Skip to main content
Erschienen in: Behavioral and Brain Functions 1/2012

Open Access 01.12.2012 | Research

Apathy symptoms modulate motivational decision making on the Iowa gambling task

verfasst von: Progress Njomboro, Shoumitro Deb, Glyn W Humphreys

Erschienen in: Behavioral and Brain Functions | Ausgabe 1/2012

Abstract

Background

The present study represents an initial attempt to assess the role of apathy in motivated decision making on the Iowa Gambling Task. Clinical descriptions of patients with apathy highlight deficits in the cognitive, emotional and behavioural aspects of goal directed activity, yet standard neurocognitive tests of these measures fail to demonstrate reliable sensitivity to the disorder. Available research suggests the Iowa Gambling Task is a robust test of complex emotional socio-executive processes involved in motivational decision making, which can analogue real-world goal-directed behaviour.

Methods

We ask whether performance on the Iowa Gambling Task can distinguish brain damaged patients with apathy symptoms from 1) brain damaged patients without apathy and 2) neurologically intact controls. Overall, 22 healthy adults and 29 brain damaged patients took part in this study.

Results

Brain damaged patients with apathy were distinctively impaired on the Iowa Gambling Task compared to both non-apathetic brain damaged patients and neurologically intact healthy controls. On the other hand, standard measures for the cognitive control of behaviour failed to show this sensitivity.

Conclusions

Our results demonstrated that the Iowa Gambling Task is sensitive to the presence of apathy symptoms. We discuss these findings in terms of neurocognition deficits in apathy and the related implications for rehabilitation and clinical intervention.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1744-9081-8-63) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors made significant contributions to the study. All authors read and approved the final manuscript.

Background

Apathy as a syndrome manifests as reductions in motivation, goal directed thoughts, emotions, and behaviour [1]. The disorder is of frequent occurrence following neurological change [2]. Rehabilitation outcome studies on chronic patients going beyond 2 years post brain injury show that the majority of cases experience persisting apathy symptoms with related psychosocial problems characterised by lack of motivation, attenuated emotionality, decreased social contact and leisure activity, unemployment, marital problems and family breakdowns [3]. Apathy is also associated with significant caregiver distress and early institutionalization [4]. Despite these serious clinical implications, the nosological position of apathy and its associated neurocognitive profile remain poorly understood and appreciated in clinical practice [1].
Neurological models suggest apathy follows dysfunction in frontal-subcortical brain circuits crucial for motivation-related executive processing [5, 6]. The classic case of Phineas Gage provides the earliest documented case of such dysfunction. Despite his preserved capacities on basic cognition after his brain injury, Gage had significant socio-executive deficits including personality change and apparent apathy to his symptoms [7]. Similar cases have been reported elsewhere, e.g., [811]. Apathy is often conceptualised as a dysexecutive syndrome [12], although studies have shown inconsistent results on the relationship between apathy and executive deficits assessed through standard executive function (EF) tests. Some studies have reported an association between apathy symptoms and poor performance on these tests [13, 14] while others have found no such an association. For instance, a review by van Reekum and associates [15] found a near middle split in the number of studies that reported a significant relationship between apathy levels and executive deficits (8 studies) and those that did not (7 studies).
Use of different tests and scales on different clinical samples across studies may partly account for the mixed results. Also, in some cases real-life dysexecutive behaviour has been seen to dissociate from deficits on standard EF tests [1618]. Patients with significant functional problems often perform relatively well on these ‘offline’ tests [19]. Robust tasks that are sensitive to real life socio-executive processing may help us understand the nature of neurocognitive impairment in apathy. The socio-executive processing needed for successful Iowa Gambling Task (IGT) performance is thought to analogue real life motivated behaviour [20, 21], and therefore makes a potentially useful test for the deficits in goal directed behaviour that comprise apathy symptoms.
A number of reasons make the IGT a plausible test for apathy symptoms. Firstly, brain areas thought to subserve emotional-executive processes crucial for effective IGT performance such as the medial frontal regions, anterior cingulate cortex, and amygdala form part of the cortico-subcortical neural circuitry responsible for motivated goal direct behaviour [2228]. Damage to these areas reliably causes apathy [2935]. Secondly, apathy and impaired IGT performance have both been linked to malfunctions of the dopamine system. Blockade of dopamine has been reported to impair, and stimulation of dopamine to improve, IGT performance [36]. Enhanced IGT performance due to stimulation of dopamine is also consistent with the view that dopamine mediates exploratory behaviour and the suggested effectiveness of dopamine agonists in combating apathy symptoms [37, 38]. With this converging evidence, the IGT provides an attractive premise to build a theoretical framework for understanding neurocognitive correlates of apathy symptoms.
In this study we assessed whether the IGT is sensitive to the presence of apathy symptoms in patients with acquired brain damage. It is also possible that the presence of apathy symptoms may impair performance on any test as a result of general motivational deficits. For that reason, we also obtained independent EF measures on the Brixton Spatial Anticipation test [39].

Method

Participants

In total 51 participants took part in the study. Twenty nine brain damaged patients were recruited from brain injury clinics in the West Midlands region of England. Most neurocognitive studies on apathy have been done on homogenous patient samples, thus making it difficult to isolate the influence of the aetiological process, apathy symptoms, and executive processing deficits. To increase the power of the relationship between apathy symptoms and socio-executive deficits, we profiled brain damaged patients from a number of aetiologies (Cerebrovascular accident = 10; Head injury = 7; Anoxia = 5; Herpes Simplex Encephalitis = 5; Aneurysm = 2). For this reason, the patients’ lesions were also of varied locations. Lesion location data for each of the patients was obtained from brain scan information in the patients’ clinic files (See Table 1 for the lesion data).
Table 1
Lesion location and apathy diagnosis
Lesion
IAES - 41 score cut off
Total
Apathy
No apathy
Left parietal
2
2
4
Right parietal
1
2
3
Bilateral parietal
1
0
1
Left fronto-temporal
1
3
4
Right fronto-temporal
3
1
7
Bilateral fronto-temporal
10
2
12
Total (N)
18
10
28
Twenty-two healthy adult controls recruited through local adverts in the West Midlands city of Birmingham also provided the normative data on the IGT (See Table 2 for the participants’ demographic characteristics). All participants gave informed written consent to participate in the study. Ethics approval for the study was obtained from the Birmingham and Solihull Research Ethics Committee.
Table 2
Participants age and education characteristics
  
N
Mean
SD
Sig.
Age
Control
22 (M=14; F=8)
44.00
18.60
p > .05
 
No Apathy
10 (M=7; F=3)
56.50
14.17
 
Apathy
18 (M=18; F=1)
53.06
14.04
Education
Control
22 (M=14; F=8)
14.91
1.02
p > .05
 
No Apathy
10 (M=7; F=3)
14.40
0.84
 
Apathy
18 (M=18; F=1)
14.53
.90

Apathy symptoms

The informant version of the Apathy Evaluation Scale (AES-I) [40] was used to assess apathy. The AES-I is an 18-item scale that assesses behavioural, emotional, and cognitive aspects of apathy. Each item, (e.g., s/he gets things done during the day) is rated on a scale of 1 (Not at all characteristic) to 4 (A lot characteristic). The scale has enjoyed widespread use and has good psychometric properties [40]. Patients’ caregivers provided the evaluations. We took apathy scores of 41+ as indicative of the presence of apathy (supplementary administration and scoring guidelines obtained from the authors). To control for the likely influence of depression on the relationships between study variables, the Beck Depression Inventory (BDI; [41]) was also used to evaluate levels of depressive symptoms in the patient samples.

Executive function measures: the Brixton test

The Brixton Spatial Anticipation test [39] provided standard EF measures. This test was chosen because of its robustness and sensitivity to a variety of executive deficits, including preservative behaviour and failure to utilise feedback or follow rules [39].

Socio-executive measure: the Iowa gambling task

The IGT requires participants to choose cards from four decks labelled A, B, C, and D. Each deck is made up of 40 cards. The task is rigged such that cards from decks A and B give high rewards (£100) on each card selection, but also yield unpredictable and large losses such that continuously picking from these decks results in a net loss. Decks A and B are therefore risky decks. On the other hand, Decks C and D are safe. They give relatively lower immediate gains on each picking (£50), but the associated losses are also lower. Picking more cards from the safe decks C and D gives a net gain, and picking more cards from the risky decks A and B results in a net loss.
Because we used the non-automated card version of the IGT, some of the patients ran out of play money at various points after the 3rd Block (see below). Also, because the non-automated IGT version has fixed numbers of cards for each deck, better performers ran out of safe picks before reaching the final round of choices and had to pick from the risky decks out of lack of choice. For these reasons, we only analysed card choices up to the 60th round. While this is a potential limitation to our study, it is important to note that in neurologically intact subjects, the trend towards avoiding risky decks is often set by the 40th choice [21].

Results

Tests for sphericity and homogeneity of variance were performed on the data to determine whether it met the assumptions for the use of parametric tests. Our data met these assumptions.

Apathy evaluation

Nineteen patients (Male = 18, Female = 1; Mean age = 54, SD = 14.25) met criteria for the presence of apathy (Mean apathy scores = 52.8, SD = 7.4) and 10 patients (Male = 7; Female = 3; Mean age 56.5, SD = 14.17) did not have apathy (Mean = 33.2, SD = 5.5).

Gambling task

To investigate the participants’ gambling trends, we divided the rounds of choices into 3 blocks: Block 1 (rounds 1–20), Block 2 (rounds 21–40), and Block 3 (rounds 41–60). Neurologically intact controls picked fewer safe cards (from decks C and D) in Block 1 (Mean = 7.68, SD = 2.81); they then picked more safe cards in Block 2 (Mean = 14.73, SD = 3.8) and even more safe cards in Block 3 (Mean = 15.59, SD = 3.54). The same trend towards picking more from the safe C and D decks as the game progressed was also observed for non-apathetic patients (Block 1: Mean = 9.1, SD = 3.54; Block 2: Mean = 11.40, SD = 4.69; and Block 3, Mean = 13.10, SD = 6.0). In contrast, although on average apathetic patients picked more safe cards in block 1 compared to the other two groups (Mean = 10.21, SD = 3.46), they eventually picked fewer safe cards in block 2 (Mean = 8.95, SD = 4.43) and even fewer safe cards in block 3 (Mean = 8.05, SD = 4.97). Figure 1 shows the mount of safe picks (from decks C and D) for the 3 participant groups.
A mixed ANOVA performed on the safe (C+D) scores for the 3 participant groups with Block (Blocks 1, 2, and 3) as a within subject factor and Participant Type (Normal, Non-apathetic, and Apathetic) as a between subjects variable showed significant main effects of Block F(2, 98) = 31.10, p < .001, r = .24. The interaction between Block and participant type was also significant F (2, 98) = 21.08, p < .001, r = .39. When depressive symptoms (BDI score) and executive function deficits (Brixton test scores) were controlled for as covariates for the two patient groups, there where non-significant effects of executive function deficits F (1, 21) = 1.02, p > .05, r = .22, and of depressive symptoms, F (1, 21) = .004, p > .05 r = .1. The effects of Block remained significant, F (1, 21) = 3.81, p < .05 r = .45.
Further one way ANOVA tests on risky gambling scores showed significant group differences (F (2, 48) = 9.20, p < .001 r = .41). Pairwise comparisons indicated that apathetic patients made significantly more risky card choices compared to both normal controls (Mean difference = 9.9; p < .001, r = .28) and patients without apathy (Mean difference = 5.44; p < .05, r = .18). IGT scores for the non apathetic patients were not significantly different from scores for healthy controls (Mean difference = 4.1; p > .05, r = .26). See Table 3 for these comparisons.
Table 3
Pairwise comparisons on gambling task performance between apathetic patients, non-apathetic patients, and healthy controls
 
Mean Difference
Std Error
Significance
Apathetic vs. Non-apathetic
5.44
1.05
p < 0.05
Apathetic vs. Normal controls
9.9
0.84
p < 0.001
Non-apathetic vs. Normal controls
4.1
1.02
p > 0.05
There is little consensus on the appropriate cut-off score for the AES-I. Cut-off scores have ranged from 35 to 41 across studies (Glenn et al., 2002; Lane-Brown & Tate; 2009). For this reason we also performed Pearson correlation analyses between patients’ AES-I apathy ratings and the total number of risky cards they selected. The results showed a significant positive relationship between the level of apathy symptoms and the number of risky cards selected, r = .38, p < 0.05. Figure 2 shows the scatter plot for this relationship and illustrates the point that patients with high levels of apathy also picked relatively more risky cards.

Discussion

Patients with apathy made significantly more risky choices on the IGT compared to neurologically intact and brain damaged non-apathetic controls, both of whom (as groups) picked less from the risky decks as the game progressed. The shift from risky to the safe decks shown by healthy participants is in line with the performance patterns reported in similar studies [4247]. Non-apathetic brain damaged patients also shifted towards good decks as the game progressed.
It is possible that apathetic patients may perform poorly due to their general lack of motivation, and not necessarily due to a specific cognitive deficit related to the particular task. This argument is however inconsistent with our findings. For instance, putting in the Brixton test score as a covariate did not dilute the effect, suggesting the two patient groups’ performance on this test was not significantly different. We can claim with some degree of confidence that the IGT is sensitive to the presence of apathy symptoms, and distinguished apathetic from non-apathetic patients (and normal controls).
The IGT’s sensitivity to apathy symptoms makes it a potentially valuable instrument for both research and clinical practice. In a number of cases standard off-line EF measures fail to distinguish between patients with real-life socio-executive deficits like apathy and those without these deficits [48]. Standard EF tests may provide test takers with reliable task instructions and the type of feedback that is not found in more complex real life scenarios. On the other hand, the IGT has open ended behavioural choices and requires the generation of self-initiated choices under less explicit feedback. Such conditions provide a more valid analogue of socio-executive demands found in real life social environments. Our results suggest that apathy symptoms may arise from specific deficits in a patient’s capacity to produce or structure their own goal directed behaviour. This is in line with the realisation that apathetic patients rely heavily on others to structure their own activities [49]. Rehabilitation programmes in which daily tasks are structured, with enough prompts and cues may benefit patients with apathy. In this context, the IGT can be a useful addition to assessment batteries for detecting socio-executive deficits related to apathy.
Effective IGT performance is thought to depend on intact emotional processing [50]. According to this view (the somatic marker hypothesis), effective IGT performance benefits from subconscious emotional capacities that pre-bias responses away from bad behavioural choices. This bias enhances the selection and efficient execution of good behavioural choices, and is thought to underlie adaptive goal-directed activity, reasoning and decision-making in real life social contexts. It is tempting to suggest an inability to develop or fully utilise such emotional biasing signals to explain apathy symptoms. Empirical studies support this viewpoint. For instance, it has been observed that patients with apathy show deficits in matching emotional responses to social situations [51, 52]. Furthermore, there is evidence for a significant inverse association between apathy and autonomic excitation measured through heart rate reactivity [53]. Our study is however limited in the extent to which we can ascribe poor performance on the IGT to such lack of autonomic emotional inputs because we did not obtain concurrent measures of autonomic arousal.
The IGT’s sensitivity to apathy symptoms may also lie in its requirement for sensitivity to rewards and punishments. Part of the apathy symptom profile includes a dimension of indifference to rewards and punishments, lack of interest or concern, anhedonia, and social disengagement [54, 55]. Apathetic patients may have picked more risky cards due to insensitivity to punishments. Bechara and colleagues [56] have however demonstrated that sensitivity to rewards or insensitivity to punishment contingencies is not enough to explain impaired IGT performance. They either reversed rewards and punishments on the task such that good decks yielded higher immediate punishments but even greater delayed rewards, while risky decks gave off low immediate punishments and even lower future rewards, and in another condition increased the future disadvantages on risky decks. Patients with dysexecutive deficits preferred decks that had low immediate punishment to those with higher immediate punishment but more rewards in the long run. In other words large delayed rewards failed to lure the patients to the paying decks while on the other hand the patients were reluctant to choose from decks with huge initial punishment indicating that hyper sensitivity to rewards or insensitivity to punishments might not be a crucial factor on effective IGT performance.
Fellows and Farah [22] suggest that impaired goal directed behaviour can result from impaired future time perspective, which is a measure of an individual’s self defined future. Interestingly, deficits in future time perspective were found to correlate with self-reported apathy symptoms [22]. Whether this deficit can explain impaired IGT performance in this study is a subject for future research. There are also some suggestions that deficits in reversal learning or inhibition could account for impairments on the IGT. Effective performance requires that participants switch from initially high paying decks to lower paying but also low punishment decks. This involves reversal learning and the inhibition of responses to high reward/high cost decks - capacities that can be impaired in some brain damaged patients [57]. It is unlikely that deficits in reversal learning or inhibition could account for our results though, since apathetic patients were not distinctly impaired on the Brixton test.
Other factors, such as the effects of working memory deficits on IGT performance [58], and the cognitive impenetrability of the task [59, 60] have been suggested to explain impaired performance on the task. However, Bechara, et al. [61] have shown that working memory and decision making are dissociable and also shown that the majority of normal participants begin avoiding risky decks before confessing awareness of the game’s rewards and punishments contingencies. See also [62].
The IGT’s main weakness is its lack of specificity. A majority of different patient populations have shown deficits on the measure. Impaired IGT performance has been reported in schizophrenics [6365]; in pathological gamblers [66]; in alcohol, marijuana, and substance dependent individuals [6769]; in anorexics [70] in patients with intermittent explosive disorder and conduct disorder [71, 72]; in Huntington’s disease sufferers [24]; in traumatic brain injury patients [73]; in frontotemporal dementia [74] and in HIV infected patients [75]. It is nevertheless important to note that apathy is also a common syndrome in most of these disorders [15].
The IGT’s lack of specificity across different neuropsychiatric disorders could also be an indication of the task’s sensitivity to a wider spectrum of deficits, for instance, involving working memory, the patient’s interest and concern about the game, the processing of reward and punishment, explorative behaviour, and capacities related to the inhibition of choices on highly paying but risky decks.

Conclusions

The IGT’s sensitivity to apathy symptoms makes it a potentially valuable neurocognitive tool for assessing these symptoms. However the future utility of the task rests upon our ability to isolate the potential causes of impaired performance in specific clinical populations and syndromes. This should help unravel the individual aspects of the task that, for instance, give it sensitivity to apathy symptoms. Future studies may try and isolate or control for these various variables that can potentially impair IGT performance. Future studies may also consider using the electronic version of the IGT which allows the administration of the full 100 rounds even with poor or extremely good performers.

Acknowledgments

The research was supported by grants from the University of Birmingham, the University of Cape Town, the Birmingham and Solihull Mental Health Foundation NHS Trust, the Medical Research Council, the Stroke Association, and The Canon Collins Educational Trust for Southern Africa. We thank all the participants who took part in this study.
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors made significant contributions to the study. All authors read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat Robert P, Onyike CU, Leentjens AF, Dujardin K, Aalten P, Starkstein S: Proposed diagnostic criteria for apathy in Alzheimer's disease and other neuropsychiatric disorders. Eur Psychiatry. 2009, 24: 98-104. 10.1016/j.eurpsy.2008.09.001.CrossRefPubMed Robert P, Onyike CU, Leentjens AF, Dujardin K, Aalten P, Starkstein S: Proposed diagnostic criteria for apathy in Alzheimer's disease and other neuropsychiatric disorders. Eur Psychiatry. 2009, 24: 98-104. 10.1016/j.eurpsy.2008.09.001.CrossRefPubMed
2.
Zurück zum Zitat Feil D, Razani J, Boone K, Lesser I: Apathy and cognitive performance in older adults with depression. Int J Geriatr Psychiatry. 2003, 18: 479-485. 10.1002/gps.869.CrossRefPubMed Feil D, Razani J, Boone K, Lesser I: Apathy and cognitive performance in older adults with depression. Int J Geriatr Psychiatry. 2003, 18: 479-485. 10.1002/gps.869.CrossRefPubMed
3.
Zurück zum Zitat Morton VM, Wehman P: Psychosocial and emotional sequelae of individuals with traumatic brain injury: a literature review and recommendations. Brain Inj. 1995, 9: 81-92. 10.3109/02699059509004574.CrossRefPubMed Morton VM, Wehman P: Psychosocial and emotional sequelae of individuals with traumatic brain injury: a literature review and recommendations. Brain Inj. 1995, 9: 81-92. 10.3109/02699059509004574.CrossRefPubMed
4.
Zurück zum Zitat Tun SM, Murman DL, Long HL, Colenda CC, von Eye A: Predictive validity of neuropsychiatric subgroups on nursing home placement and survival in patients with Alzheimer disease. Am J Geriatr Psychiatry. 2007, 15: 780-789. 10.1097/JGP.0b013e31805d858a.CrossRef Tun SM, Murman DL, Long HL, Colenda CC, von Eye A: Predictive validity of neuropsychiatric subgroups on nursing home placement and survival in patients with Alzheimer disease. Am J Geriatr Psychiatry. 2007, 15: 780-789. 10.1097/JGP.0b013e31805d858a.CrossRef
5.
Zurück zum Zitat Chase TN: Apathy in neuropsychiatric disease: diagnosis, pathophysiology, and treatment. Neurotox Res. 2011, 19: 266-78. 10.1007/s12640-010-9196-9.CrossRefPubMed Chase TN: Apathy in neuropsychiatric disease: diagnosis, pathophysiology, and treatment. Neurotox Res. 2011, 19: 266-78. 10.1007/s12640-010-9196-9.CrossRefPubMed
6.
Zurück zum Zitat Tekin S, Cummings JL: Frontal–subcortical neuronal circuits and clinical neuropsychiatry: an update. J Psychosom Res. 2002, 53: 647-654. 10.1016/S0022-3999(02)00428-2.CrossRefPubMed Tekin S, Cummings JL: Frontal–subcortical neuronal circuits and clinical neuropsychiatry: an update. J Psychosom Res. 2002, 53: 647-654. 10.1016/S0022-3999(02)00428-2.CrossRefPubMed
7.
Zurück zum Zitat MacMillan M: An Odd Kind of Fame: Stories of Phineas Gage. 2000, Cambridge, Massachusetts: MIT Press MacMillan M: An Odd Kind of Fame: Stories of Phineas Gage. 2000, Cambridge, Massachusetts: MIT Press
8.
Zurück zum Zitat Damasio AR: Descartes Error: Emotion. 1994, Reason and the Human Brain, Avon, New York Damasio AR: Descartes Error: Emotion. 1994, Reason and the Human Brain, Avon, New York
9.
Zurück zum Zitat Dimitrov M, Phipps M, Zahn T, Grafman J: A thoroughly modern gage. Neurocase. 1999, 5: 345-354. 10.1080/13554799908411987.CrossRef Dimitrov M, Phipps M, Zahn T, Grafman J: A thoroughly modern gage. Neurocase. 1999, 5: 345-354. 10.1080/13554799908411987.CrossRef
10.
Zurück zum Zitat Saver JL, Damasio AR: Preserved access and processing of social knowledge in a patient with acquired sociopathy due to ventromedial frontal damage. Neuropsychologia. 1991, 1991 (29): 1241-1249.CrossRef Saver JL, Damasio AR: Preserved access and processing of social knowledge in a patient with acquired sociopathy due to ventromedial frontal damage. Neuropsychologia. 1991, 1991 (29): 1241-1249.CrossRef
11.
Zurück zum Zitat Tranel D: The Iowa-Benton School of neuropsychological assessment. Neuropsychological assessment of neuropsychiatric disorders. Edited by: Grant I, Adams KM. 1994, New York: Oxford University Press Tranel D: The Iowa-Benton School of neuropsychological assessment. Neuropsychological assessment of neuropsychiatric disorders. Edited by: Grant I, Adams KM. 1994, New York: Oxford University Press
12.
Zurück zum Zitat Mesulum M: The human frontal lobes: Transcending the default mode through contingent encoding. Principles of frontal Function. Edited by: Stuss DR, Knight R. 2002, New York: Oxford University Press, 8-30.CrossRef Mesulum M: The human frontal lobes: Transcending the default mode through contingent encoding. Principles of frontal Function. Edited by: Stuss DR, Knight R. 2002, New York: Oxford University Press, 8-30.CrossRef
13.
Zurück zum Zitat Drijgers RL, Verhey FR, Leentjens AF, Köhler S, Aalten P: Neuropsychological correlates of apathy in mild cognitive impairment and Alzheimer's disease: the role of executive functioning. Int Psychogeriatr. 2011, 23: 1327-33. 10.1017/S1041610211001037.CrossRefPubMed Drijgers RL, Verhey FR, Leentjens AF, Köhler S, Aalten P: Neuropsychological correlates of apathy in mild cognitive impairment and Alzheimer's disease: the role of executive functioning. Int Psychogeriatr. 2011, 23: 1327-33. 10.1017/S1041610211001037.CrossRefPubMed
14.
Zurück zum Zitat Kuzis G, Sabe L, Tiberti C, Dorrego F, Starkstein SE: Neuropsychological correlates of apathy and depression in patients with dementia. Neurol. 1999, 52: 1403-1407. 10.1212/WNL.52.7.1403.CrossRef Kuzis G, Sabe L, Tiberti C, Dorrego F, Starkstein SE: Neuropsychological correlates of apathy and depression in patients with dementia. Neurol. 1999, 52: 1403-1407. 10.1212/WNL.52.7.1403.CrossRef
15.
Zurück zum Zitat van Reekum R, Stuss DT, Ostrander L: Apathy: why care?. J Neuropsychiatry Clin Neurosci. 2005, 17: 7-19. 10.1176/appi.neuropsych.17.1.7.CrossRefPubMed van Reekum R, Stuss DT, Ostrander L: Apathy: why care?. J Neuropsychiatry Clin Neurosci. 2005, 17: 7-19. 10.1176/appi.neuropsych.17.1.7.CrossRefPubMed
16.
Zurück zum Zitat Shallice T, Burgess PW: Deficits in strategy application following frontal lobe damage in man. Brain. 1991, 114: 727-41. 10.1093/brain/114.2.727.CrossRefPubMed Shallice T, Burgess PW: Deficits in strategy application following frontal lobe damage in man. Brain. 1991, 114: 727-41. 10.1093/brain/114.2.727.CrossRefPubMed
17.
Zurück zum Zitat Stuss DT, Buckle L: Traumatic brain injury: neuropsychological deficits and evaluation at different stages of recovery and in different pathologic subtypes. J Head Trauma Rehabil. 1992, 7: 40-9. 10.1097/00001199-199206000-00007.CrossRef Stuss DT, Buckle L: Traumatic brain injury: neuropsychological deficits and evaluation at different stages of recovery and in different pathologic subtypes. J Head Trauma Rehabil. 1992, 7: 40-9. 10.1097/00001199-199206000-00007.CrossRef
18.
Zurück zum Zitat Damasio AR, Tranel D, Damasio H: Somatic markers and the guidance of behavior: theory and preliminary testing. Frontal lobe function and dysfunction. Edited by: Levin HS, Eisenberg HM, Benton AL. 1991, New York: Oxford UP, 217-229. Damasio AR, Tranel D, Damasio H: Somatic markers and the guidance of behavior: theory and preliminary testing. Frontal lobe function and dysfunction. Edited by: Levin HS, Eisenberg HM, Benton AL. 1991, New York: Oxford UP, 217-229.
19.
Zurück zum Zitat Lezak MD: Neuropsychological Assessment. 1995, New York: Oxford University Press Lezak MD: Neuropsychological Assessment. 1995, New York: Oxford University Press
20.
Zurück zum Zitat Bechara A, Damasio AR, Damasio H, Anderson SW: Insensitivity to future consequences following damage to human prefrontal cortex. Cogn. 1994, 50: 7-15. 10.1016/0010-0277(94)90018-3.CrossRef Bechara A, Damasio AR, Damasio H, Anderson SW: Insensitivity to future consequences following damage to human prefrontal cortex. Cogn. 1994, 50: 7-15. 10.1016/0010-0277(94)90018-3.CrossRef
21.
Zurück zum Zitat Bechara A, Damasio H, Tranel D, Damasio AR: Deciding advantageously before knowing the advantageous strategy. Science. 1997, 275: 1293-1295. 10.1126/science.275.5304.1293.CrossRefPubMed Bechara A, Damasio H, Tranel D, Damasio AR: Deciding advantageously before knowing the advantageous strategy. Science. 1997, 275: 1293-1295. 10.1126/science.275.5304.1293.CrossRefPubMed
22.
Zurück zum Zitat Fellows LK, Farah MJ: Dissociable elements of human foresight: a role for the ventromedial frontal lobes in framing the future, but not in discounting future rewards. Neuropsychologia. 2005, 43: 1214-1221. 10.1016/j.neuropsychologia.2004.07.018.CrossRefPubMed Fellows LK, Farah MJ: Dissociable elements of human foresight: a role for the ventromedial frontal lobes in framing the future, but not in discounting future rewards. Neuropsychologia. 2005, 43: 1214-1221. 10.1016/j.neuropsychologia.2004.07.018.CrossRefPubMed
23.
Zurück zum Zitat Tranel D, Bechara A, Damasio AR: Decision making and the somatic marker hypothesis. The New Cognitive Neurosciences. Edited by: Gazzaniga MS. 1999, Cambridge, Massachusetts: MIT Press, 1047-1061. Tranel D, Bechara A, Damasio AR: Decision making and the somatic marker hypothesis. The New Cognitive Neurosciences. Edited by: Gazzaniga MS. 1999, Cambridge, Massachusetts: MIT Press, 1047-1061.
24.
Zurück zum Zitat Campbell MC, Stout JC, Finn PR: Reduced autonomic responsiveness to gambling task losses in Huntington’s disease. J Int Neuropsychol Soc. 2004, 10: 239-245.CrossRefPubMed Campbell MC, Stout JC, Finn PR: Reduced autonomic responsiveness to gambling task losses in Huntington’s disease. J Int Neuropsychol Soc. 2004, 10: 239-245.CrossRefPubMed
25.
Zurück zum Zitat Kleeberg J, Bruggimann MA, Annoni J, Melle G, Bougousslavsky MD, Schluep M: Altered decision-making in multiple sclerosis: a sign of impaired emotional reactivity. Ann Neurol. 2004, 56: 787-795. 10.1002/ana.20277.CrossRefPubMed Kleeberg J, Bruggimann MA, Annoni J, Melle G, Bougousslavsky MD, Schluep M: Altered decision-making in multiple sclerosis: a sign of impaired emotional reactivity. Ann Neurol. 2004, 56: 787-795. 10.1002/ana.20277.CrossRefPubMed
26.
Zurück zum Zitat Bechara A, Damasio H, Damasio AR, Lee GP: Different contributions of the human amygdala and the ventromedial prefrontal cortex to decision-making. J Neurosci. 1999, 19: 5473-5481.PubMed Bechara A, Damasio H, Damasio AR, Lee GP: Different contributions of the human amygdala and the ventromedial prefrontal cortex to decision-making. J Neurosci. 1999, 19: 5473-5481.PubMed
27.
Zurück zum Zitat Bechara A, Tranel D, Damasio H, Damasio AR: An anatomical system subserving decision-making [abstract]. Abstr Soc Neurosci. 1997, 23: 495- Bechara A, Tranel D, Damasio H, Damasio AR: An anatomical system subserving decision-making [abstract]. Abstr Soc Neurosci. 1997, 23: 495-
28.
Zurück zum Zitat Barrash J, Tranel D, Anderson SW: Acquired personality disturbances associated with bilateral damage to the ventromedial prefrontal region. Dev Neuropsychol. 2000, 18: 355-381. 10.1207/S1532694205Barrash.CrossRefPubMed Barrash J, Tranel D, Anderson SW: Acquired personality disturbances associated with bilateral damage to the ventromedial prefrontal region. Dev Neuropsychol. 2000, 18: 355-381. 10.1207/S1532694205Barrash.CrossRefPubMed
29.
Zurück zum Zitat Dunn BD, Dalgeish T, Lawrence AD: The somatic marker hypothesis: a critical evaluation. Neurosci Biobehav Rev. 2006, 30: 239-271. 10.1016/j.neubiorev.2005.07.001.CrossRefPubMed Dunn BD, Dalgeish T, Lawrence AD: The somatic marker hypothesis: a critical evaluation. Neurosci Biobehav Rev. 2006, 30: 239-271. 10.1016/j.neubiorev.2005.07.001.CrossRefPubMed
30.
Zurück zum Zitat Brown RG, Pluck G: Negative symptoms: the ‘pathology’ of motivation and goal-directed behaviour. Trends Neurosci. 2000, 23: 412-417. 10.1016/S0166-2236(00)01626-X.CrossRefPubMed Brown RG, Pluck G: Negative symptoms: the ‘pathology’ of motivation and goal-directed behaviour. Trends Neurosci. 2000, 23: 412-417. 10.1016/S0166-2236(00)01626-X.CrossRefPubMed
31.
Zurück zum Zitat Cummings JL: On: frontal-subcortical circuits and human behaviour. J Psychosom Res. 1998, 44: 627-628.CrossRefPubMed Cummings JL: On: frontal-subcortical circuits and human behaviour. J Psychosom Res. 1998, 44: 627-628.CrossRefPubMed
32.
Zurück zum Zitat Haznedar MM, Buchsbaum MS, Luu C, Hazlett EA, Siegel BV, Lohr J, Wu J, Haier RJ, Bunney WE: Decreased anterior cingulate gyrus metabolic rate in schizophrenia. Am J Psychiatry. 1997, 154: 682-684.CrossRefPubMed Haznedar MM, Buchsbaum MS, Luu C, Hazlett EA, Siegel BV, Lohr J, Wu J, Haier RJ, Bunney WE: Decreased anterior cingulate gyrus metabolic rate in schizophrenia. Am J Psychiatry. 1997, 154: 682-684.CrossRefPubMed
33.
Zurück zum Zitat Mega MS, Cummings JL: The cingulate and cingulate syndromes. Contemporary Behavioral Neurology. Edited by: Trimble MR, Cummings JR. 1997, Boston: Butterworth-Heinemann, 189-214. Mega MS, Cummings JL: The cingulate and cingulate syndromes. Contemporary Behavioral Neurology. Edited by: Trimble MR, Cummings JR. 1997, Boston: Butterworth-Heinemann, 189-214.
34.
Zurück zum Zitat Saint-Cyr JA, Bronstein YL, Cummings JL: Neurobehavioural consequences of neurosurgical treatments and focal lesions of frontal-subcortical circuits. Principles of frontal Function. Edited by: Stuss D, Knight R. 2002, New York: Oxford University Press, 428-447. Saint-Cyr JA, Bronstein YL, Cummings JL: Neurobehavioural consequences of neurosurgical treatments and focal lesions of frontal-subcortical circuits. Principles of frontal Function. Edited by: Stuss D, Knight R. 2002, New York: Oxford University Press, 428-447.
35.
Zurück zum Zitat Spence SA, Frith CD: Towards a functional anatomy of volition. J Consciousness Stud. 1999, 6: 11-29. Spence SA, Frith CD: Towards a functional anatomy of volition. J Consciousness Stud. 1999, 6: 11-29.
36.
Zurück zum Zitat Bechara A, Damasio H, Damasio AR: Manipulation of dopamine and serotonin causes different effects on covert and overt decision-making [abstract]. Abstr Soc Neurosci. 2001, 27: 126- Bechara A, Damasio H, Damasio AR: Manipulation of dopamine and serotonin causes different effects on covert and overt decision-making [abstract]. Abstr Soc Neurosci. 2001, 27: 126-
37.
Zurück zum Zitat Powell JH, Al-Adawi S, Morgan J, Greenwood RJ: Motivational deficits after brain injury: effects of bromocriptine in 11 patients. J Neurol Neurosurg Psychiatry. 1996, 60: 416-421. 10.1136/jnnp.60.4.416.PubMedCentralCrossRefPubMed Powell JH, Al-Adawi S, Morgan J, Greenwood RJ: Motivational deficits after brain injury: effects of bromocriptine in 11 patients. J Neurol Neurosurg Psychiatry. 1996, 60: 416-421. 10.1136/jnnp.60.4.416.PubMedCentralCrossRefPubMed
38.
Zurück zum Zitat Watanabe MD, Martin EM, DeLeon OA, Gaviria M, Pavel DG, Trepashko DW: Successful methyphenidate treatment of apathy after subcortical infarcts. J Neuropsychiatr. 1995, 7: 502-504.CrossRef Watanabe MD, Martin EM, DeLeon OA, Gaviria M, Pavel DG, Trepashko DW: Successful methyphenidate treatment of apathy after subcortical infarcts. J Neuropsychiatr. 1995, 7: 502-504.CrossRef
39.
Zurück zum Zitat Burgess PW, Shallice T: The Hayling and Brixton Tests. 1997, Thurston, Suffolk: Thames Valley Test Company Burgess PW, Shallice T: The Hayling and Brixton Tests. 1997, Thurston, Suffolk: Thames Valley Test Company
40.
Zurück zum Zitat Marin RS, Biedrzycki RC, Firinciogullari S: Reliability and validity of the apathy evaluation scale. Psychiatry Res. 1991, 38: 143-162. 10.1016/0165-1781(91)90040-V.CrossRefPubMed Marin RS, Biedrzycki RC, Firinciogullari S: Reliability and validity of the apathy evaluation scale. Psychiatry Res. 1991, 38: 143-162. 10.1016/0165-1781(91)90040-V.CrossRefPubMed
41.
Zurück zum Zitat Beck AT: Beck Depression Inventory. 1978, San Antonio, TX: The Psychological Corporation Beck AT: Beck Depression Inventory. 1978, San Antonio, TX: The Psychological Corporation
42.
Zurück zum Zitat Apkarian AV, Sosa Y, Krauss BR, Thomas PS, Fredrickson BE, Levy RE, Harden R, Chialvo DR: Chronic pain patients are impaired on an emotional decision-making task. Pain. 2004, 108: 129-136. 10.1016/j.pain.2003.12.015.CrossRefPubMed Apkarian AV, Sosa Y, Krauss BR, Thomas PS, Fredrickson BE, Levy RE, Harden R, Chialvo DR: Chronic pain patients are impaired on an emotional decision-making task. Pain. 2004, 108: 129-136. 10.1016/j.pain.2003.12.015.CrossRefPubMed
43.
Zurück zum Zitat Bechara A, Damasio AR: The somatic marker hypothesis: a neural theory of economic decision. Games Econ Behav. 2005, 52: 336-372. 10.1016/j.geb.2004.06.010.CrossRef Bechara A, Damasio AR: The somatic marker hypothesis: a neural theory of economic decision. Games Econ Behav. 2005, 52: 336-372. 10.1016/j.geb.2004.06.010.CrossRef
44.
Zurück zum Zitat Bechara A, Tranel D, Damasio H, Damasio AR: Failure to respond autonomically to anticipated future outcomes following damage to prefrontal cortex. Cereb Cortex. 1996, 6: 215-225. 10.1093/cercor/6.2.215.CrossRefPubMed Bechara A, Tranel D, Damasio H, Damasio AR: Failure to respond autonomically to anticipated future outcomes following damage to prefrontal cortex. Cereb Cortex. 1996, 6: 215-225. 10.1093/cercor/6.2.215.CrossRefPubMed
45.
Zurück zum Zitat Clark L, Iversen SD, Goodwin GM: A neuropsychological investigation of prefrontal cortex involvement in acute mania. Am J Psychiatry. 2001, 158: 1605-1611. 10.1176/appi.ajp.158.10.1605.CrossRefPubMed Clark L, Iversen SD, Goodwin GM: A neuropsychological investigation of prefrontal cortex involvement in acute mania. Am J Psychiatry. 2001, 158: 1605-1611. 10.1176/appi.ajp.158.10.1605.CrossRefPubMed
46.
Zurück zum Zitat Ernst M, Kimes AS, London ED, Matochik JA, Eldreth D, Tata S: Neural substrates of decision making in adults with attentional deficit hyperactivity disorder. Am J Psychiatry. 2003, 160: 1061-1070. 10.1176/appi.ajp.160.6.1061.CrossRefPubMed Ernst M, Kimes AS, London ED, Matochik JA, Eldreth D, Tata S: Neural substrates of decision making in adults with attentional deficit hyperactivity disorder. Am J Psychiatry. 2003, 160: 1061-1070. 10.1176/appi.ajp.160.6.1061.CrossRefPubMed
47.
Zurück zum Zitat Jollant F, Bellivier F, Leboyer M, Astruc B, Torres S, Verdier R: Impaired decision making in suicide attempters. A J Psychiatry. 2005, 162: 304-310. 10.1176/appi.ajp.162.2.304.CrossRef Jollant F, Bellivier F, Leboyer M, Astruc B, Torres S, Verdier R: Impaired decision making in suicide attempters. A J Psychiatry. 2005, 162: 304-310. 10.1176/appi.ajp.162.2.304.CrossRef
48.
Zurück zum Zitat Hodges JR: Overview of frontotemporal dementia. The Frontotemporal Dementia Syndromes. Edited by: Hodges JR. 2007, Cambridge, England: Cambridge University Press, 1-23. Hodges JR: Overview of frontotemporal dementia. The Frontotemporal Dementia Syndromes. Edited by: Hodges JR. 2007, Cambridge, England: Cambridge University Press, 1-23.
49.
Zurück zum Zitat Marin RS: Apathy and related disorders of diminished motivation. American Psychiatry Association Review of Psychiatry. Edited by: Dickstein LJ, Riba MB, Oldham JM. 1996, Washington, DC: American Psychiatric Press, Inc, 205--242. Marin RS: Apathy and related disorders of diminished motivation. American Psychiatry Association Review of Psychiatry. Edited by: Dickstein LJ, Riba MB, Oldham JM. 1996, Washington, DC: American Psychiatric Press, Inc, 205--242.
50.
Zurück zum Zitat Damasio AR: The Feeling of What Happens: Body and Emotion in the Making of Consciousness. 1999, New York: Harcourt Damasio AR: The Feeling of What Happens: Body and Emotion in the Making of Consciousness. 1999, New York: Harcourt
52.
Zurück zum Zitat Rabkin JG, Ferrando SJ, Gorp W, Rieppi R, McElhiney M, Sewell M: Relationships among apathy, depression, and cognitive impairment in HIV/AIDS. J Neuropsychiatry Clin Neurosci. 2000, 12: 451-457. 10.1176/appi.neuropsych.12.4.451.CrossRefPubMed Rabkin JG, Ferrando SJ, Gorp W, Rieppi R, McElhiney M, Sewell M: Relationships among apathy, depression, and cognitive impairment in HIV/AIDS. J Neuropsychiatry Clin Neurosci. 2000, 12: 451-457. 10.1176/appi.neuropsych.12.4.451.CrossRefPubMed
53.
Zurück zum Zitat Andersson S, Krogstad J, Finset A: Apathy and depressed mood in acquired brain damage: relationship to lesion localization and psychophysiological reactivity. Psychol Med. 1999, 29: 447-456. 10.1017/S0033291798008046.CrossRefPubMed Andersson S, Krogstad J, Finset A: Apathy and depressed mood in acquired brain damage: relationship to lesion localization and psychophysiological reactivity. Psychol Med. 1999, 29: 447-456. 10.1017/S0033291798008046.CrossRefPubMed
54.
Zurück zum Zitat Landes AM, Sperry SD, Strauss ME, Geldmacher DS: Apathy in Alzheimer's disease. J Am Geriatr Soc. 2001, 49: 1700-1707. 10.1046/j.1532-5415.2001.49282.x.CrossRefPubMed Landes AM, Sperry SD, Strauss ME, Geldmacher DS: Apathy in Alzheimer's disease. J Am Geriatr Soc. 2001, 49: 1700-1707. 10.1046/j.1532-5415.2001.49282.x.CrossRefPubMed
55.
Zurück zum Zitat Marin RS: Apathy- Who cares? an introduction to apathy and related disorders of diminished motivation. Psychiatr Ann. 1997, 27: 18-23.CrossRef Marin RS: Apathy- Who cares? an introduction to apathy and related disorders of diminished motivation. Psychiatr Ann. 1997, 27: 18-23.CrossRef
56.
Zurück zum Zitat Bechara A, Tranel D, Damasio H: Characterization of the decision-making deficit of patients with ventromedial prefrontal cortex lesions. Brain. 2000, 123: 2189-2202. 10.1093/brain/123.11.2189.CrossRefPubMed Bechara A, Tranel D, Damasio H: Characterization of the decision-making deficit of patients with ventromedial prefrontal cortex lesions. Brain. 2000, 123: 2189-2202. 10.1093/brain/123.11.2189.CrossRefPubMed
57.
Zurück zum Zitat Rolls ET, Hornak J, Wade D, McGrath J: Emotion-related learning in patients with social and emotional changes associated with frontal lobe damage. J Neurol Neurosurg Psychiatry. 1994, 57: 1518-1524. 10.1136/jnnp.57.12.1518.PubMedCentralCrossRefPubMed Rolls ET, Hornak J, Wade D, McGrath J: Emotion-related learning in patients with social and emotional changes associated with frontal lobe damage. J Neurol Neurosurg Psychiatry. 1994, 57: 1518-1524. 10.1136/jnnp.57.12.1518.PubMedCentralCrossRefPubMed
58.
Zurück zum Zitat Jameson TL, Hinson JM, Whitney P: Components of working memory and somatic markers in decision making. Psychon Bull Rev. 2004, 11: 515-520. 10.3758/BF03196604.CrossRefPubMed Jameson TL, Hinson JM, Whitney P: Components of working memory and somatic markers in decision making. Psychon Bull Rev. 2004, 11: 515-520. 10.3758/BF03196604.CrossRefPubMed
59.
Zurück zum Zitat Bowman CH, Evans CEY, Turnbull OH: Artificial time-constraints on the Iowa gambling task: the effects on behavioral performance and subjective experience. Brain Cogn. 2005, 57: 21-25. 10.1016/j.bandc.2004.08.015.CrossRefPubMed Bowman CH, Evans CEY, Turnbull OH: Artificial time-constraints on the Iowa gambling task: the effects on behavioral performance and subjective experience. Brain Cogn. 2005, 57: 21-25. 10.1016/j.bandc.2004.08.015.CrossRefPubMed
60.
Zurück zum Zitat Maia TV, McClelland JL: A re-examination of the evidence for the somatic marker hypothesis: what participants really know in the Iowa gambling task. Proc Natl Acad Sci. 2004, 45: 16075-16080.CrossRef Maia TV, McClelland JL: A re-examination of the evidence for the somatic marker hypothesis: what participants really know in the Iowa gambling task. Proc Natl Acad Sci. 2004, 45: 16075-16080.CrossRef
61.
Zurück zum Zitat Bechara A, Damasio H, Tranel D, Anderson SW: Dissociation of working memory from decision-making within the human prefrontal cortex. J Neurosci. 1998, 18: 428-437.PubMed Bechara A, Damasio H, Tranel D, Anderson SW: Dissociation of working memory from decision-making within the human prefrontal cortex. J Neurosci. 1998, 18: 428-437.PubMed
62.
Zurück zum Zitat Bechara A, Martin EM: Impaired decision making related to working memory deficits in individuals with substance addictions. Neuropsychology. 2004, 18: 152-162.CrossRefPubMed Bechara A, Martin EM: Impaired decision making related to working memory deficits in individuals with substance addictions. Neuropsychology. 2004, 18: 152-162.CrossRefPubMed
63.
Zurück zum Zitat Ritter LM, Meador-Woodruff JH, Dalack GW: Neurocognitive measures of prefrontal cortical dysfunction in schizophrenia. Schizophr Res. 2004, 68: 65-73. 10.1016/S0920-9964(03)00086-0.CrossRefPubMed Ritter LM, Meador-Woodruff JH, Dalack GW: Neurocognitive measures of prefrontal cortical dysfunction in schizophrenia. Schizophr Res. 2004, 68: 65-73. 10.1016/S0920-9964(03)00086-0.CrossRefPubMed
64.
Zurück zum Zitat Shurman B, Horan WP, Nuechterlein KH: Schizophrenia patients demonstrate a distinctive pattern of decision-making impairment on the Iowa Gambling Task. Schizophr Res. 2005, 72: 215-224. 10.1016/j.schres.2004.03.020.CrossRefPubMed Shurman B, Horan WP, Nuechterlein KH: Schizophrenia patients demonstrate a distinctive pattern of decision-making impairment on the Iowa Gambling Task. Schizophr Res. 2005, 72: 215-224. 10.1016/j.schres.2004.03.020.CrossRefPubMed
65.
Zurück zum Zitat Nakamura M, Nestor PG, Levitt JJ, Cohen AS, Kawashima T, Shenton ME: Orbitofrontal volume deficit in schizophrenia and thought disorder. Brain. 2008, 131: 180-195.PubMedCentralCrossRefPubMed Nakamura M, Nestor PG, Levitt JJ, Cohen AS, Kawashima T, Shenton ME: Orbitofrontal volume deficit in schizophrenia and thought disorder. Brain. 2008, 131: 180-195.PubMedCentralCrossRefPubMed
66.
Zurück zum Zitat Goudriaan AE, Oosterlaan J, de Beurs E, van den Brink W: Decision making in pathological gambling: a comparison between pathological gamblers, alcohol dependents, persons with Tourette syndrome, and normal controls. Cogn Brain Res. 2005, 23: 137-151. 10.1016/j.cogbrainres.2005.01.017.CrossRef Goudriaan AE, Oosterlaan J, de Beurs E, van den Brink W: Decision making in pathological gambling: a comparison between pathological gamblers, alcohol dependents, persons with Tourette syndrome, and normal controls. Cogn Brain Res. 2005, 23: 137-151. 10.1016/j.cogbrainres.2005.01.017.CrossRef
67.
Zurück zum Zitat Bechara A, Damasio H: Decision-making and addiction (part I): impaired activation of somatic states in substance dependent individuals when pondering decisions with negative future consequences. Neuropsychologia. 2002, 40: 1675-1689. 10.1016/S0028-3932(02)00015-5.CrossRefPubMed Bechara A, Damasio H: Decision-making and addiction (part I): impaired activation of somatic states in substance dependent individuals when pondering decisions with negative future consequences. Neuropsychologia. 2002, 40: 1675-1689. 10.1016/S0028-3932(02)00015-5.CrossRefPubMed
68.
Zurück zum Zitat Whitlow CT, Liguori A, Livengood LB, Hart SL, Mussat-Whitlow BJ, Lamborn CM: Long-term heavy marijuana users make costly decisions on a gambling task. Drug Alcohol Depend. 2004, 76: 107-111. 10.1016/j.drugalcdep.2004.04.009.CrossRefPubMed Whitlow CT, Liguori A, Livengood LB, Hart SL, Mussat-Whitlow BJ, Lamborn CM: Long-term heavy marijuana users make costly decisions on a gambling task. Drug Alcohol Depend. 2004, 76: 107-111. 10.1016/j.drugalcdep.2004.04.009.CrossRefPubMed
69.
Zurück zum Zitat Barry D, Petry NM: Predictors of decision-making on the Iowa gambling task: independent effects of lifetime history of substance use disorders and performance on the trail making test. Brain Cogn. 2004, 66: 243-252.CrossRef Barry D, Petry NM: Predictors of decision-making on the Iowa gambling task: independent effects of lifetime history of substance use disorders and performance on the trail making test. Brain Cogn. 2004, 66: 243-252.CrossRef
70.
Zurück zum Zitat Cavedini P, Bassi T, Zorzi C, Bellodi L: The advantages of choosing antiobsessive therapy according to decision-making functioning. J Clin Psychopharmacol. 2004, 24: 628-631. 10.1097/01.jcp.0000144889.51072.03.CrossRefPubMed Cavedini P, Bassi T, Zorzi C, Bellodi L: The advantages of choosing antiobsessive therapy according to decision-making functioning. J Clin Psychopharmacol. 2004, 24: 628-631. 10.1097/01.jcp.0000144889.51072.03.CrossRefPubMed
71.
Zurück zum Zitat Best M, Williams JM, Coccaro EF: Evidence for a dysfunctional prefrontal circuit in patients with an impulsive aggressive disorder. Proc Natl Acad Sci. 2002, 12: 8448-8453.CrossRef Best M, Williams JM, Coccaro EF: Evidence for a dysfunctional prefrontal circuit in patients with an impulsive aggressive disorder. Proc Natl Acad Sci. 2002, 12: 8448-8453.CrossRef
72.
Zurück zum Zitat Fairchild G: Decision making and executive function in male adolescents with early-onset or adolescence-onset conduct disorder and control subjects. Brain. 2009, 62: 162-168. Fairchild G: Decision making and executive function in male adolescents with early-onset or adolescence-onset conduct disorder and control subjects. Brain. 2009, 62: 162-168.
73.
Zurück zum Zitat Levine B, Black SE, Cheung G, Campbell A, O’Toole C, Schwartz ML: Gambling task performance in traumatic brain injury. Cogn Behav Neurol. 2005, 18: 45-54. 10.1097/01.wnn.0000152227.13001.c3.CrossRefPubMed Levine B, Black SE, Cheung G, Campbell A, O’Toole C, Schwartz ML: Gambling task performance in traumatic brain injury. Cogn Behav Neurol. 2005, 18: 45-54. 10.1097/01.wnn.0000152227.13001.c3.CrossRefPubMed
74.
Zurück zum Zitat Torralva T, Roca M, Gleichgerrcht E, Bekinschtein T, Manes F: A neuropsychological battery to detect specific executive and social cognitive impairments in early frontotemporal dementia. Brain. 2009, 132: 1299-309. 10.1093/brain/awp041.CrossRefPubMed Torralva T, Roca M, Gleichgerrcht E, Bekinschtein T, Manes F: A neuropsychological battery to detect specific executive and social cognitive impairments in early frontotemporal dementia. Brain. 2009, 132: 1299-309. 10.1093/brain/awp041.CrossRefPubMed
75.
Zurück zum Zitat Martin EM, Pitrak DL, Weddington W, Rains NA, Nunnally G, Nixon H: Cognitive impulsivity and HIV serostatus in substance dependent males. J Int Neuropsychol Soc. 2004, 10: 931-938.PubMed Martin EM, Pitrak DL, Weddington W, Rains NA, Nunnally G, Nixon H: Cognitive impulsivity and HIV serostatus in substance dependent males. J Int Neuropsychol Soc. 2004, 10: 931-938.PubMed
Metadaten
Titel
Apathy symptoms modulate motivational decision making on the Iowa gambling task
verfasst von
Progress Njomboro
Shoumitro Deb
Glyn W Humphreys
Publikationsdatum
01.12.2012
Verlag
BioMed Central
Erschienen in
Behavioral and Brain Functions / Ausgabe 1/2012
Elektronische ISSN: 1744-9081
DOI
https://doi.org/10.1186/1744-9081-8-63

Weitere Artikel der Ausgabe 1/2012

Behavioral and Brain Functions 1/2012 Zur Ausgabe

Neu in den Fachgebieten Neurologie und Psychiatrie

„Übersichtlicher Wegweiser“: Lauterbachs umstrittener Klinik-Atlas ist online

17.05.2024 Klinik aktuell Nachrichten

Sie sei „ethisch geboten“, meint Gesundheitsminister Karl Lauterbach: mehr Transparenz über die Qualität von Klinikbehandlungen. Um sie abzubilden, lässt er gegen den Widerstand vieler Länder einen virtuellen Klinik-Atlas freischalten.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Was nützt die Kraniektomie bei schwerer tiefer Hirnblutung?

17.05.2024 Hirnblutung Nachrichten

Eine Studie zum Nutzen der druckentlastenden Kraniektomie nach schwerer tiefer supratentorieller Hirnblutung deutet einen Nutzen der Operation an. Für überlebende Patienten ist das dennoch nur eine bedingt gute Nachricht.

ADHS-Medikation erhöht das kardiovaskuläre Risiko

16.05.2024 Herzinsuffizienz Nachrichten

Erwachsene, die Medikamente gegen das Aufmerksamkeitsdefizit-Hyperaktivitätssyndrom einnehmen, laufen offenbar erhöhte Gefahr, an Herzschwäche zu erkranken oder einen Schlaganfall zu erleiden. Es scheint eine Dosis-Wirkungs-Beziehung zu bestehen.