoit-Vical F, Soh PN, Saléry M, Harguem L, Poupat C, Nongonierma R. Evaluation of Senegalese plants used in malaria treatment: focus on Chrozophora senegalensis. J Ethnopharmacol. 2008;116:43–8.PubMedCrossRef Benoit-Vical F, Soh PN, Saléry M, Harguem L, Poupat C, Nongonierma R. Evaluation of Senegalese plants used in malaria treatment: focus on Chrozophora senegalensis. J Ethnopharmacol. 2008;116:43–8.PubMedCrossRef
64.
Zurück zum Zitat Ogunlanaa OO, Kimb H-S, Watayab Y, Olagunjuc JO, Akindahunsid AA, Tan NH. Antiplasmodial flavonoid from young twigs and leaves of Caesalpinia bonduc (Linn) Roxb. J Chem Pharm Res. 2015;7:931–7. Ogunlanaa OO, Kimb H-S, Watayab Y, Olagunjuc JO, Akindahunsid AA, Tan NH. Antiplasmodial flavonoid from young twigs and leaves of Caesalpinia bonduc (Linn) Roxb. J Chem Pharm Res. 2015;7:931–7.
65.
Zurück zum Zitat Weniger B, Lagnika L, Vonthron-Sénécheau C, Adjobimey T, Gbenou J, Moudachirou M, et al. Evaluation of ethnobotanically selected Benin medicinal plants for their in vitro antiplasmodial activity. J Ethnopharmacol. 2004;90:279–84.PubMedCrossRef Weniger B, Lagnika L, Vonthron-Sénécheau C, Adjobimey T, Gbenou J, Moudachirou M, et al. Evaluation of ethnobotanically selected Benin medicinal plants for their in vitro antiplasmodial activity. J Ethnopharmacol. 2004;90:279–84.PubMedCrossRef
66.
Zurück zum Zitat Melariri P, Campbell W, Etusim P, Smith P. Antiplasmodial properties and bioassay-guided fractionation of ethyl acetate extracts from Carica papaya leaves. J Parasitol Res. 2011;2011:104954.PubMedPubMedCentralCrossRef Melariri P, Campbell W, Etusim P, Smith P. Antiplasmodial properties and bioassay-guided fractionation of ethyl acetate extracts from Carica papaya leaves. J Parasitol Res. 2011;2011:104954.PubMedPubMedCentralCrossRef
67.
Zurück zum Zitat Kayembe JS, Taba KM, Ntumba K, Tshiongo MTC, Kazadi TK. In vitro antimalarial activity of 20 quinones isolated from four plants used by traditional healers in the Democratic Republic of Congo. J Med Plant Res. 2010;4:991–4. Kayembe JS, Taba KM, Ntumba K, Tshiongo MTC, Kazadi TK. In vitro antimalarial activity of 20 quinones isolated from four plants used by traditional healers in the Democratic Republic of Congo. J Med Plant Res. 2010;4:991–4.
68.
Zurück zum Zitat Ramalhete C, Lopes D, Mulhovo S, Rosário VE, Ferreira MJU. Antimalarial activity of some plants traditionally used in Mozambique. Workshop Plantas Medicinais e Fitoterapêuticas nos Trópicos.IICT /CCCM, 29, 30 e 31 de Outubro de 2008. Ramalhete C, Lopes D, Mulhovo S, Rosário VE, Ferreira MJU. Antimalarial activity of some plants traditionally used in Mozambique. Workshop Plantas Medicinais e Fitoterapêuticas nos Trópicos.IICT /CCCM, 29, 30 e 31 de Outubro de 2008.
69.
Zurück zum Zitat Tona L, Cimanga RK, Mesia K, Musuamba CT, De Bruyne T, Apers S, et al. In vitro antiplasmodial activity of extracts and fractions from seven medicinal plants used in the Democratic Republic of Congo. J Ethnopharmacol. 2004;93:27–32.PubMedCrossRef Tona L, Cimanga RK, Mesia K, Musuamba CT, De Bruyne T, Apers S, et al. In vitro antiplasmodial activity of extracts and fractions from seven medicinal plants used in the Democratic Republic of Congo. J Ethnopharmacol. 2004;93:27–32.PubMedCrossRef
70.
Zurück zum Zitat Gbeassor M, Kossou Y, Amegbo K, de Souza C, Koumaglo K, Denke A. Antimalarial effects of eight African medicinal plants. J Ethnopharmacol. 1989;25:115–8.PubMedCrossRef Gbeassor M, Kossou Y, Amegbo K, de Souza C, Koumaglo K, Denke A. Antimalarial effects of eight African medicinal plants. J Ethnopharmacol. 1989;25:115–8.PubMedCrossRef
71.
Zurück zum Zitat Afoulous S, Ferhout H, Raoelison EG, Valentin A, Moukarzel B, Couderc F, et al. Chemical composition and anticancer, antiinflammatory, antioxidant and antimalarial activities of leaf essential oil of Cedrelopsis grevei. Food Chem Toxicol. 2013;56:352–62.PubMedCrossRef Afoulous S, Ferhout H, Raoelison EG, Valentin A, Moukarzel B, Couderc F, et al. Chemical composition and anticancer, antiinflammatory, antioxidant and antimalarial activities of leaf essential oil of Cedrelopsis grevei. Food Chem Toxicol. 2013;56:352–62.PubMedCrossRef
72.
Zurück zum Zitat Irungu BN, Rukunga GM, Mungai GM, Muthaura CN. In vitro antiplasmodial and cytotoxicity activities of 14 medicinal plants from Kenya. S Afr J Bot. 2007;73:204–7.CrossRef Irungu BN, Rukunga GM, Mungai GM, Muthaura CN. In vitro antiplasmodial and cytotoxicity activities of 14 medicinal plants from Kenya. S Afr J Bot. 2007;73:204–7.CrossRef
73.
Zurück zum Zitat do Céu de Madureira M, Paula Martins A, Gomes M, Paiva J, Proença da Cunha A, do Rosário V. Antimalarial activity of medicinal plants used in traditional medicine in S. Tomé and Prı́ncipe islands. J Ethnopharmacol. 2002;81:23–9. do Céu de Madureira M, Paula Martins A, Gomes M, Paiva J, Proença da Cunha A, do Rosário V. Antimalarial activity of medicinal plants used in traditional medicine in S. Tomé and Prı́ncipe islands. J Ethnopharmacol. 2002;81:23–9.
74.
Zurück zum Zitat Rukunga GM, Gathirwa JW, Omar SA, Muregi FW, Muthaura CN, Kirira PG, et al. Anti-plasmodial activity of the extracts of some Kenyan medicinal plants. J Ethnopharmacol. 2009;121:282–5.PubMedCrossRef Rukunga GM, Gathirwa JW, Omar SA, Muregi FW, Muthaura CN, Kirira PG, et al. Anti-plasmodial activity of the extracts of some Kenyan medicinal plants. J Ethnopharmacol. 2009;121:282–5.PubMedCrossRef
75.
Zurück zum Zitat Lacroix D, Prado S, Kamoga D, Kasenene J, Namukobe J, Krief S, et al. Antiplasmodial and cytotoxic activities of medicinal plants traditionally used in the village of Kiohima Uganda. J Ethnopharmacol. 2011;133:850–5.PubMedCrossRef Lacroix D, Prado S, Kamoga D, Kasenene J, Namukobe J, Krief S, et al. Antiplasmodial and cytotoxic activities of medicinal plants traditionally used in the village of Kiohima Uganda. J Ethnopharmacol. 2011;133:850–5.PubMedCrossRef
76.
Zurück zum Zitat Muregi FW, Chhabra SC, Njagi EN, Lang’at-Thoruwa CC, Njue WM, Orago AS, et al. Anti-plasmodial activity of some Kenyan medicinal plant extracts singly and in combination with chloroquine. Phytother Res. 2004;18:379–84.PubMedCrossRef Muregi FW, Chhabra SC, Njagi EN, Lang’at-Thoruwa CC, Njue WM, Orago AS, et al. Anti-plasmodial activity of some Kenyan medicinal plant extracts singly and in combination with chloroquine. Phytother Res. 2004;18:379–84.PubMedCrossRef
77.
Zurück zum Zitat Adia MM, Emami SN, Byamukama R, Faye I, Borg-Karlson AK. Antiplasmodial activity and phytochemical analysis of extracts from selected Ugandan medicinal plants. J Ethnopharmacol. 2016;186:14–9.PubMedCrossRef Adia MM, Emami SN, Byamukama R, Faye I, Borg-Karlson AK. Antiplasmodial activity and phytochemical analysis of extracts from selected Ugandan medicinal plants. J Ethnopharmacol. 2016;186:14–9.PubMedCrossRef
78.
Zurück zum Zitat Lamien-Meda A, Kiendrebeogo M, Compaoré M, Meda RN, Bacher M, Koenig K, et al. Quality assessment and antiplasmodial activity of West African Cochlospermum species. Phytochemistry. 2015;119:51–61.PubMedCrossRef Lamien-Meda A, Kiendrebeogo M, Compaoré M, Meda RN, Bacher M, Koenig K, et al. Quality assessment and antiplasmodial activity of West African Cochlospermum species. Phytochemistry. 2015;119:51–61.PubMedCrossRef
79.
Zurück zum Zitat Benoit F, Valentin A, Pélissier Y, Marion C, Dakuyo Z, Mallié M, et al. Antimalarial activity in vitro of Cochlospermum tinctorium tubercle extracts. Trans R Soc Trop Med Hyg. 1995;89:217–8.PubMedCrossRef Benoit F, Valentin A, Pélissier Y, Marion C, Dakuyo Z, Mallié M, et al. Antimalarial activity in vitro of Cochlospermum tinctorium tubercle extracts. Trans R Soc Trop Med Hyg. 1995;89:217–8.PubMedCrossRef
80.
Zurück zum Zitat Zofou D, Kengne ABO, Tene M. Ngemenya MN, Tane P, Titanji VP. In vitro antiplasmodial activity and cytotoxicity of crude extracts and compounds from the stem barks of Kigelia africana (Lam.) Benth (Bignoniaceae). Parasitol Res. 2011;108:1383–90. Zofou D, Kengne ABO, Tene M. Ngemenya MN, Tane P, Titanji VP. In vitro antiplasmodial activity and cytotoxicity of crude extracts and compounds from the stem barks of Kigelia africana (Lam.) Benth (Bignoniaceae). Parasitol Res. 2011;108:1383–90.
81.
Zurück zum Zitat Paulo A, Gomes ET, Houghton PJ. New alkaloids from Cryptolepis sanguinolenta. J Nat Prod. 1995;58:1485–91.CrossRef Paulo A, Gomes ET, Houghton PJ. New alkaloids from Cryptolepis sanguinolenta. J Nat Prod. 1995;58:1485–91.CrossRef
82.
Zurück zum Zitat Kirby GC, Paine A, Warhurst DC, Noamese BK, Phillipson JD. In vitro and in vivo antimalarial activity of cryptolepine, a plant-derived indoloquinoline. Phytother Res. 1995;9:359–63.CrossRef Kirby GC, Paine A, Warhurst DC, Noamese BK, Phillipson JD. In vitro and in vivo antimalarial activity of cryptolepine, a plant-derived indoloquinoline. Phytother Res. 1995;9:359–63.CrossRef
83.
Zurück zum Zitat Cimanga K, De Bruyne T, Pieters L, Vlietinck AJ, Turger CA. In vitro and in vivo antiplasmodial activity of cryptolepine and related alkaloids from Cryptolepis sanguinea. J Nat Prod. 1997;60:688–91.PubMedCrossRef Cimanga K, De Bruyne T, Pieters L, Vlietinck AJ, Turger CA. In vitro and in vivo antiplasmodial activity of cryptolepine and related alkaloids from Cryptolepis sanguinea. J Nat Prod. 1997;60:688–91.PubMedCrossRef
84.
Zurück zum Zitat Grellier P, Ramiaramanana L, Millerioux V, Deharo E, Schrével J, Frappier F, et al. Antimalarial activity of cryptolepine and isocryptolepine, alkaloids isolated from Cryptolepis sanguinolenta. Phytother Res. 1996;10:317–21.CrossRef Grellier P, Ramiaramanana L, Millerioux V, Deharo E, Schrével J, Frappier F, et al. Antimalarial activity of cryptolepine and isocryptolepine, alkaloids isolated from Cryptolepis sanguinolenta. Phytother Res. 1996;10:317–21.CrossRef
85.
Zurück zum Zitat Zofou D, Tematio EL, Ntie-Kang F, Tene M, Ngemenya MN, Tane P, et al. New antimalarial hits from Dacryodes edulis (Burseraceae) - Part I: Isolation, in vitro activity, in silico “drug-likeness” and pharmacokinetic profiles. PLoS ONE. 2013;8:e79544.PubMedPubMedCentralCrossRef Zofou D, Tematio EL, Ntie-Kang F, Tene M, Ngemenya MN, Tane P, et al. New antimalarial hits from Dacryodes edulis (Burseraceae) - Part I: Isolation, in vitro activity, in silico “drug-likeness” and pharmacokinetic profiles. PLoS ONE. 2013;8:e79544.PubMedPubMedCentralCrossRef
86.
Zurück zum Zitat Nafuka SN, Mumbengegwi DR. Phytochemical analysis and in vitro anti-plasmodial activity of selected ethnomedicinal plants used to treat malaria associated symptoms in Northern Namibia. Int Sci Technol J Namibia. 2013;2:78–93. Nafuka SN, Mumbengegwi DR. Phytochemical analysis and in vitro anti-plasmodial activity of selected ethnomedicinal plants used to treat malaria associated symptoms in Northern Namibia. Int Sci Technol J Namibia. 2013;2:78–93.
87.
Zurück zum Zitat Jansen O, Tits M, Nicolas ALJP, De Mol P, Nikiema J-B, Frédérich M. Anti-plasmodial activity of Dicoma tomentosa (Asteraceae) and identification of urospermal A-15-O-acetate as the main active compound. Malar J. 2012;11:289.PubMedPubMedCentralCrossRef Jansen O, Tits M, Nicolas ALJP, De Mol P, Nikiema J-B, Frédérich M. Anti-plasmodial activity of Dicoma tomentosa (Asteraceae) and identification of urospermal A-15-O-acetate as the main active compound. Malar J. 2012;11:289.PubMedPubMedCentralCrossRef
88.
Zurück zum Zitat Olasehinde GI, Ojurongbe O, Adeyeba AO, Fagade OE, Valecha N, Ayanda IO, et al. In vitro studies on the sensitivity pattern of Plasmodium falciparum to antimalarial drugs and local herbal extracts. Malar J. 2014;13:63.PubMedPubMedCentralCrossRef Olasehinde GI, Ojurongbe O, Adeyeba AO, Fagade OE, Valecha N, Ayanda IO, et al. In vitro studies on the sensitivity pattern of Plasmodium falciparum to antimalarial drugs and local herbal extracts. Malar J. 2014;13:63.PubMedPubMedCentralCrossRef
89.
Zurück zum Zitat Bickii J, Tchouya GRF, Tchouankeu JC, Tsamo E. Antimalarial activity in crude extracts of some Cameroonian medicinal plants. Afr J Tradit Complement Altern Med. 2007;4:107–11.CrossRef Bickii J, Tchouya GRF, Tchouankeu JC, Tsamo E. Antimalarial activity in crude extracts of some Cameroonian medicinal plants. Afr J Tradit Complement Altern Med. 2007;4:107–11.CrossRef
90.
Zurück zum Zitat Liu Y, Murakami N, Ji H, Abreu P, Zhang S. Antimalarial flavonol glycosides from Euphorbiahirta. Pharm Biol. 2007;45:278–81.CrossRef Liu Y, Murakami N, Ji H, Abreu P, Zhang S. Antimalarial flavonol glycosides from Euphorbiahirta. Pharm Biol. 2007;45:278–81.CrossRef
91.
Zurück zum Zitat Kaou AM, Mahiou-Leddet V, Hutter S, Aïnouddine S, Hassani S, Yahaya I, et al. Antimalarial activity of crude extracts from nine African medicinal plants. J Ethnopharmacol. 2008;116:74–83.PubMedCrossRef Kaou AM, Mahiou-Leddet V, Hutter S, Aïnouddine S, Hassani S, Yahaya I, et al. Antimalarial activity of crude extracts from nine African medicinal plants. J Ethnopharmacol. 2008;116:74–83.PubMedCrossRef
92.
Zurück zum Zitat Muganga R, Angenot L, Tits M, Frédérich M. Antiplasmodial and cytotoxic activities of Rwandan medicinal plants used in the treatment of malaria. J Ethnopharmacol. 2010;128:52–7.PubMedCrossRef Muganga R, Angenot L, Tits M, Frédérich M. Antiplasmodial and cytotoxic activities of Rwandan medicinal plants used in the treatment of malaria. J Ethnopharmacol. 2010;128:52–7.PubMedCrossRef
93.
Zurück zum Zitat Traore-Keita F, Gasquet M, Di Giorgio C, Ollivier E, Delmas F, Keita A, et al. Antimalarial activity of four plants used in traditional medicine in Mali. Phytother Res. 2000;14:45–7.PubMedCrossRef Traore-Keita F, Gasquet M, Di Giorgio C, Ollivier E, Delmas F, Keita A, et al. Antimalarial activity of four plants used in traditional medicine in Mali. Phytother Res. 2000;14:45–7.PubMedCrossRef
94.
Zurück zum Zitat Ancolio C, Azas N, Mahiou V, Ollivier E, Di Giorgio C, Keita A, et al. Antimalarial activity of extracts and alkaloids isolated from six plants used in traditional medicine in Mali and Sao Tome. Phytother Res. 2002;16:646–9.PubMedCrossRef Ancolio C, Azas N, Mahiou V, Ollivier E, Di Giorgio C, Keita A, et al. Antimalarial activity of extracts and alkaloids isolated from six plants used in traditional medicine in Mali and Sao Tome. Phytother Res. 2002;16:646–9.PubMedCrossRef
95.
Zurück zum Zitat Nyambati GK, Lagat ZO, Maranga RO, Samuel M, Ozwara H. In vitro anti-plasmodial activity of Rubia cordifolia, Harrizonia abyssinica, Leucas calostachys Olive and Sanchus schweinfurthii medicinal plants. J Appl Pharm Sci. 2013;3:57–62. Nyambati GK, Lagat ZO, Maranga RO, Samuel M, Ozwara H. In vitro anti-plasmodial activity of Rubia cordifolia, Harrizonia abyssinica, Leucas calostachys Olive and Sanchus schweinfurthii medicinal plants. J Appl Pharm Sci. 2013;3:57–62.
96.
Zurück zum Zitat Afoulous S, Ferhout H, Raoelison EG, Valentin A, Moukarzel B, Couderc F, et al. Helichrysum gymnocephalum essential oil: chemical composition and cytotoxic, antimalarial and antioxidant activities, attribution of the activity origin by correlations. Molecules. 2011;16:8273–91.PubMedPubMedCentralCrossRef Afoulous S, Ferhout H, Raoelison EG, Valentin A, Moukarzel B, Couderc F, et al. Helichrysum gymnocephalum essential oil: chemical composition and cytotoxic, antimalarial and antioxidant activities, attribution of the activity origin by correlations. Molecules. 2011;16:8273–91.PubMedPubMedCentralCrossRef
97.
Zurück zum Zitat Van Vuuren SF, Viljoen AM, Van Zyl RL, Van Heerden FR, Baser KHC. The antimicrobial, antimalarial and toxicity profiles of helihumulone, Leaf essential oil and extracts of Helichrysum cymosum (L.) D. Don subsp. cymosum. S Afr J Bot. 2006;72:287–90.CrossRef Van Vuuren SF, Viljoen AM, Van Zyl RL, Van Heerden FR, Baser KHC. The antimicrobial, antimalarial and toxicity profiles of helihumulone, Leaf essential oil and extracts of Helichrysum cymosum (L.) D. Don subsp. cymosum. S Afr J Bot. 2006;72:287–90.CrossRef
98.
Zurück zum Zitat Boyom FF. Composition and anti-plasmodial activities of essential oils from some Cameroonian medicinal plants. Phytochemistry. 2003;64:1269–75.PubMedCrossRef Boyom FF. Composition and anti-plasmodial activities of essential oils from some Cameroonian medicinal plants. Phytochemistry. 2003;64:1269–75.PubMedCrossRef
99.
Zurück zum Zitat Fotie J, Bohle DS, Leimanis ML, Georges E, Rukunga G, Nkengfack AE. Lupeol long-chain fatty acid esters with antimalarial activity from Holarrhena floribunda. J Nat Prod. 2006;69:62–7.PubMedCrossRef Fotie J, Bohle DS, Leimanis ML, Georges E, Rukunga G, Nkengfack AE. Lupeol long-chain fatty acid esters with antimalarial activity from Holarrhena floribunda. J Nat Prod. 2006;69:62–7.PubMedCrossRef
100.
Zurück zum Zitat Sarr SO, Perrotey S, Fall I, Ennahar S, Zhao M, Diop YM, et al. Icacina senegalensis (Icacinaceae), traditionally used for the treatment of malaria, inhibits in vitro Plasmodium falciparum growth without host cell toxicity. Malar J. 2011;10:85.PubMedPubMedCentralCrossRef Sarr SO, Perrotey S, Fall I, Ennahar S, Zhao M, Diop YM, et al. Icacina senegalensis (Icacinaceae), traditionally used for the treatment of malaria, inhibits in vitro Plasmodium falciparum growth without host cell toxicity. Malar J. 2011;10:85.PubMedPubMedCentralCrossRef
101.
Zurück zum Zitat Bickii J, Njifutie N, Foyere JA, Basco LK, Ringwald P. In vitro antimalarial activity of limonoids from Khaya grandifoliola C.D.C. (Meliaceae). J Ethnopharmacol. 2000;69:27–33.PubMedCrossRef Bickii J, Njifutie N, Foyere JA, Basco LK, Ringwald P. In vitro antimalarial activity of limonoids from Khaya grandifoliola C.D.C. (Meliaceae). J Ethnopharmacol. 2000;69:27–33.PubMedCrossRef
102.
Zurück zum Zitat Wube AA, Bucar F, Asres K, Gibbons S, Rattray L, Croft SL. Antimalarial compounds from Kniphofia foliosa roots. Phytother Res. 2005;19:472–6.PubMedCrossRef Wube AA, Bucar F, Asres K, Gibbons S, Rattray L, Croft SL. Antimalarial compounds from Kniphofia foliosa roots. Phytother Res. 2005;19:472–6.PubMedCrossRef
103.
Zurück zum Zitat Mbatchi SF, Mbatchi B, Banzouzi JT, Bansimba T, Nsonde Ntandou GF, Ouamba JM, et al. In vitro antiplasmodial activity of 18 plants used in Congo Brazzaville traditional medicine. J Ethnopharmacol. 2006;104:168–74.PubMedCrossRef Mbatchi SF, Mbatchi B, Banzouzi JT, Bansimba T, Nsonde Ntandou GF, Ouamba JM, et al. In vitro antiplasmodial activity of 18 plants used in Congo Brazzaville traditional medicine. J Ethnopharmacol. 2006;104:168–74.PubMedCrossRef
104.
Zurück zum Zitat Oketch-Rabah HA, Dossaji SF, Mberu EK. Antimalarial activity of some Kenyan medicinal plants. Pharm Biol. 1999;37:329–34.CrossRef Oketch-Rabah HA, Dossaji SF, Mberu EK. Antimalarial activity of some Kenyan medicinal plants. Pharm Biol. 1999;37:329–34.CrossRef
105.
Zurück zum Zitat Ramalhete C, da Cruz FP, Mulhovo S, Sousa IJ, Fernandes MX, Prudêncio M, et al. Dual-stage triterpenoids from an African medicinal plant targeting the malaria parasite. Bioorg Med Chem. 2014;22:3887–90.PubMedCrossRef Ramalhete C, da Cruz FP, Mulhovo S, Sousa IJ, Fernandes MX, Prudêncio M, et al. Dual-stage triterpenoids from an African medicinal plant targeting the malaria parasite. Bioorg Med Chem. 2014;22:3887–90.PubMedCrossRef
106.
Zurück zum Zitat BenoitVical F, Valentin A, Cournac V, Pélissier Y, Mallié M, Bastide JM. In vitro antiplasmodial activity of stem and root extracts of Nauclea latifolia S.M. (Rubiaceae). J Ethnopharmacol. 1998;61:173–8.CrossRef BenoitVical F, Valentin A, Cournac V, Pélissier Y, Mallié M, Bastide JM. In vitro antiplasmodial activity of stem and root extracts of Nauclea latifolia S.M. (Rubiaceae). J Ethnopharmacol. 1998;61:173–8.CrossRef
107.
Zurück zum Zitat Mesia K, Cimanga RK, Dhooghe L, Cos P, Apers S, Totté J, et al. Antimalarial activity and toxicity evaluation of a quantified Nauclea pobeguinii extract. J Ethnopharmacol. 2010;131:6.CrossRef Mesia K, Cimanga RK, Dhooghe L, Cos P, Apers S, Totté J, et al. Antimalarial activity and toxicity evaluation of a quantified Nauclea pobeguinii extract. J Ethnopharmacol. 2010;131:6.CrossRef
108.
Zurück zum Zitat Gbeassor M, Kedjagni AY, Koumaglo K, de Soma C, Agbo K, Aklikokou K, et al. In vitro antimalarial activity of six medicinal plants. Phytother Res. 1990;4:115–7.CrossRef Gbeassor M, Kedjagni AY, Koumaglo K, de Soma C, Agbo K, Aklikokou K, et al. In vitro antimalarial activity of six medicinal plants. Phytother Res. 1990;4:115–7.CrossRef
109.
Zurück zum Zitat Karim T, Béourou S, Touré AO, Ouattara K, Meité S, Ako A, et al. Antioxidant activities and estimation of the phenols and flavonoids content in the extracts of medicinal plants used to treat malaria in Ivory Coast. Int J Curr Microbiol App Sci. 2015;4:862–74. Karim T, Béourou S, Touré AO, Ouattara K, Meité S, Ako A, et al. Antioxidant activities and estimation of the phenols and flavonoids content in the extracts of medicinal plants used to treat malaria in Ivory Coast. Int J Curr Microbiol App Sci. 2015;4:862–74.
110.
Zurück zum Zitat Koudouvo K, Karou SD, Ilboudo DP, Kokou K, Essien K, Aklikokou K, et al. In vitro antiplasmodial activity of crude extracts from Togolese medicinal plants. Asian Pac J Trop Med. 2011;4:129–32.PubMedCrossRef Koudouvo K, Karou SD, Ilboudo DP, Kokou K, Essien K, Aklikokou K, et al. In vitro antiplasmodial activity of crude extracts from Togolese medicinal plants. Asian Pac J Trop Med. 2011;4:129–32.PubMedCrossRef
111.
Zurück zum Zitat Appiah-Opong R, Nyarko AK, Dodoo D, Gyang FN, Koram KA, Ayisi NK. Antiplasmodial activity of extracts of Tridax procumbens and Phyllanthus amarus in in vitro Plasmodium falciparum culture systems. Ghana Med J. 2011;45:143–50.PubMedPubMedCentral Appiah-Opong R, Nyarko AK, Dodoo D, Gyang FN, Koram KA, Ayisi NK. Antiplasmodial activity of extracts of Tridax procumbens and Phyllanthus amarus in in vitro Plasmodium falciparum culture systems. Ghana Med J. 2011;45:143–50.PubMedPubMedCentral
112.
Zurück zum Zitat Komlaga G, Cojean S, Dickson RA, Mehdi A, Beniddir MA, SuyyaghAlbouz S, et al. Antiplasmodial activity of selected medicinal plants used to treat malaria in Ghana. Parasitol Res. 2016;115:3185–95.PubMedCrossRef Komlaga G, Cojean S, Dickson RA, Mehdi A, Beniddir MA, SuyyaghAlbouz S, et al. Antiplasmodial activity of selected medicinal plants used to treat malaria in Ghana. Parasitol Res. 2016;115:3185–95.PubMedCrossRef
113.
Zurück zum Zitat Falodun A, Imieje V, Erharuyi O, Ahomafor J, Jacob MR, Khan SI, et al. Evaluation of three medicinal plant extracts against Plasmodium falciparum and selected microganisms. Afr J Tradit Complement Altern Med. 2014;11:142–6.PubMedPubMedCentralCrossRef Falodun A, Imieje V, Erharuyi O, Ahomafor J, Jacob MR, Khan SI, et al. Evaluation of three medicinal plant extracts against Plasmodium falciparum and selected microganisms. Afr J Tradit Complement Altern Med. 2014;11:142–6.PubMedPubMedCentralCrossRef
114.
Zurück zum Zitat François G, Aké Assi L, Holenz J, Bringmann G. Constituents of Picralima nitida display pronounced inhibitory activities against asexual erythrocytic forms of Plasmodium falciparum in vitro. J Ethnopharmacol. 1996;54:113–7.PubMedCrossRef François G, Aké Assi L, Holenz J, Bringmann G. Constituents of Picralima nitida display pronounced inhibitory activities against asexual erythrocytic forms of Plasmodium falciparum in vitro. J Ethnopharmacol. 1996;54:113–7.PubMedCrossRef
115.
Zurück zum Zitat Gbedema SY, Bayor MT, Annan K, Wright CW. Clerodane diterpenes from Polyalthia longifolia (sonn.) Thw. Var. Pendula: potential antimalarial agents for drug resistant Plasmodium falciparum infection. J Ethnopharmacol. 2015;169:176–82.PubMedCrossRef Gbedema SY, Bayor MT, Annan K, Wright CW. Clerodane diterpenes from Polyalthia longifolia (sonn.) Thw. Var. Pendula: potential antimalarial agents for drug resistant Plasmodium falciparum infection. J Ethnopharmacol. 2015;169:176–82.PubMedCrossRef
116.
Zurück zum Zitat Annan K, Ekuadzi E, Asare C, Sarpong K, Pistorius D, Oberer L, et al. Antiplasmodial constituents from the stem barks of Polyalthia longifolia var pendula. Phytochem Lett. 2015;11:28–31.CrossRef Annan K, Ekuadzi E, Asare C, Sarpong K, Pistorius D, Oberer L, et al. Antiplasmodial constituents from the stem barks of Polyalthia longifolia var pendula. Phytochem Lett. 2015;11:28–31.CrossRef
117.
Zurück zum Zitat Orwa JA, Ngeny L, Mwikwabe NM, Ondicho J, Jondiko IJ. Antimalarial and safety evaluation of extracts from Toddalia asiatica (L) Lam. (Rutaceae). J Ethnopharmacol. 2013;145:587–90.PubMedCrossRef Orwa JA, Ngeny L, Mwikwabe NM, Ondicho J, Jondiko IJ. Antimalarial and safety evaluation of extracts from Toddalia asiatica (L) Lam. (Rutaceae). J Ethnopharmacol. 2013;145:587–90.PubMedCrossRef
118.
Zurück zum Zitat Karou D, Dicko MH, Sanon S, Simpore J, Traore AS. Antimalarial activity of Sida acuta Burm. F. (Malvaceae) and Pterocarpus erinaceus Poir. (Fabaceae). J Ethnopharmacol. 2003;89:291–4.PubMedCrossRef Karou D, Dicko MH, Sanon S, Simpore J, Traore AS. Antimalarial activity of Sida acuta Burm. F. (Malvaceae) and Pterocarpus erinaceus Poir. (Fabaceae). J Ethnopharmacol. 2003;89:291–4.PubMedCrossRef
119.
Zurück zum Zitat Muregi FW, Chhabra SC, Njagi EN, Lang’at-Thoruwa CC, Njue WM, Orago AS, et al. In vitro antiplasmodial activity of some plants used in Kisii, Kenya against malaria and their chloroquine potentiation effects. J Ethnopharmacol. 2003;84:235–9.PubMedCrossRef Muregi FW, Chhabra SC, Njagi EN, Lang’at-Thoruwa CC, Njue WM, Orago AS, et al. In vitro antiplasmodial activity of some plants used in Kisii, Kenya against malaria and their chloroquine potentiation effects. J Ethnopharmacol. 2003;84:235–9.PubMedCrossRef
120.
Zurück zum Zitat Kamatou GPP, Van Zyl RL, Davids H, Van Heerden FR, Lourens ACU, Viljoen AM. Antimalarial and anticancer activities of selected South African Salvia species and isolated compounds from S. radula. S Afr J Bot. 2008;74:238–43.CrossRef Kamatou GPP, Van Zyl RL, Davids H, Van Heerden FR, Lourens ACU, Viljoen AM. Antimalarial and anticancer activities of selected South African Salvia species and isolated compounds from S. radula. S Afr J Bot. 2008;74:238–43.CrossRef
121.
Zurück zum Zitat Bah S, Jäger AK, Adsersen A, Diallo D, Paulsen BS. Antiplasmodial and GABA(A)-benzodiazepine receptor binding activities of five plants used in traditional medicine in Mali. West Africa J Ethnopharmacol. 2007;110:451–7.PubMedCrossRef Bah S, Jäger AK, Adsersen A, Diallo D, Paulsen BS. Antiplasmodial and GABA(A)-benzodiazepine receptor binding activities of five plants used in traditional medicine in Mali. West Africa J Ethnopharmacol. 2007;110:451–7.PubMedCrossRef
122.
Zurück zum Zitat Carraz M, Jossang A, Franetich J-F, Siau A, Ciceron L, Hannoun L, et al. A plant-derived morphinan as a novel lead compound active against malaria liver stages. PLoS Med. 2006;3:e513.PubMedPubMedCentralCrossRef Carraz M, Jossang A, Franetich J-F, Siau A, Ciceron L, Hannoun L, et al. A plant-derived morphinan as a novel lead compound active against malaria liver stages. PLoS Med. 2006;3:e513.PubMedPubMedCentralCrossRef
123.
Zurück zum Zitat Niass O, Sarr SO, Dieye B, Diop A, Diop YM. In vitro assessment of the antiplasmodial activity of three extracts used in local traditional medicine in Saloum (Senegal). Eur Sci J. 2016;12:157–65. Niass O, Sarr SO, Dieye B, Diop A, Diop YM. In vitro assessment of the antiplasmodial activity of three extracts used in local traditional medicine in Saloum (Senegal). Eur Sci J. 2016;12:157–65.
124.
Zurück zum Zitat Kigondu EV, Rukunga GM, Keriko JM, Tonui WK, Gathirwa JW, Kirira PG, et al. Anti-parasitic activity and cytotoxicity of selected medicinal plants from Kenya. J Ethnopharmacol. 2009;123:504–9.PubMedCrossRef Kigondu EV, Rukunga GM, Keriko JM, Tonui WK, Gathirwa JW, Kirira PG, et al. Anti-parasitic activity and cytotoxicity of selected medicinal plants from Kenya. J Ethnopharmacol. 2009;123:504–9.PubMedCrossRef
125.
Zurück zum Zitat Gakunju DM, Mberu EK, Dossaji SF, Gray AI, Waigh RD, Waterman PG, et al. Potent antimalarial activity of the alkaloid nitidine, isolated from a Kenyan herbal remedy. Antimicrob Agents Chemother. 1995;39:2606–9.PubMedPubMedCentralCrossRef Gakunju DM, Mberu EK, Dossaji SF, Gray AI, Waigh RD, Waterman PG, et al. Potent antimalarial activity of the alkaloid nitidine, isolated from a Kenyan herbal remedy. Antimicrob Agents Chemother. 1995;39:2606–9.PubMedPubMedCentralCrossRef
126.
Zurück zum Zitat Omoregie ES, Pal A, Sisodia B. In vitro antimalarial and cytotoxic activities of leaf extracts of Vernonia amygdalina (Del.). Niger J Basic Appl Sci. 2011;19:121–6. Omoregie ES, Pal A, Sisodia B. In vitro antimalarial and cytotoxic activities of leaf extracts of Vernonia amygdalina (Del.). Niger J Basic Appl Sci. 2011;19:121–6.
127.
Zurück zum Zitat Shaa KK, Oguche S, Watila IM, Ikpa TF. In vitro antimalarial activity of the extracts of Vernonia amygdalina commonly used in traditional medicine in Nigeria. Sci World J. 2011;6:5–9. Shaa KK, Oguche S, Watila IM, Ikpa TF. In vitro antimalarial activity of the extracts of Vernonia amygdalina commonly used in traditional medicine in Nigeria. Sci World J. 2011;6:5–9.
128.
Zurück zum Zitat Toyang NJ, Krause MA, Fairhurst RM, Tane P, Bryant J, Verpoorte R. Antiplasmodial activity of sesquiterpene lactones and a sucrose ester from Vernonia guineensis Benth (Asteraceae). J Ethnopharmacol. 2013;147:618–21.PubMedPubMedCentralCrossRef Toyang NJ, Krause MA, Fairhurst RM, Tane P, Bryant J, Verpoorte R. Antiplasmodial activity of sesquiterpene lactones and a sucrose ester from Vernonia guineensis Benth (Asteraceae). J Ethnopharmacol. 2013;147:618–21.PubMedPubMedCentralCrossRef
129.
Zurück zum Zitat Goodman CD, Austarheim I, Mollard V, Mikolo B, Malterud KE, McFadden GI, et al. Natural products from Zanthoxylum heitzii with potent activity against the malaria parasite. Malar J. 2016;15:481.PubMedPubMedCentralCrossRef Goodman CD, Austarheim I, Mollard V, Mikolo B, Malterud KE, McFadden GI, et al. Natural products from Zanthoxylum heitzii with potent activity against the malaria parasite. Malar J. 2016;15:481.PubMedPubMedCentralCrossRef
130.
Zurück zum Zitat Randrianarivelojosia M, Rasidimanana VT, Rabarison H, Cheplogoi PK, Ratsimbason M, Mulholland DA, et al. Plants traditionally prescribed to treat tazo (malaria) in the eastern region of Madagascar. Malar J. 2003;2:25.PubMedPubMedCentralCrossRef Randrianarivelojosia M, Rasidimanana VT, Rabarison H, Cheplogoi PK, Ratsimbason M, Mulholland DA, et al. Plants traditionally prescribed to treat tazo (malaria) in the eastern region of Madagascar. Malar J. 2003;2:25.PubMedPubMedCentralCrossRef
131.
Zurück zum Zitat Okokon JE, Augustine NB, Mohanakrishnan D. Antimalarial, antiplasmodial and analgesic activities of root extract of Alchornea laxiflora. Pharm Biol. 2017;55:1022–31.PubMedPubMedCentralCrossRef Okokon JE, Augustine NB, Mohanakrishnan D. Antimalarial, antiplasmodial and analgesic activities of root extract of Alchornea laxiflora. Pharm Biol. 2017;55:1022–31.PubMedPubMedCentralCrossRef
132.
Zurück zum Zitat Alli LA, Adesokan AA, Salawu OA, Akanji MA, Tijani AY. Anti-plasmodial activity of aqueous root extract of Acacia nilotica. Afr J Biochem Res. 2011;5:214–9. Alli LA, Adesokan AA, Salawu OA, Akanji MA, Tijani AY. Anti-plasmodial activity of aqueous root extract of Acacia nilotica. Afr J Biochem Res. 2011;5:214–9.
133.
Zurück zum Zitat Jigam AA, Akanya HO, Dauda BEN, Okogun JO. Polygalloyltannin isolated from the roots of Acacia nilotica Del. (Leguminoseae) is effective against Plasmodium berghei in mice. J Med Plant Res. 2010;4:1169–75. Jigam AA, Akanya HO, Dauda BEN, Okogun JO. Polygalloyltannin isolated from the roots of Acacia nilotica Del. (Leguminoseae) is effective against Plasmodium berghei in mice. J Med Plant Res. 2010;4:1169–75.
134.
Zurück zum Zitat Adeoye AO, Bewaji CO. Chemopreventive, and remediation effect of Adansonia digitata L Baobab (Bombacaceae) stem barks extracts in mouse model malaria. J Ethnopharmacol. 2018;210:31–8.PubMedCrossRef Adeoye AO, Bewaji CO. Chemopreventive, and remediation effect of Adansonia digitata L Baobab (Bombacaceae) stem barks extracts in mouse model malaria. J Ethnopharmacol. 2018;210:31–8.PubMedCrossRef
135.
Zurück zum Zitat Musila MF, Dossaji SF, Nguta JM, Lukhoba CW, Munyao JM. In vivo antimalarial activity, toxicity and phytochemical screening of selected antimalarial plants. J Ethnopharmacol. 2013;146:557–61.PubMedCrossRef Musila MF, Dossaji SF, Nguta JM, Lukhoba CW, Munyao JM. In vivo antimalarial activity, toxicity and phytochemical screening of selected antimalarial plants. J Ethnopharmacol. 2013;146:557–61.PubMedCrossRef
136.
Zurück zum Zitat Ukwe VC, Epueke EA, Ekwunife OI, Okoye TC, Akudor GC, Ubaka CM. Antimalarial activity of aqueous extract and fractions of leaves of Ageratum conyzoides in mice infected with Plasmodium berghei. Int J Pharm Sci. 2010;2:33–8. Ukwe VC, Epueke EA, Ekwunife OI, Okoye TC, Akudor GC, Ubaka CM. Antimalarial activity of aqueous extract and fractions of leaves of Ageratum conyzoides in mice infected with Plasmodium berghei. Int J Pharm Sci. 2010;2:33–8.
137.
Zurück zum Zitat Rukunga GM, Muregi FW, Tolo FM, Omar SA, Mwitari P, Muthaura CN, et al. The antiplasmodial activity of spermine alkaloids isolated from Albizia gummifera. Fitoterapia. 2007;78:455–9.PubMedCrossRef Rukunga GM, Muregi FW, Tolo FM, Omar SA, Mwitari P, Muthaura CN, et al. The antiplasmodial activity of spermine alkaloids isolated from Albizia gummifera. Fitoterapia. 2007;78:455–9.PubMedCrossRef
138.
Zurück zum Zitat Oladosu IA, Balogun SO, Ademowo GO. Phytochemical screening, antimalarial and histopathological studies of Allophylus africanus and Tragia benthamii. Chin J Nat Med. 2013;11:371–6.PubMedCrossRef Oladosu IA, Balogun SO, Ademowo GO. Phytochemical screening, antimalarial and histopathological studies of Allophylus africanus and Tragia benthamii. Chin J Nat Med. 2013;11:371–6.PubMedCrossRef
139.
Zurück zum Zitat Teka T, Bisrat D, Yeshak MY, Asres K. Antimalarial activity of the chemical constituents of the leaves latex of Aloe pulcherrima Gilbert and Sebsebe. Molecules. 2016;21:1415.PubMedCentralCrossRef Teka T, Bisrat D, Yeshak MY, Asres K. Antimalarial activity of the chemical constituents of the leaves latex of Aloe pulcherrima Gilbert and Sebsebe. Molecules. 2016;21:1415.PubMedCentralCrossRef
140.
Zurück zum Zitat Akpan EJ, Okokon JE, Etuk IC. Antiplasmodial and antipyretic studies on root extracts of Anthocleista djalonensis against Plasmodium berghei. Asian Pac J Trop Dis. 2012;2:36–42.CrossRef Akpan EJ, Okokon JE, Etuk IC. Antiplasmodial and antipyretic studies on root extracts of Anthocleista djalonensis against Plasmodium berghei. Asian Pac J Trop Dis. 2012;2:36–42.CrossRef
141.
Zurück zum Zitat Ene AC, Ameh DA, Kwanashie HO, Agomo PU, Atawodi SE. Preliminary in vivo antimalarial screening of petroleum ether, chloroform, and methanol extracts of fifteen plants grown in Nigeria. J Pharmacol Toxicol. 2008;3:254–60.CrossRef Ene AC, Ameh DA, Kwanashie HO, Agomo PU, Atawodi SE. Preliminary in vivo antimalarial screening of petroleum ether, chloroform, and methanol extracts of fifteen plants grown in Nigeria. J Pharmacol Toxicol. 2008;3:254–60.CrossRef
142.
Zurück zum Zitat Christian AG, Mfon AG, Dick EA, David-Oku E, Akpan JL, Chukwuma EB. Antimalarial potency of the leaf extract of Aspilia africana (Pers.) C.D. Adams. Asian Pac J Trop Med. 2012;2:126–9.CrossRef Christian AG, Mfon AG, Dick EA, David-Oku E, Akpan JL, Chukwuma EB. Antimalarial potency of the leaf extract of Aspilia africana (Pers.) C.D. Adams. Asian Pac J Trop Med. 2012;2:126–9.CrossRef
143.
Zurück zum Zitat Gathirwa JW, Rukunga GM, Mwitari PG, Mwikwabe NM, Kimani CW, Muthaura CN, et al. Traditional herbal antimalarial therapy in Kilifi district. Kenya J Ethnopharmacol. 2011;134:434–42.PubMedCrossRef Gathirwa JW, Rukunga GM, Mwitari PG, Mwikwabe NM, Kimani CW, Muthaura CN, et al. Traditional herbal antimalarial therapy in Kilifi district. Kenya J Ethnopharmacol. 2011;134:434–42.PubMedCrossRef
144.
Zurück zum Zitat Tepongning RN, Mbah JN, Avoulou FL, Jerme MM, Ndanga EKK, Fekam FB. Hydroethanolic extracts of Erigeron floribundus and Azadirachta indica reduced Plasmodium berghei parasitemia in Balb/c mice. Evid Based Complement Alternat Med. 2018;2018:5156710.PubMedPubMedCentralCrossRef Tepongning RN, Mbah JN, Avoulou FL, Jerme MM, Ndanga EKK, Fekam FB. Hydroethanolic extracts of Erigeron floribundus and Azadirachta indica reduced Plasmodium berghei parasitemia in Balb/c mice. Evid Based Complement Alternat Med. 2018;2018:5156710.PubMedPubMedCentralCrossRef
145.
Zurück zum Zitat Akin-Osanaiye BC, Nok AJ, Ibrahim S, Inuwa HM, Onyike E, Amlabu E, et al. Antimalarial effect of neem leaves and neem stem barks extracts on Plasmodium berghei infected in the pathology and treatment of malaria. Int J Res Biochem Biophy. 2013;3:7–14. Akin-Osanaiye BC, Nok AJ, Ibrahim S, Inuwa HM, Onyike E, Amlabu E, et al. Antimalarial effect of neem leaves and neem stem barks extracts on Plasmodium berghei infected in the pathology and treatment of malaria. Int J Res Biochem Biophy. 2013;3:7–14.
146.
Zurück zum Zitat Asrade S, Mengesha Y, Moges G, Gelayee DA. In vivo antiplasmodial activity evaluation of the leaves of Balanites rotundifolia (Van Tiegh) Blatter (Balanitaceae) against Plasmodium berghei. J Exp Pharmacol. 2017;9:59–66.PubMedPubMedCentralCrossRef Asrade S, Mengesha Y, Moges G, Gelayee DA. In vivo antiplasmodial activity evaluation of the leaves of Balanites rotundifolia (Van Tiegh) Blatter (Balanitaceae) against Plasmodium berghei. J Exp Pharmacol. 2017;9:59–66.PubMedPubMedCentralCrossRef
147.
Zurück zum Zitat Otegbade OO, Ojo JA, Adefokun DI, Abiodun OO, Thomas BN, Ojurongbe O. Ethanol extract of Blighia sapida stem barks show remarkable prophylactic activity in experimental Plasmodium berghei–infected mice. Drug Target Insights. 2017;11:1177392817728725.PubMedPubMedCentralCrossRef Otegbade OO, Ojo JA, Adefokun DI, Abiodun OO, Thomas BN, Ojurongbe O. Ethanol extract of Blighia sapida stem barks show remarkable prophylactic activity in experimental Plasmodium berghei–infected mice. Drug Target Insights. 2017;11:1177392817728725.PubMedPubMedCentralCrossRef
148.
Zurück zum Zitat Christian AG, Thecla EC, Dick EA, Chile AE, Chimsorom CK, Ckukwu ND, et al. In vivo antiplasmodial activity of Bombax buonopozense root barks aqueous extract in mice infected by Plasmodium berghei. J Tradit Chin Med. 2017;37:431–5.CrossRef Christian AG, Thecla EC, Dick EA, Chile AE, Chimsorom CK, Ckukwu ND, et al. In vivo antiplasmodial activity of Bombax buonopozense root barks aqueous extract in mice infected by Plasmodium berghei. J Tradit Chin Med. 2017;37:431–5.CrossRef
149.
Zurück zum Zitat Muluye AB, Melese E, Adinew GM. Antimalarial activity of 80 % methanolic extract of Brassica nigra (L.) Koch. (Brassicaceae) seeds against Plasmodium berghei infection in mice. BMC Compl Alternative Med. 2015;15:367.CrossRef Muluye AB, Melese E, Adinew GM. Antimalarial activity of 80 % methanolic extract of Brassica nigra (L.) Koch. (Brassicaceae) seeds against Plasmodium berghei infection in mice. BMC Compl Alternative Med. 2015;15:367.CrossRef
150.
Zurück zum Zitat Eyasu M, Shibeshi W, Gida M. In vivo antimalarial activity of hydromethanolic leaf extract of Calpurnia aurea (Fabaceae) in mice infected with chloroquine-sensitive Plasmodium berghei. Int J Pharmacol. 2013;2:131–42. Eyasu M, Shibeshi W, Gida M. In vivo antimalarial activity of hydromethanolic leaf extract of Calpurnia aurea (Fabaceae) in mice infected with chloroquine-sensitive Plasmodium berghei. Int J Pharmacol. 2013;2:131–42.
151.
Zurück zum Zitat Onaku LO, Attama AA, Okore VC, Tijani AY, Ngene AA, Esimone CO. Antagonistic antimalarial properties of pawpaw leaf aqueous extract in combination with artesunic acid in Plasmodium berghei-infected mice. J Vector Borne Dis. 2011;48:96–100.PubMed Onaku LO, Attama AA, Okore VC, Tijani AY, Ngene AA, Esimone CO. Antagonistic antimalarial properties of pawpaw leaf aqueous extract in combination with artesunic acid in Plasmodium berghei-infected mice. J Vector Borne Dis. 2011;48:96–100.PubMed
152.
Zurück zum Zitat Tona L, Mesia K, Ngimbi NP, Chrimwami B, Okondahoka, Cimanga K, et al. In vivo antimalarial activity of Cassia Occidentalism, Morinda morindoides and Phyllanthus niruri. Ann Trop Med Parasit. 2001;95:47–57. Tona L, Mesia K, Ngimbi NP, Chrimwami B, Okondahoka, Cimanga K, et al. In vivo antimalarial activity of Cassia Occidentalism, Morinda morindoides and Phyllanthus niruri. Ann Trop Med Parasit. 2001;95:47–57.
153.
Zurück zum Zitat Abdulrazak N, Asiya UI, Usman NS, Unata IM, Farida A. Anti-plasmodial activity of ethanolic extract of root and stem bark of Cassia sieberiana DC on mice. J Intercult Ethnopharmacol. 2015;4:96–101.PubMedPubMedCentralCrossRef Abdulrazak N, Asiya UI, Usman NS, Unata IM, Farida A. Anti-plasmodial activity of ethanolic extract of root and stem bark of Cassia sieberiana DC on mice. J Intercult Ethnopharmacol. 2015;4:96–101.PubMedPubMedCentralCrossRef
154.
Zurück zum Zitat Adzu B, Abbah J, Vongtau H, Gamaniel K. Studies on the use of Cassia singueana in malaria ethnopharmacy. J Ethnopharmacol. 2003;88:261–7.PubMedCrossRef Adzu B, Abbah J, Vongtau H, Gamaniel K. Studies on the use of Cassia singueana in malaria ethnopharmacy. J Ethnopharmacol. 2003;88:261–7.PubMedCrossRef
155.
Zurück zum Zitat Jigam AA, Razaq UTA, Egbuta MN. In vivo antimalarial and toxicological evaluation of Chrozophora senegalensis A. Juss (Euphorbiaceae) extracts. J Appl Pharm Sci. 2011;1:90–4. Jigam AA, Razaq UTA, Egbuta MN. In vivo antimalarial and toxicological evaluation of Chrozophora senegalensis A. Juss (Euphorbiaceae) extracts. J Appl Pharm Sci. 2011;1:90–4.
156.
Zurück zum Zitat Ihekwereme CP, Okoye FK, Agu SC, Oli AN. Traditional consumption of the fruit pulp of Chrysophyllum albidum (Sapotaceae) in pregnancy may be serving as an intermittent preventive therapy against malaria infection. Anc Sci Life. 2017;36:191–5.PubMedPubMedCentralCrossRef Ihekwereme CP, Okoye FK, Agu SC, Oli AN. Traditional consumption of the fruit pulp of Chrysophyllum albidum (Sapotaceae) in pregnancy may be serving as an intermittent preventive therapy against malaria infection. Anc Sci Life. 2017;36:191–5.PubMedPubMedCentralCrossRef
157.
Zurück zum Zitat Okokon JE, Etebong EO, Udobang JA, Essien GE. Antiplasmodial and analgesic activities of Clausena anisate. Asian Pac J Trop Med. 2012;5:214–9.PubMedCrossRef Okokon JE, Etebong EO, Udobang JA, Essien GE. Antiplasmodial and analgesic activities of Clausena anisate. Asian Pac J Trop Med. 2012;5:214–9.PubMedCrossRef
158.
Zurück zum Zitat Anato M, Ketema T. Anti-plasmodial activities of Combretum molle (Combretaceae) [Zwoo] seed extract in Swiss albino mice. BMC Res Notes. 2018;11:312.PubMedPubMedCentralCrossRef Anato M, Ketema T. Anti-plasmodial activities of Combretum molle (Combretaceae) [Zwoo] seed extract in Swiss albino mice. BMC Res Notes. 2018;11:312.PubMedPubMedCentralCrossRef
159.
Zurück zum Zitat Kweyamba PA, Zofou D, Efange N, Assob JN, Kitau J, Nyindo M. In vitro and in vivo studies on antimalarial activity of Commiphora africana and Dichrostachys cinerea used by the Maasai in Arusha region. Tanzania Malar J. 2019;18:119.PubMedCrossRef Kweyamba PA, Zofou D, Efange N, Assob JN, Kitau J, Nyindo M. In vitro and in vivo studies on antimalarial activity of Commiphora africana and Dichrostachys cinerea used by the Maasai in Arusha region. Tanzania Malar J. 2019;18:119.PubMedCrossRef
160.
Zurück zum Zitat Elufioye TO, Agbedahunsi JM. Antimalarial activities of Tithonia diversifolia (Asteraceae) and Crossopteryx febrifuga (Rubiaceae) on mice in vivo. J Ethnopharmacol. 2004;93:167–71.PubMedCrossRef Elufioye TO, Agbedahunsi JM. Antimalarial activities of Tithonia diversifolia (Asteraceae) and Crossopteryx febrifuga (Rubiaceae) on mice in vivo. J Ethnopharmacol. 2004;93:167–71.PubMedCrossRef
161.
Zurück zum Zitat Obey JK, Ngeiywa MM, Kiprono P, Omar S, vonWright A, Kauhanen J, et al. Antimalarial activity of Croton macrostachyus stem barks extracts against Plasmodium berghei in vivo. J Pathog. 2018;2018:393854.CrossRef Obey JK, Ngeiywa MM, Kiprono P, Omar S, vonWright A, Kauhanen J, et al. Antimalarial activity of Croton macrostachyus stem barks extracts against Plasmodium berghei in vivo. J Pathog. 2018;2018:393854.CrossRef
162.
Zurück zum Zitat Tona Ngimbi NP, Tsakala M, Mesia K, Cimanga K, Apers S, De Bruyne T, et al. Antimalarial activity of 20 crude extracts from nine African medicinal plants used in Kinshasa Congo. J Ethnopharmacol. 1999;68:193–203.PubMedCrossRef Tona Ngimbi NP, Tsakala M, Mesia K, Cimanga K, Apers S, De Bruyne T, et al. Antimalarial activity of 20 crude extracts from nine African medicinal plants used in Kinshasa Congo. J Ethnopharmacol. 1999;68:193–203.PubMedCrossRef
163.
Zurück zum Zitat Mzena T, Swai H, Chacha M. Antimalarial activity of Cucumis metuliferus and Lippia kituiensis against Plasmodium berghei infection in mice. Res Rep Trop Med. 2018;9:81–8.PubMedPubMedCentral Mzena T, Swai H, Chacha M. Antimalarial activity of Cucumis metuliferus and Lippia kituiensis against Plasmodium berghei infection in mice. Res Rep Trop Med. 2018;9:81–8.PubMedPubMedCentral
164.
Zurück zum Zitat Amelo W, Nagpal P, Makonnen E. Antiplasmodial activity of solvent fractions of methanolic root extract of Dodonaea angustifolia in Plasmodium berghei infected mice. BMC Complement Altern Med. 2014;14:462.PubMedPubMedCentralCrossRef Amelo W, Nagpal P, Makonnen E. Antiplasmodial activity of solvent fractions of methanolic root extract of Dodonaea angustifolia in Plasmodium berghei infected mice. BMC Complement Altern Med. 2014;14:462.PubMedPubMedCentralCrossRef
165.
Zurück zum Zitat Ogbonna DN, Sokari TG, Agomuoh AA. Antimalarial activities of some selected traditional herbs from South Eastern Nigeria against Plasmodium species. Res J Parasit. 2008;3:25–31.CrossRef Ogbonna DN, Sokari TG, Agomuoh AA. Antimalarial activities of some selected traditional herbs from South Eastern Nigeria against Plasmodium species. Res J Parasit. 2008;3:25–31.CrossRef
166.
Zurück zum Zitat Gounoue Kamkumo R, Tsakem Nangap JM, Tchokouaha Yamthe LR, Ngueguim Tsofack F, Tsouh Fokou PV, Tchatat Tali MB, et al. Antimalarial activity of the aqueous extract of Euphorbia cordifolia Elliot in Plasmodium berghei-infected mice. Asian Pac J Trop Med. 2020;13:176–84.CrossRef Gounoue Kamkumo R, Tsakem Nangap JM, Tchokouaha Yamthe LR, Ngueguim Tsofack F, Tsouh Fokou PV, Tchatat Tali MB, et al. Antimalarial activity of the aqueous extract of Euphorbia cordifolia Elliot in Plasmodium berghei-infected mice. Asian Pac J Trop Med. 2020;13:176–84.CrossRef
167.
Zurück zum Zitat Oluwakanyinsola AS, Adeniyi YT, Babayi H, Angela CN, Anagbogu RA, Agbakwuru VA. Antimalarial activity of ethanolic stem barks extract of Faidherbia albida (Del) a Chev (Mimosoidae) in mice. Arch Appl Sci Res. 2010;2:261–8. Oluwakanyinsola AS, Adeniyi YT, Babayi H, Angela CN, Anagbogu RA, Agbakwuru VA. Antimalarial activity of ethanolic stem barks extract of Faidherbia albida (Del) a Chev (Mimosoidae) in mice. Arch Appl Sci Res. 2010;2:261–8.
168.
Zurück zum Zitat Nguta JM, Mbaria JM. Brine shrimp toxicity and antimalarial activity of some plants traditionally used in treatment of malaria in Msambweni district of Kenya. J Ethnopharmacol. 2013;148:988–92.PubMedCrossRef Nguta JM, Mbaria JM. Brine shrimp toxicity and antimalarial activity of some plants traditionally used in treatment of malaria in Msambweni district of Kenya. J Ethnopharmacol. 2013;148:988–92.PubMedCrossRef
169.
Zurück zum Zitat Oluwatosin A, Tolulope A, Ayokulehin K, Okorie P, Aderemi K, Falade C, et al. Antimalarial potential of kolaviron, a biflavonoid from Garcinia kola seeds, against Plasmodium berghei infection in Swiss albino mice. Asian Pac J Trop Med. 2014;7:97–104.PubMedCrossRef Oluwatosin A, Tolulope A, Ayokulehin K, Okorie P, Aderemi K, Falade C, et al. Antimalarial potential of kolaviron, a biflavonoid from Garcinia kola seeds, against Plasmodium berghei infection in Swiss albino mice. Asian Pac J Trop Med. 2014;7:97–104.PubMedCrossRef
170.
Zurück zum Zitat Okokon JE, Ita BN, Udokpoh AE. The in vivo antimalarial activities of Uvariae chamae and Hippocratea africana. Ann Trop Med Parasitol. 2006;100:585–90.PubMedCrossRef Okokon JE, Ita BN, Udokpoh AE. The in vivo antimalarial activities of Uvariae chamae and Hippocratea africana. Ann Trop Med Parasitol. 2006;100:585–90.PubMedCrossRef
171.
Zurück zum Zitat David-Oku E, Ifeoma OO, Christian AG, Dick EA. Evaluation of the antimalarial potential of Icacina senegalensis Juss (Icacinaceae). Asian Pac J Trop Med. 2014;7:S469–72.CrossRef David-Oku E, Ifeoma OO, Christian AG, Dick EA. Evaluation of the antimalarial potential of Icacina senegalensis Juss (Icacinaceae). Asian Pac J Trop Med. 2014;7:S469–72.CrossRef
172.
Zurück zum Zitat Birru EM, Geta M, Gurmu AE. Antiplasmodial activity of Indigofera spicata root extract against Plasmodium berghei infection in mice. Malar J. 2017;16:198.PubMedPubMedCentralCrossRef Birru EM, Geta M, Gurmu AE. Antiplasmodial activity of Indigofera spicata root extract against Plasmodium berghei infection in mice. Malar J. 2017;16:198.PubMedPubMedCentralCrossRef
173.
Zurück zum Zitat Onyeto CA, Akah PA, Nworu CS, Okoye TC, Okorie NA, Mbaoji FN, et al. Anti-plasmodial and antioxidant activities of methanol extract of the fresh leaves of Lophira lanceolata (Ochnaceae). Afr J Biotechnol. 2014;13:1731–8.CrossRef Onyeto CA, Akah PA, Nworu CS, Okoye TC, Okorie NA, Mbaoji FN, et al. Anti-plasmodial and antioxidant activities of methanol extract of the fresh leaves of Lophira lanceolata (Ochnaceae). Afr J Biotechnol. 2014;13:1731–8.CrossRef
174.
Zurück zum Zitat Christian AG, Akanimo EG, Ahunna AG, Nwakaego EM, Chimsorom CK. Antimalarial potency of the methanol leaf extract of Maerua crassifolia Forssk (Capparaceae). Asian Pac J Trop Dis. 2014;4:35–9.PubMedCentralCrossRef Christian AG, Akanimo EG, Ahunna AG, Nwakaego EM, Chimsorom CK. Antimalarial potency of the methanol leaf extract of Maerua crassifolia Forssk (Capparaceae). Asian Pac J Trop Dis. 2014;4:35–9.PubMedCentralCrossRef
175.
Zurück zum Zitat Malebo HM, Tanja W, Cal M, Swaleh SAM, Omolo MO, Hassanali A, et al. Antiplasmodial, anti-trypanosomal, anti-leishmanial and cytotoxicity activity of selected Tanzanian medicinal plants. Tanzan J Health Res. 2015;4:226–34. Malebo HM, Tanja W, Cal M, Swaleh SAM, Omolo MO, Hassanali A, et al. Antiplasmodial, anti-trypanosomal, anti-leishmanial and cytotoxicity activity of selected Tanzanian medicinal plants. Tanzan J Health Res. 2015;4:226–34.
176.
Zurück zum Zitat Okafor AI, Nok AJ, Inuwa HM. Antiplasmodial activity of aqueous leaf extract of Mucuna Pruriens Linn in mice infected with Plasmodium berghei (NK-65 Strain). J Appl Pharm Sci. 2013;3(4 Suppl 1):S52–5. Okafor AI, Nok AJ, Inuwa HM. Antiplasmodial activity of aqueous leaf extract of Mucuna Pruriens Linn in mice infected with Plasmodium berghei (NK-65 Strain). J Appl Pharm Sci. 2013;3(4 Suppl 1):S52–5.
177.
Zurück zum Zitat Edagha IA, Peter AI, Aquaisua AN. Histopathological effect of Nauclea latifolia ethanolic leaf extract and artemether/lumefantrine on the hippocampus of P berghei-infected mice. Int J Brain Cognitive Sci. 2017;6:9–16. Edagha IA, Peter AI, Aquaisua AN. Histopathological effect of Nauclea latifolia ethanolic leaf extract and artemether/lumefantrine on the hippocampus of P berghei-infected mice. Int J Brain Cognitive Sci. 2017;6:9–16.
178.
Zurück zum Zitat Nworu CS, Ejikeme TI, Ezike AC, Ndu O, Akunne TC, Onyeto CA, et al. Anti-plasmodial and anti-inflammatory activities of cyclotide-rich extract and fraction of Oldenlandia affinis (R.& S.) D.C. (Rubiaceae). Afri Health Sci. 2017;17:827–43.CrossRef Nworu CS, Ejikeme TI, Ezike AC, Ndu O, Akunne TC, Onyeto CA, et al. Anti-plasmodial and anti-inflammatory activities of cyclotide-rich extract and fraction of Oldenlandia affinis (R.& S.) D.C. (Rubiaceae). Afri Health Sci. 2017;17:827–43.CrossRef
179.
Zurück zum Zitat Ramanitrahasimbola D, Rasoanaivo P, Ratsimamanga-Urverg S, Federici E, Palazzino G, Galeffi C, et al. Biological activities of the plant-derived bisindole voacamine with reference to malaria. Phytother Res. 2001;15:30–3.PubMedCrossRef Ramanitrahasimbola D, Rasoanaivo P, Ratsimamanga-Urverg S, Federici E, Palazzino G, Galeffi C, et al. Biological activities of the plant-derived bisindole voacamine with reference to malaria. Phytother Res. 2001;15:30–3.PubMedCrossRef
180.
Zurück zum Zitat Ajala TO1, Igwilo CI, Oreagba IA, Odeku OA. The antiplasmodial effect of the extracts and formulated capsules of Phyllanthus amarus on Plasmodium yoelii infection in mice. Asian Pac J Trop Med. 2011;4:283–7. Ajala TO1, Igwilo CI, Oreagba IA, Odeku OA. The antiplasmodial effect of the extracts and formulated capsules of Phyllanthus amarus on Plasmodium yoelii infection in mice. Asian Pac J Trop Med. 2011;4:283–7.
181.
Zurück zum Zitat Ifeoma O, Samuel O, Itohan AM, Adeola SO. Isolation, fractionation and evaluation of the antiplasmodial properties of Phyllanthus niruri resident in its chloroform fraction. Asian Pac J Trop Med. 2013;6:169–75.PubMedCrossRef Ifeoma O, Samuel O, Itohan AM, Adeola SO. Isolation, fractionation and evaluation of the antiplasmodial properties of Phyllanthus niruri resident in its chloroform fraction. Asian Pac J Trop Med. 2013;6:169–75.PubMedCrossRef
182.
Zurück zum Zitat Adinew GM. Antimalarial activity of methanolic extract of Phytolacca dodecandra leaves against Plasmodium berghei infected Swiss albino mice. Int J Pharmacol Clin Sci. 2014;3:39–45. Adinew GM. Antimalarial activity of methanolic extract of Phytolacca dodecandra leaves against Plasmodium berghei infected Swiss albino mice. Int J Pharmacol Clin Sci. 2014;3:39–45.
183.
Zurück zum Zitat Okokon JE, Antia BS, Igboasoiyi AC, Essien EE, Mbagwu HO. Evaluation of antiplasmodial activity of ethanolic seed extract of Picralima nitida. J Ethnopharmacol. 2007;111:464–7.PubMedCrossRef Okokon JE, Antia BS, Igboasoiyi AC, Essien EE, Mbagwu HO. Evaluation of antiplasmodial activity of ethanolic seed extract of Picralima nitida. J Ethnopharmacol. 2007;111:464–7.PubMedCrossRef
184.
Zurück zum Zitat Madara AA, Ajayi JA, Salawu OA, Tijani AY. Antimalarial activity of ethanolic leaf extract of Piliostigma thonningii Schum (Caesalpiniacea) in mice infected with Plasmodium berghei berghei. Afr J Biotechnol. 2010;9:3475–80. Madara AA, Ajayi JA, Salawu OA, Tijani AY. Antimalarial activity of ethanolic leaf extract of Piliostigma thonningii Schum (Caesalpiniacea) in mice infected with Plasmodium berghei berghei. Afr J Biotechnol. 2010;9:3475–80.
185.
Zurück zum Zitat Christian AG, Ahunna AG, Nwakaego EM, Chimsorom CK, Chile AE. Antimalarial potential of the ethanolic leaf extract of Pseudocedrala kotschyi. J Acute Dis. 2015;4:23–7.CrossRef Christian AG, Ahunna AG, Nwakaego EM, Chimsorom CK, Chile AE. Antimalarial potential of the ethanolic leaf extract of Pseudocedrala kotschyi. J Acute Dis. 2015;4:23–7.CrossRef
186.
Zurück zum Zitat Okokon JE, Ettebong E, Antia BS. In vivo antimalarial activity of ethanolic leaf extract of Stachytarpheta cayennensis. Indian J Pharmacol. 2008;40:111–3.PubMedPubMedCentralCrossRef Okokon JE, Ettebong E, Antia BS. In vivo antimalarial activity of ethanolic leaf extract of Stachytarpheta cayennensis. Indian J Pharmacol. 2008;40:111–3.PubMedPubMedCentralCrossRef
187.
Zurück zum Zitat Adegbolagun OM, Emikpe BO, Woranola IO, Ogunremi Y. Synergistic effect of aqueous extract of Telfaria occidentalis on the biological activities of artesunate in Plasmodium berghei infected mice. Afr Health Sci. 2013;13:970–6.PubMedPubMedCentralCrossRef Adegbolagun OM, Emikpe BO, Woranola IO, Ogunremi Y. Synergistic effect of aqueous extract of Telfaria occidentalis on the biological activities of artesunate in Plasmodium berghei infected mice. Afr Health Sci. 2013;13:970–6.PubMedPubMedCentralCrossRef
188.
Zurück zum Zitat Muregi FW, Ishih A, Miyase T, Suzuki T, Kino H, Amano T, et al. Antimalarial activity of methanolic extracts from plants used in Kenyan ethnomedicine and their interactions with chloroquine (CQ) against a CQ-tolerant rodent parasite, in mice. J Ethnopharmacol. 2007;111:190–5.PubMedCrossRef Muregi FW, Ishih A, Miyase T, Suzuki T, Kino H, Amano T, et al. Antimalarial activity of methanolic extracts from plants used in Kenyan ethnomedicine and their interactions with chloroquine (CQ) against a CQ-tolerant rodent parasite, in mice. J Ethnopharmacol. 2007;111:190–5.PubMedCrossRef
189.
Zurück zum Zitat Olanlokun JO, Oluwole MD, Afolayan AJ. In vitro antiplasmodial activity and prophylactic potentials of extract and fractions of Trema orientalis (Linn.) stem barks. BMC Complement Altern Med. 2017;17:407.PubMedPubMedCentralCrossRef Olanlokun JO, Oluwole MD, Afolayan AJ. In vitro antiplasmodial activity and prophylactic potentials of extract and fractions of Trema orientalis (Linn.) stem barks. BMC Complement Altern Med. 2017;17:407.PubMedPubMedCentralCrossRef
190.
Zurück zum Zitat Fadare DA, Abiodun OO, Ajaiyeoba EO. In vivo antimalarial activity of Trichilia megalantha harms extracts and fractions in animal models. Parasitol Res. 2013;112:2991–5.PubMedCrossRef Fadare DA, Abiodun OO, Ajaiyeoba EO. In vivo antimalarial activity of Trichilia megalantha harms extracts and fractions in animal models. Parasitol Res. 2013;112:2991–5.PubMedCrossRef
191.
Zurück zum Zitat François G, Steenackers T, Timperman G, Aké Assi L, Haller RD, Bär S, et al. Retarded development of exoerythrocytic stages of the rodent malaria parasite Plasmodium berghei in human hepatoma cells by extracts from dioncophyllaceae and ancistrocladaceae species. Int J Parasitol. 1997;27:29–32.PubMedCrossRef François G, Steenackers T, Timperman G, Aké Assi L, Haller RD, Bär S, et al. Retarded development of exoerythrocytic stages of the rodent malaria parasite Plasmodium berghei in human hepatoma cells by extracts from dioncophyllaceae and ancistrocladaceae species. Int J Parasitol. 1997;27:29–32.PubMedCrossRef
192.
Zurück zum Zitat Akuodor GC, Idris-Usman M, Anyalewechi N, Odo E, Ugwu CT, Akpan JL, et al. In vivo antimalarial activity of ethanolic leaf extract of Verbena hastata against Plasmodium berghei in mice. J Herb Med Toxicol. 2010;4:17–23. Akuodor GC, Idris-Usman M, Anyalewechi N, Odo E, Ugwu CT, Akpan JL, et al. In vivo antimalarial activity of ethanolic leaf extract of Verbena hastata against Plasmodium berghei in mice. J Herb Med Toxicol. 2010;4:17–23.
193.
Zurück zum Zitat Njan AA, Adzu B, Agaba AG, Byarugaba D, Díaz-Llera S, Bangsberg DR. The analgesic and antiplasmodial activities and toxicology of Vernonia amygdalina. J Med Food. 2008;11:574–81.PubMedCrossRef Njan AA, Adzu B, Agaba AG, Byarugaba D, Díaz-Llera S, Bangsberg DR. The analgesic and antiplasmodial activities and toxicology of Vernonia amygdalina. J Med Food. 2008;11:574–81.PubMedCrossRef
194.
Zurück zum Zitat Iwalokun BA. Enhanced antimalarial effects of chloroquine by aqueous Vernonia amygdalina leaf extract in mice infected with chloroquine resistant and sensitive Plasmodium berghei strains. Afr Health Sci. 2008;8:25–35.PubMedPubMedCentral Iwalokun BA. Enhanced antimalarial effects of chloroquine by aqueous Vernonia amygdalina leaf extract in mice infected with chloroquine resistant and sensitive Plasmodium berghei strains. Afr Health Sci. 2008;8:25–35.PubMedPubMedCentral
195.
Zurück zum Zitat Abosi AO, Raseroka BH. In vivo antimalarial activity of Vernonia amygdalina. Br J Biomed Sci. 2003;60:89–91.PubMedCrossRef Abosi AO, Raseroka BH. In vivo antimalarial activity of Vernonia amygdalina. Br J Biomed Sci. 2003;60:89–91.PubMedCrossRef
196.
Zurück zum Zitat Dame ZT, Petros B, Mekonnen Y. Evaluation of anti-Plasmodium berghei activity of crude and column fractions of extracts from Withania somnifera. Turk J Biol. 2013;37:147–50. Dame ZT, Petros B, Mekonnen Y. Evaluation of anti-Plasmodium berghei activity of crude and column fractions of extracts from Withania somnifera. Turk J Biol. 2013;37:147–50.
197.
Zurück zum Zitat Adugna M, Feyera T, Taddese W, Admasu P. In vivo antimalarial activity of crude extract of aerial part of Artemisia abyssinica against Plasmodium berghei in mice. Glob J Pharmacol. 2014;8:460–8. Adugna M, Feyera T, Taddese W, Admasu P. In vivo antimalarial activity of crude extract of aerial part of Artemisia abyssinica against Plasmodium berghei in mice. Glob J Pharmacol. 2014;8:460–8.
198.
Zurück zum Zitat Deressa T, Mekonnen Y, Animut A. In vivo antimalarial activities of Clerodendrum myricoides, Dodonea angustifolia, and Aloe debrana against Plasmodium berghei. Ethiop J Health Dev. 2010;24:25–9.CrossRef Deressa T, Mekonnen Y, Animut A. In vivo antimalarial activities of Clerodendrum myricoides, Dodonea angustifolia, and Aloe debrana against Plasmodium berghei. Ethiop J Health Dev. 2010;24:25–9.CrossRef
199.
Zurück zum Zitat Muthaura CN, Rukunga GM, Chhabra SC, Omar SA, Guantai AN, Gathirwa JW, et al. Antimalarial activity of some plants traditionally used in treatment of malaria in Kwale district of Kenya. J Ethnopharmacol. 2007;112:545–51.PubMedCrossRef Muthaura CN, Rukunga GM, Chhabra SC, Omar SA, Guantai AN, Gathirwa JW, et al. Antimalarial activity of some plants traditionally used in treatment of malaria in Kwale district of Kenya. J Ethnopharmacol. 2007;112:545–51.PubMedCrossRef
200.
Zurück zum Zitat Beha E, Jung A, Wiesner J, Rimpler H, Lanzer M, Heinrich M. Antimalarial activity of extracts of Abutilon grandiflorum G Don - a traditional Tanzanian medicinal plant. Phytother Res. 2004;18:236–40.PubMedCrossRef Beha E, Jung A, Wiesner J, Rimpler H, Lanzer M, Heinrich M. Antimalarial activity of extracts of Abutilon grandiflorum G Don - a traditional Tanzanian medicinal plant. Phytother Res. 2004;18:236–40.PubMedCrossRef
201.
Zurück zum Zitat Ajaiyeoba EO, Abiodun OO, Falade MO, Ogbole NO, Ashidi JS, Happi CT, et al. In vitro cytotoxicity studies of 20 plants used in Nigerian antimalarial ethnomedicine. Phytomedicine. 2006;13:295–8.PubMedCrossRef Ajaiyeoba EO, Abiodun OO, Falade MO, Ogbole NO, Ashidi JS, Happi CT, et al. In vitro cytotoxicity studies of 20 plants used in Nigerian antimalarial ethnomedicine. Phytomedicine. 2006;13:295–8.PubMedCrossRef
202.
Zurück zum Zitat Adebayo JO, Balogun EA, Malomo SO, Soladoye AO, Olatunji LA, Kolawole OM, et al. Antimalarial activity of Cocos nucifera Husk fibre: further studes. Evid Based Complement Altern Med. 2013;2013:742476.CrossRef Adebayo JO, Balogun EA, Malomo SO, Soladoye AO, Olatunji LA, Kolawole OM, et al. Antimalarial activity of Cocos nucifera Husk fibre: further studes. Evid Based Complement Altern Med. 2013;2013:742476.CrossRef
203.
Zurück zum Zitat Falade MO, Akinboye DO, Gbotosho GO, Ajaiyeoba EO, Happi TC, Abiodun OO, et al. In vitro and in vivo antimalarial activity of Ficus thonningii Blume (Moraceae) and Lophira alata Banks (Ochnaceae), identified from the ethnomedicine of the Nigerian middle belt. J Parasit Res. 2014;2014:972853.CrossRef Falade MO, Akinboye DO, Gbotosho GO, Ajaiyeoba EO, Happi TC, Abiodun OO, et al. In vitro and in vivo antimalarial activity of Ficus thonningii Blume (Moraceae) and Lophira alata Banks (Ochnaceae), identified from the ethnomedicine of the Nigerian middle belt. J Parasit Res. 2014;2014:972853.CrossRef
204.
Zurück zum Zitat Iwalewa EO, Omisore NO, Adewunmi CO, Gbolade AA, Ademowo OG, Nneji C, et al. Anti-protozoan activities of Harungana madagascariensis stem barks extract on trichomonads and malaria. J Ethnopharmacol. 2008;117:507–11.PubMedCrossRef Iwalewa EO, Omisore NO, Adewunmi CO, Gbolade AA, Ademowo OG, Nneji C, et al. Anti-protozoan activities of Harungana madagascariensis stem barks extract on trichomonads and malaria. J Ethnopharmacol. 2008;117:507–11.PubMedCrossRef
205.
Zurück zum Zitat Gathirwa JW, Rukunga GM, Njagi EN, Omar SA, Mwitari PG, Guantai AN, et al. The in vitro anti-plasmodial and in vivo antimalarial efficacy of combinations of some medicinal plants used traditionally for treatment of malaria by the Meru community in Kenya. J Ethnopharmacol. 2008;115:223–31.PubMedCrossRef Gathirwa JW, Rukunga GM, Njagi EN, Omar SA, Mwitari PG, Guantai AN, et al. The in vitro anti-plasmodial and in vivo antimalarial efficacy of combinations of some medicinal plants used traditionally for treatment of malaria by the Meru community in Kenya. J Ethnopharmacol. 2008;115:223–31.PubMedCrossRef
206.
Zurück zum Zitat Simelane MBC, Shonhai A, Shode FO, Smith P, Singh M, Opoku AR. Anti-plasmodial activity of some Zulu medicinal plants and of some triterpenes isolated from them. Molecules. 2013;18:12313.PubMedPubMedCentralCrossRef Simelane MBC, Shonhai A, Shode FO, Smith P, Singh M, Opoku AR. Anti-plasmodial activity of some Zulu medicinal plants and of some triterpenes isolated from them. Molecules. 2013;18:12313.PubMedPubMedCentralCrossRef
207.
Zurück zum Zitat Steele JC, Warhurst DC, Kirby GC, Simmonds MSJ. In vitro and in vivo evaluation of betulinic acid as an antimalarial. Phytother Res. 1999;13:115–9.PubMedCrossRef Steele JC, Warhurst DC, Kirby GC, Simmonds MSJ. In vitro and in vivo evaluation of betulinic acid as an antimalarial. Phytother Res. 1999;13:115–9.PubMedCrossRef
208.
Zurück zum Zitat Builders MI, Wannang NN, Ajoku GA, Builders PF, Orisadipe A, Aguiyi JC. Evaluation of the antimalarial potential of Vernonia ambigua Kotschy and Peyr (Asteraceae). Int J Pharmacol. 2011;7:238–47.CrossRef Builders MI, Wannang NN, Ajoku GA, Builders PF, Orisadipe A, Aguiyi JC. Evaluation of the antimalarial potential of Vernonia ambigua Kotschy and Peyr (Asteraceae). Int J Pharmacol. 2011;7:238–47.CrossRef
209.
Zurück zum Zitat Ngbolua KN, Rakotoarimanana H, Rafatro H, Ratsimamanga US, Mudogo V, Mpiana PT, et al. Comparative antimalarial and cytotoxic activities of two Vernonia species: Vernonia amygdalina from the Democratic Republic of Congo and Vernonia cinerea subsp vialis endemic to Madagascar. Int J Biol Chem Sci. 2011;5:345–53. Ngbolua KN, Rakotoarimanana H, Rafatro H, Ratsimamanga US, Mudogo V, Mpiana PT, et al. Comparative antimalarial and cytotoxic activities of two Vernonia species: Vernonia amygdalina from the Democratic Republic of Congo and Vernonia cinerea subsp vialis endemic to Madagascar. Int J Biol Chem Sci. 2011;5:345–53.
210.
Zurück zum Zitat Benoit-Vical F, Imbert C, Bonfils JP, Sauvaire Y. Antiplasmodial and antifungal activities of iridal, a plant triterpenoid. Phytochemistry. 2003;62:747–51.PubMedCrossRef Benoit-Vical F, Imbert C, Bonfils JP, Sauvaire Y. Antiplasmodial and antifungal activities of iridal, a plant triterpenoid. Phytochemistry. 2003;62:747–51.PubMedCrossRef
211.
Zurück zum Zitat Applequist WL, Ratsimbason M, Kuhlman A, Ratonandrasana S, Rasamison V, Kingston DG. Antimalarial use of Malagasy plants is poorly correlated with performance in antimalarial bioassays. Econ Bot. 2017;71:75–82.PubMedPubMedCentralCrossRef Applequist WL, Ratsimbason M, Kuhlman A, Ratonandrasana S, Rasamison V, Kingston DG. Antimalarial use of Malagasy plants is poorly correlated with performance in antimalarial bioassays. Econ Bot. 2017;71:75–82.PubMedPubMedCentralCrossRef
212.
Zurück zum Zitat Thiengsusuk A, Chaijaroenkul W, NaBangchang K. Antimalarial activities of medicinal plants and herbal formulations used in Thai traditional medicine. Parasitol Res. 2013;112:1475.PubMedCrossRef Thiengsusuk A, Chaijaroenkul W, NaBangchang K. Antimalarial activities of medicinal plants and herbal formulations used in Thai traditional medicine. Parasitol Res. 2013;112:1475.PubMedCrossRef
213.
Zurück zum Zitat Udobang JA, Nwafor PA, Okokon JE. Analgesic and antimalarial activities of crude leaf extract and fractions of Acalypha wilkensiana. J Ethnopharmacol. 2010;127:373–8.PubMedCrossRef Udobang JA, Nwafor PA, Okokon JE. Analgesic and antimalarial activities of crude leaf extract and fractions of Acalypha wilkensiana. J Ethnopharmacol. 2010;127:373–8.PubMedCrossRef
214.
Zurück zum Zitat Mohammed T, Erko B, Giday M. Evaluation of antimalarial activity of leaves of Acokanthera schimperi and Croton macrostachyus against Plasmodium berghei in Swiss albino mice. Compl Altern Med. 2014;14:314.CrossRef Mohammed T, Erko B, Giday M. Evaluation of antimalarial activity of leaves of Acokanthera schimperi and Croton macrostachyus against Plasmodium berghei in Swiss albino mice. Compl Altern Med. 2014;14:314.CrossRef
215.
Zurück zum Zitat Kuria KA, De Coster S, Muriuki G, Masengo W, Kibwage I, Hoogmartens J, et al. Antimalarial activity of Ajuga remota Benth (Labiatae) and Caesalpinia Volkensii Harms (Caesalpiniaceae): in vitro confirmation of ethnopharmacological use. J Ethnopharmacol. 2001;74:141–8.PubMedCrossRef Kuria KA, De Coster S, Muriuki G, Masengo W, Kibwage I, Hoogmartens J, et al. Antimalarial activity of Ajuga remota Benth (Labiatae) and Caesalpinia Volkensii Harms (Caesalpiniaceae): in vitro confirmation of ethnopharmacological use. J Ethnopharmacol. 2001;74:141–8.PubMedCrossRef
216.
Zurück zum Zitat Mesfin A, Giday M, Animut A, Teklehaymanot T. Ethnobotanical study of antimalarial plants in Shineile District, Somali Region, Ethiopia, and in vivo evaluation of selected ones against Plasmodium berghei. J Ethnopharmacol. 2012;139:221–7.PubMedCrossRef Mesfin A, Giday M, Animut A, Teklehaymanot T. Ethnobotanical study of antimalarial plants in Shineile District, Somali Region, Ethiopia, and in vivo evaluation of selected ones against Plasmodium berghei. J Ethnopharmacol. 2012;139:221–7.PubMedCrossRef
217.
Zurück zum Zitat Hilou A, Nacoulma OG, Guiguemde TR. In vivo antimalarial activities of extracts from Amaranthus spinosus L. and Boerhaavia erecta L. in mice. J Ethnopharmacol. 2006;103:236–40.PubMedCrossRef Hilou A, Nacoulma OG, Guiguemde TR. In vivo antimalarial activities of extracts from Amaranthus spinosus L. and Boerhaavia erecta L. in mice. J Ethnopharmacol. 2006;103:236–40.PubMedCrossRef
218.
Zurück zum Zitat Adebajo AC, Odediran SA, Aliyu FA, Nwafor PA, Nwoko NT, Umana US. In vivo antiplasmodial potentials of the combinations of four Nigerian antimalarial plants. Molecules. 2014;19:13136–46.PubMedPubMedCentralCrossRef Adebajo AC, Odediran SA, Aliyu FA, Nwafor PA, Nwoko NT, Umana US. In vivo antiplasmodial potentials of the combinations of four Nigerian antimalarial plants. Molecules. 2014;19:13136–46.PubMedPubMedCentralCrossRef
219.
Zurück zum Zitat Dikasso D, Mekonnen E, Debella A, Abebe D, Urga K, Menonnen W, et al. In vivo antimalarial activity of hydroalcoholic extracts from Asparagus africanus Lam in mice infected with Plasmodium berghei. Ethiop J Health Dev. 2006;20:112–8. Dikasso D, Mekonnen E, Debella A, Abebe D, Urga K, Menonnen W, et al. In vivo antimalarial activity of hydroalcoholic extracts from Asparagus africanus Lam in mice infected with Plasmodium berghei. Ethiop J Health Dev. 2006;20:112–8.
220.
Zurück zum Zitat Yerbanga RS, Lucantoni L, Lupidi G, Dori GU, Tepongning NR, Nikiéma JB, et al. Antimalarial plant remedies from Burkina Faso: their potential for prophylactic use. J Ethnopharmacol. 2012;140:255–60.PubMedCrossRef Yerbanga RS, Lucantoni L, Lupidi G, Dori GU, Tepongning NR, Nikiéma JB, et al. Antimalarial plant remedies from Burkina Faso: their potential for prophylactic use. J Ethnopharmacol. 2012;140:255–60.PubMedCrossRef
221.
Zurück zum Zitat Karou SD, Tchacondo T, Ouattara L, Anani K, Savadogo A, Agbonon A, et al. Antimicrobial, antiplasmodial, haemolytic and antioxidant activities of crude extracts from three selected Togolese medicinal plants. Asian Pac J Trop Med. 2011;4:808–13.PubMedCrossRef Karou SD, Tchacondo T, Ouattara L, Anani K, Savadogo A, Agbonon A, et al. Antimicrobial, antiplasmodial, haemolytic and antioxidant activities of crude extracts from three selected Togolese medicinal plants. Asian Pac J Trop Med. 2011;4:808–13.PubMedCrossRef
222.
Zurück zum Zitat Bonkian LN, Yerbanga RS, Koama B, Soma A, Cisse M, Valea I, et al. In vivo antiplasmodial activity of two Sahelian plant extracts on Plasmodium berghei ANKA infected NMRI mice. Evid Based Complement Alternat Med. 2018;24:6859632. Bonkian LN, Yerbanga RS, Koama B, Soma A, Cisse M, Valea I, et al. In vivo antiplasmodial activity of two Sahelian plant extracts on Plasmodium berghei ANKA infected NMRI mice. Evid Based Complement Alternat Med. 2018;24:6859632.
223.
Zurück zum Zitat Ajaiyeoba E, Ashidi J, Abiodun O, Okpako L, Ogbole O, Akinboye D, et al. Antimalarial ethnobotany: in vitro antiplasmodial activity of seven plants indentified in the Nigerian middle belt. Pharm Biol. 2005;42:588–91.CrossRef Ajaiyeoba E, Ashidi J, Abiodun O, Okpako L, Ogbole O, Akinboye D, et al. Antimalarial ethnobotany: in vitro antiplasmodial activity of seven plants indentified in the Nigerian middle belt. Pharm Biol. 2005;42:588–91.CrossRef
224.
Zurück zum Zitat Kefe A, Giday M, Mamo H, Erko B. Antimalarial properties of crude extracts of seeds of Brucea antidysenterica and leaves of Ocimum lamiifolium. BMC Complement Altern Med. 2016;16:118.PubMedPubMedCentralCrossRef Kefe A, Giday M, Mamo H, Erko B. Antimalarial properties of crude extracts of seeds of Brucea antidysenterica and leaves of Ocimum lamiifolium. BMC Complement Altern Med. 2016;16:118.PubMedPubMedCentralCrossRef
225.
Zurück zum Zitat Innocent E, Moshi MJ, Masimba PJ, Mbwambo ZH, Kapingu MC, Kamuhabwa A. Screening of traditionally used plants for in vivo antimalarial activity in mice. Afr J Tradit Complement Altern Med. 2009;6:163–7.PubMedPubMedCentral Innocent E, Moshi MJ, Masimba PJ, Mbwambo ZH, Kapingu MC, Kamuhabwa A. Screening of traditionally used plants for in vivo antimalarial activity in mice. Afr J Tradit Complement Altern Med. 2009;6:163–7.PubMedPubMedCentral
226.
Zurück zum Zitat Mengiste B, Mekonnen E, Urga K. In vivo animalarial activity of Dodonaea angustifolia seed extracts against Plasmodium berghei in mice model. MEJS. 2012;4:147–63.CrossRef Mengiste B, Mekonnen E, Urga K. In vivo animalarial activity of Dodonaea angustifolia seed extracts against Plasmodium berghei in mice model. MEJS. 2012;4:147–63.CrossRef
227.
Zurück zum Zitat Biruksew A, Zeynudin A, Alemu Y, Golassa L, Yohannes M, Debella A, et al. Zingiber officinale Roscoe and Echinops kebericho Mesfin showed antiplasmodial activities against Plasmodium berghei in a dose-dependent manner in Ethiopia. Ethiop J Health Sci. 2018;28:655.PubMedPubMedCentral Biruksew A, Zeynudin A, Alemu Y, Golassa L, Yohannes M, Debella A, et al. Zingiber officinale Roscoe and Echinops kebericho Mesfin showed antiplasmodial activities against Plasmodium berghei in a dose-dependent manner in Ethiopia. Ethiop J Health Sci. 2018;28:655.PubMedPubMedCentral
228.
Zurück zum Zitat Agbaje EO, Onabanjo AO. The effects of extracts of Enantia chlorantha in malaria. Ann Trop Med Parasitol. 1991;85:585–90.PubMedCrossRef Agbaje EO, Onabanjo AO. The effects of extracts of Enantia chlorantha in malaria. Ann Trop Med Parasitol. 1991;85:585–90.PubMedCrossRef
229.
Zurück zum Zitat Ajayi EIO, Adelekeb MA, Adewumia TY, Adeyemia AA. Antiplasmodial activities of ethanol extracts of Euphorbia hirta whole plant and Vernonia amygdalina leaves in Plasmodium berghei-infected mice. J Taibah Univ Sci. 2017;11:831–5.CrossRef Ajayi EIO, Adelekeb MA, Adewumia TY, Adeyemia AA. Antiplasmodial activities of ethanol extracts of Euphorbia hirta whole plant and Vernonia amygdalina leaves in Plasmodium berghei-infected mice. J Taibah Univ Sci. 2017;11:831–5.CrossRef
230.
Zurück zum Zitat Omole AR, Malebo MH, Nondo SOR, Katani S, Mbugi H, Midiwo J, et al. In vivo anti-plasmodial activity of crude extracts of three medicinal plants used traditionally for malaria treatment in Kenya. Eur J Med Plants. 2018;24:1–7.CrossRef Omole AR, Malebo MH, Nondo SOR, Katani S, Mbugi H, Midiwo J, et al. In vivo anti-plasmodial activity of crude extracts of three medicinal plants used traditionally for malaria treatment in Kenya. Eur J Med Plants. 2018;24:1–7.CrossRef
231.
Zurück zum Zitat Nureye D, Assefa S, Nedi T, Engidawork E. In vivo antimalarial activity of the 80% methanolic root barks extract and solvent fractions of Gardenia ternifolia Schumach & Thonn (Rubiaceae) against Plasmodium berghei. Evid Based Complement Alternat Med. 2018;2018:9217835.PubMedPubMedCentralCrossRef Nureye D, Assefa S, Nedi T, Engidawork E. In vivo antimalarial activity of the 80% methanolic root barks extract and solvent fractions of Gardenia ternifolia Schumach & Thonn (Rubiaceae) against Plasmodium berghei. Evid Based Complement Alternat Med. 2018;2018:9217835.PubMedPubMedCentralCrossRef
232.
Zurück zum Zitat Beaufay C, Hérent MF, Quetin-Leclercq J, Bero J. In vivo antimalarial activity and toxicity studies of triterpenic esters isolated from Keetia leucantha and crude extracts. Malar J. 2017;16:406.PubMedPubMedCentralCrossRef Beaufay C, Hérent MF, Quetin-Leclercq J, Bero J. In vivo antimalarial activity and toxicity studies of triterpenic esters isolated from Keetia leucantha and crude extracts. Malar J. 2017;16:406.PubMedPubMedCentralCrossRef
233.
Zurück zum Zitat Bankole AE, Adekunle AA, Sowemimo AA, Umebese CE, Abiodun O, Gbotosho GO. Phytochemical screening and in vivo antimalarial activity of extracts from three medicinal plants used in malaria treatment in Nigeria. Parasitol Res. 2016;115:299–305.PubMedCrossRef Bankole AE, Adekunle AA, Sowemimo AA, Umebese CE, Abiodun O, Gbotosho GO. Phytochemical screening and in vivo antimalarial activity of extracts from three medicinal plants used in malaria treatment in Nigeria. Parasitol Res. 2016;115:299–305.PubMedCrossRef
234.
Zurück zum Zitat Jansen O, Tchinda AT, Loua J, Esters V, Cieckiewicz E, Ledoux A. Antiplasmodial activity of Mezoneuron benthamianum leaves and identification of its active constituents. J Ethnopharmacol. 2017;203:20–6.PubMedCrossRef Jansen O, Tchinda AT, Loua J, Esters V, Cieckiewicz E, Ledoux A. Antiplasmodial activity of Mezoneuron benthamianum leaves and identification of its active constituents. J Ethnopharmacol. 2017;203:20–6.PubMedCrossRef
235.
Zurück zum Zitat Udobre AS, Udobang JA, Udoh AE, Anah VU, Akpan AE, Charles GE. Effect of methanol leaf extract of Nauclea latifolia on albino mice infected with Plasmodium berghei berghei. Afr J Pharmacol Ther. 2013;2:83–7. Udobre AS, Udobang JA, Udoh AE, Anah VU, Akpan AE, Charles GE. Effect of methanol leaf extract of Nauclea latifolia on albino mice infected with Plasmodium berghei berghei. Afr J Pharmacol Ther. 2013;2:83–7.
236.
Zurück zum Zitat Mesia K, Tona L, Mampunza MM, Ntamabyaliro N, Muanda T, Muyembe T, et al. Antimalarial efficacy of a quantified extract of Nauclea pobeguinii stem barks in human adult volunteers with diagnosed uncomplicated falciparum malaria .Part 2: a clinical phase IIB trial. Planta Med. 2012;78:853–60.PubMedCrossRef Mesia K, Tona L, Mampunza MM, Ntamabyaliro N, Muanda T, Muyembe T, et al. Antimalarial efficacy of a quantified extract of Nauclea pobeguinii stem barks in human adult volunteers with diagnosed uncomplicated falciparum malaria .Part 2: a clinical phase IIB trial. Planta Med. 2012;78:853–60.PubMedCrossRef
237.
Zurück zum Zitat Okeola VO, Adaramoye OA, Nneji CM, Falade CO, Farombi EO, Ademowo OG. Antimalarial and antioxidant activities of methanolic extract of Nigella sativa seeds (black cumin) in mice infected with Plasmodium yoelii nigeriensis. Parasitol Res. 2011;108:1507–12.PubMedCrossRef Okeola VO, Adaramoye OA, Nneji CM, Falade CO, Farombi EO, Ademowo OG. Antimalarial and antioxidant activities of methanolic extract of Nigella sativa seeds (black cumin) in mice infected with Plasmodium yoelii nigeriensis. Parasitol Res. 2011;108:1507–12.PubMedCrossRef
238.
Zurück zum Zitat Girma S, Giday M, Erko B, Mamo H. Effect of crude leaf extract of Osyris quadripartita on Plasmodium berghei in Swiss albino mice. BMC Complement Alternative Med. 2015;15:184.CrossRef Girma S, Giday M, Erko B, Mamo H. Effect of crude leaf extract of Osyris quadripartita on Plasmodium berghei in Swiss albino mice. BMC Complement Alternative Med. 2015;15:184.CrossRef
239.
Zurück zum Zitat Kabiru AY, Ibikunle GF, Innalegwu DA, Bola BM, Madaki FM. In vivo antiplasmodial and analgesic effect of crude ethanol extract of Piper guineense leaf extract in Albino Mice. Scientifica (Cairo). 2016: 8687313. Kabiru AY, Ibikunle GF, Innalegwu DA, Bola BM, Madaki FM. In vivo antiplasmodial and analgesic effect of crude ethanol extract of Piper guineense leaf extract in Albino Mice. Scientifica (Cairo). 2016: 8687313.
240.
Zurück zum Zitat Hiben MG, Sibhat GG, Fanta BS, Gebrezgi HD, Tesema SB. Evaluation of Senna singueana leaf extract as an alternative or adjuvant therapy for malaria. J Tradit Complement Med. 2015;6:112–7.PubMedPubMedCentralCrossRef Hiben MG, Sibhat GG, Fanta BS, Gebrezgi HD, Tesema SB. Evaluation of Senna singueana leaf extract as an alternative or adjuvant therapy for malaria. J Tradit Complement Med. 2015;6:112–7.PubMedPubMedCentralCrossRef
241.
Zurück zum Zitat Tadesse SA, Wubneh ZB. Antimalarial activity of Syzygium guineense during early and established Plasmodium infection in rodent models. BMC Complement Alternative Med. 2017;17:21.CrossRef Tadesse SA, Wubneh ZB. Antimalarial activity of Syzygium guineense during early and established Plasmodium infection in rodent models. BMC Complement Alternative Med. 2017;17:21.CrossRef
242.
Zurück zum Zitat Adepiti AO, Iwalewa EO. Evaluation of the combination of Uvaria chamae (P Beauv) and amodiaquine in murine malaria. J Ethnopharmacol. 2016;193:30–5.PubMedCrossRef Adepiti AO, Iwalewa EO. Evaluation of the combination of Uvaria chamae (P Beauv) and amodiaquine in murine malaria. J Ethnopharmacol. 2016;193:30–5.PubMedCrossRef
243.
Zurück zum Zitat Masaba SC. The antimalarial activity of Vernonia amygdalina Del (Compositae). Trans R Soc Trop Med Hyg. 2000;94:694–5.PubMedCrossRef Masaba SC. The antimalarial activity of Vernonia amygdalina Del (Compositae). Trans R Soc Trop Med Hyg. 2000;94:694–5.PubMedCrossRef
244.
Zurück zum Zitat Omoregie ES, Pal A. Antiplasmodial, antioxidant and immunomodulatory activities of ethanol extract of Vernonia amygdalina del. leaves in Swiss mice. Avicenna J Phytomed. 2016;6:236–7.PubMedPubMedCentral Omoregie ES, Pal A. Antiplasmodial, antioxidant and immunomodulatory activities of ethanol extract of Vernonia amygdalina del. leaves in Swiss mice. Avicenna J Phytomed. 2016;6:236–7.PubMedPubMedCentral
245.
Zurück zum Zitat Challand S, Willcox M. A Clinical trial of the traditional medicine Vernonia amygdalina in the treatment of uncomplicated Malaria. J Altern Complement Med. 2009;15:1231–7.PubMedCrossRef Challand S, Willcox M. A Clinical trial of the traditional medicine Vernonia amygdalina in the treatment of uncomplicated Malaria. J Altern Complement Med. 2009;15:1231–7.PubMedCrossRef
246.
Zurück zum Zitat Ajayi BB, Ogunsola JO, Olatoye OI, Antia RE, Agbedea S. Effects of pituitary extract, ovaprim, and bitter leaves (Vernonia amygdalina) on the histopathology of African catfish (Clarias gariepinus) Aquacult. Fish. 2018;3:232–7. Ajayi BB, Ogunsola JO, Olatoye OI, Antia RE, Agbedea S. Effects of pituitary extract, ovaprim, and bitter leaves (Vernonia amygdalina) on the histopathology of African catfish (Clarias gariepinus) Aquacult. Fish. 2018;3:232–7.
Metadaten
Titel
Antiplasmodial, antimalarial activities and toxicity of African medicinal plants: a systematic review of literature
verfasst von
Elahe Tajbakhsh
Tebit Emmanuel Kwenti
Parya Kheyri
Saeed Nezaratizade
David S. Lindsay
Faham Khamesipour
Publikationsdatum
01.12.2021
Verlag
BioMed Central
Erschienen in
Malaria Journal / Ausgabe 1/2021
Elektronische ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-021-03866-0

Weitere Artikel der Ausgabe 1/2021

Malaria Journal 1/2021 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Reizdarmsyndrom: Diäten wirksamer als Medikamente

29.04.2024 Reizdarmsyndrom Nachrichten

Bei Reizdarmsyndrom scheinen Diäten, wie etwa die FODMAP-arme oder die kohlenhydratreduzierte Ernährung, effektiver als eine medikamentöse Therapie zu sein. Das hat eine Studie aus Schweden ergeben, die die drei Therapieoptionen im direkten Vergleich analysierte.

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.