Skip to main content
Erschienen in: Abdominal Radiology 6/2019

05.05.2018

Are we at a crossroads or a plateau? Radiomics and machine learning in abdominal oncology imaging

verfasst von: Ronald M. Summers

Erschienen in: Abdominal Radiology | Ausgabe 6/2019

Einloggen, um Zugang zu erhalten

Abstract

Advances in radiomics and machine learning have driven a technology boom in the automated analysis of radiology images. For the past several years, expectations have been nearly boundless for these new technologies to revolutionize radiology image analysis and interpretation. In this editorial, I compare the expectations with the realities with particular attention to applications in abdominal oncology imaging. I explore whether these technologies will leave us at a crossroads to an exciting future or to a sustained plateau and disillusionment.
Literatur
1.
Zurück zum Zitat Greenspan H, van Ginneken B, Summers RM (2016) Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique. IEEE Trans Med Imaging 35(5):1153–1159CrossRef Greenspan H, van Ginneken B, Summers RM (2016) Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique. IEEE Trans Med Imaging 35(5):1153–1159CrossRef
2.
Zurück zum Zitat Litjens G, Kooi T, Bejnordi BE, et al. (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88CrossRefPubMed Litjens G, Kooi T, Bejnordi BE, et al. (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88CrossRefPubMed
3.
Zurück zum Zitat Kontos D, Summers RM, Giger M (2017) Special section guest editorial: radiomics and deep learning. J Med Imaging (Bellingham) 4(4):041301 Kontos D, Summers RM, Giger M (2017) Special section guest editorial: radiomics and deep learning. J Med Imaging (Bellingham) 4(4):041301
5.
Zurück zum Zitat Yan K, Wang X, Lu L, et al (2018) Deep lesion graphs in the wild: relationship learning and organization of significant radiology image findings in a diverse large-scale lesion database. http://arxiv.org/abs/1711.10535. (Accepted by IEEE CVPR, 2018) Yan K, Wang X, Lu L, et al (2018) Deep lesion graphs in the wild: relationship learning and organization of significant radiology image findings in a diverse large-scale lesion database. http://​arxiv.​org/​abs/​1711.​10535. (Accepted by IEEE CVPR, 2018)
6.
Zurück zum Zitat Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted interventional (MICCAI), Part III, LNCS 9351, pp. 234–241. Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted interventional (MICCAI), Part III, LNCS 9351, pp. 234–241.
7.
Zurück zum Zitat Summers RM (2016) Texture analysis in radiology: does the emperor have no clothes? Abdom Radiol (NY) 42(2): 342–345 Summers RM (2016) Texture analysis in radiology: does the emperor have no clothes? Abdom Radiol (NY) 42(2): 342–345
8.
Zurück zum Zitat Roth HR, Lu L, Farag A, et al. (2015) DeepOrgan: multi-level deep convolutional networks for automated pancreas segmentation. In: MICCAI 2015, Part I, LNCS 9349. Springer, Cham, pp. 556–564 Roth HR, Lu L, Farag A, et al. (2015) DeepOrgan: multi-level deep convolutional networks for automated pancreas segmentation. In: MICCAI 2015, Part I, LNCS 9349. Springer, Cham, pp. 556–564
9.
Zurück zum Zitat Zhou Y, Xie L, Shen W, et al. (2017) A fixed-point model for pancreas segmentation in abdominal CT scans. Cham: Springer, pp 693–701 Zhou Y, Xie L, Shen W, et al. (2017) A fixed-point model for pancreas segmentation in abdominal CT scans. Cham: Springer, pp 693–701
10.
Zurück zum Zitat Gulshan V, Peng L, Coram M, et al. (2016) Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316(22):2402–2410CrossRefPubMed Gulshan V, Peng L, Coram M, et al. (2016) Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316(22):2402–2410CrossRefPubMed
11.
Zurück zum Zitat Esteva A, Kuprel B, Novoa RA, et al. (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639):115–118CrossRefPubMed Esteva A, Kuprel B, Novoa RA, et al. (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639):115–118CrossRefPubMed
12.
Zurück zum Zitat Lakhani P, Sundaram B (2017) Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology 284(2):574–582CrossRefPubMed Lakhani P, Sundaram B (2017) Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology 284(2):574–582CrossRefPubMed
13.
Zurück zum Zitat Larson DB, Chen MC, Lungren MP, et al. (2018) Performance of a deep-learning neural network model in assessing skeletal maturity on pediatric hand radiographs. Radiology 287(1):313–322CrossRefPubMed Larson DB, Chen MC, Lungren MP, et al. (2018) Performance of a deep-learning neural network model in assessing skeletal maturity on pediatric hand radiographs. Radiology 287(1):313–322CrossRefPubMed
14.
Zurück zum Zitat Smith AD, Gray MR, del Campo SM, et al. (2015) Predicting overall survival in patients with metastatic melanoma on antiangiogenic therapy and RECIST stable disease on initial posttherapy images using CT texture analysis. AJR Am J Roentgenol 205(3):W283–W293CrossRefPubMed Smith AD, Gray MR, del Campo SM, et al. (2015) Predicting overall survival in patients with metastatic melanoma on antiangiogenic therapy and RECIST stable disease on initial posttherapy images using CT texture analysis. AJR Am J Roentgenol 205(3):W283–W293CrossRefPubMed
15.
Zurück zum Zitat Lovinfosse P, Polus M, Van Daele D, et al. (2018) FDG PET/CT radiomics for predicting the outcome of locally advanced rectal cancer. Eur J Nucl Med Mol Imaging 45(3):365–375CrossRefPubMed Lovinfosse P, Polus M, Van Daele D, et al. (2018) FDG PET/CT radiomics for predicting the outcome of locally advanced rectal cancer. Eur J Nucl Med Mol Imaging 45(3):365–375CrossRefPubMed
16.
17.
Zurück zum Zitat Cherry KM, Peplinski B, Kim L, et al. (2015) Sequential Monte Carlo tracking of the marginal artery by multiple cue fusion and random forest regression. Med Image Anal 19(1):164–175CrossRefPubMed Cherry KM, Peplinski B, Kim L, et al. (2015) Sequential Monte Carlo tracking of the marginal artery by multiple cue fusion and random forest regression. Med Image Anal 19(1):164–175CrossRefPubMed
18.
Zurück zum Zitat Liu JM, Wang D, Lu L, et al. (2017) Detection and diagnosis of colitis on computed tomography using deep convolutional neural networks. Med Phys 44(9):4630–4642CrossRefPubMedPubMedCentral Liu JM, Wang D, Lu L, et al. (2017) Detection and diagnosis of colitis on computed tomography using deep convolutional neural networks. Med Phys 44(9):4630–4642CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Ben-Cohen A, Klang E, Diamant I, et al. (2015) Automated method for detection and segmentation of liver metastatic lesions in follow-up CT examinations. J Med Imaging (Bellingham) 2(3):034502CrossRef Ben-Cohen A, Klang E, Diamant I, et al. (2015) Automated method for detection and segmentation of liver metastatic lesions in follow-up CT examinations. J Med Imaging (Bellingham) 2(3):034502CrossRef
20.
Zurück zum Zitat Linguraru MG, Richbourg WJ, Liu J, et al. (2012) Tumor burden analysis on computed tomography by automated liver and tumor segmentation. IEEE Trans Med Imaging 31(10):1965–1976CrossRefPubMedPubMedCentral Linguraru MG, Richbourg WJ, Liu J, et al. (2012) Tumor burden analysis on computed tomography by automated liver and tumor segmentation. IEEE Trans Med Imaging 31(10):1965–1976CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Hoogi A, Beaulieu CF, Cunha GM, et al. (2017) Adaptive local window for level set segmentation of CT and MRI liver lesions. Med Image Anal 37:46–55CrossRefPubMedPubMedCentral Hoogi A, Beaulieu CF, Cunha GM, et al. (2017) Adaptive local window for level set segmentation of CT and MRI liver lesions. Med Image Anal 37:46–55CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Hame Y, Pollari M (2012) Semi-automatic liver tumor segmentation with hidden Markov measure field model and non-parametric distribution estimation. Med Image Anal 16(1):140–149CrossRefPubMed Hame Y, Pollari M (2012) Semi-automatic liver tumor segmentation with hidden Markov measure field model and non-parametric distribution estimation. Med Image Anal 16(1):140–149CrossRefPubMed
23.
Zurück zum Zitat O’Connor SD, Yao J, Summers RM (2007) Lytic metastases in thoracolumbar spine: computer-aided detection at CT–preliminary study. Radiology 242(3):811–816CrossRefPubMed O’Connor SD, Yao J, Summers RM (2007) Lytic metastases in thoracolumbar spine: computer-aided detection at CT–preliminary study. Radiology 242(3):811–816CrossRefPubMed
24.
25.
Zurück zum Zitat Yao J, Burns JE, Sanoria V, Summers RM (2017) Mixed spine metastasis detection through positron emission tomography/computed tomography synthesis and multiclassifier. J Med Imaging (Bellingham) 4(2):024504CrossRef Yao J, Burns JE, Sanoria V, Summers RM (2017) Mixed spine metastasis detection through positron emission tomography/computed tomography synthesis and multiclassifier. J Med Imaging (Bellingham) 4(2):024504CrossRef
26.
Zurück zum Zitat Solomon J, Mavinkurve S, Cox D, Summers RM (2004) Computer-assisted detection of subcutaneous melanomas: feasibility assessment. Acad Radiol 11(6):678–685CrossRefPubMed Solomon J, Mavinkurve S, Cox D, Summers RM (2004) Computer-assisted detection of subcutaneous melanomas: feasibility assessment. Acad Radiol 11(6):678–685CrossRefPubMed
28.
Zurück zum Zitat Roth HR, Lu L, Seff A, et al. (2014) A new 2.5D representation for lymph node detection using random sets of deep convolutional neural network observations. Med Image Comput Comput Assist Interv 17(Pt 1):520–527 Roth HR, Lu L, Seff A, et al. (2014) A new 2.5D representation for lymph node detection using random sets of deep convolutional neural network observations. Med Image Comput Comput Assist Interv 17(Pt 1):520–527
29.
Zurück zum Zitat Seff A, Lu L, Barbu A, Roth H, Shin H-C, Summers RM (2015) Leveraging mid-level semantic boundary cues for automated lymph node detection. In: Medical image computing and computer-assisted intervention (MICCAI). Springer, Berlin, pp. 53–61 Seff A, Lu L, Barbu A, Roth H, Shin H-C, Summers RM (2015) Leveraging mid-level semantic boundary cues for automated lymph node detection. In: Medical image computing and computer-assisted intervention (MICCAI). Springer, Berlin, pp. 53–61
30.
Zurück zum Zitat Nogues I, Lu L, Wang X, et al. (2016) Automatic lymph node cluster segmentation using holistically-nested neural networks and structured optimization in CT images. In: Ourselin S, Joskowicz L, Sabuncu M, Unal G, Wells W (eds) MICCAI, Part II, LNCS vol 9901, pp 388–397 Nogues I, Lu L, Wang X, et al. (2016) Automatic lymph node cluster segmentation using holistically-nested neural networks and structured optimization in CT images. In: Ourselin S, Joskowicz L, Sabuncu M, Unal G, Wells W (eds) MICCAI, Part II, LNCS vol 9901, pp 388–397
32.
Zurück zum Zitat Liu JF, Wang SJ, Linguraru MG, Yao JH, Summers RM (2014) Tumor sensitive matching flow: a variational method to detecting and segmenting perihepatic and perisplenic ovarian cancer metastases on contrast-enhanced abdominal CT. Med Image Anal 18(5):725–739CrossRefPubMedPubMedCentral Liu JF, Wang SJ, Linguraru MG, Yao JH, Summers RM (2014) Tumor sensitive matching flow: a variational method to detecting and segmenting perihepatic and perisplenic ovarian cancer metastases on contrast-enhanced abdominal CT. Med Image Anal 18(5):725–739CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Clark T, Zhang J, Baig S, et al. (2017) Fully automated segmentation of prostate whole gland and transition zone in diffusion-weighted MRI using convolutional neural networks. J Med Imaging (Bellingham) 4(4):041307 Clark T, Zhang J, Baig S, et al. (2017) Fully automated segmentation of prostate whole gland and transition zone in diffusion-weighted MRI using convolutional neural networks. J Med Imaging (Bellingham) 4(4):041307
34.
Zurück zum Zitat Tian Z, Liu L, Zhang Z, Fei B (2018) PSNet: prostate segmentation on MRI based on a convolutional neural network. J Med Imaging (Bellingham) 5(2):021208 Tian Z, Liu L, Zhang Z, Fei B (2018) PSNet: prostate segmentation on MRI based on a convolutional neural network. J Med Imaging (Bellingham) 5(2):021208
35.
Zurück zum Zitat Cheng R, Roth HR, Lay N, et al. (2017) Automatic magnetic resonance prostate segmentation by deep learning with holistically nested networks. J Med Imaging (Bellingham) 4(4):041302 Cheng R, Roth HR, Lay N, et al. (2017) Automatic magnetic resonance prostate segmentation by deep learning with holistically nested networks. J Med Imaging (Bellingham) 4(4):041302
36.
Zurück zum Zitat Lay N, Tsehay Y, Greer MD, et al. (2017) Detection of prostate cancer in multiparametric MRI using random forest with instance weighting. J Med Imaging 4(2):024506CrossRef Lay N, Tsehay Y, Greer MD, et al. (2017) Detection of prostate cancer in multiparametric MRI using random forest with instance weighting. J Med Imaging 4(2):024506CrossRef
37.
Zurück zum Zitat Lugo-Fagundo C, Vogelstein B, Yuille A, Fishman EK (2018) Deep learning in radiology: now the real work begins. J Am Coll Radiol 15(2):364–367CrossRefPubMed Lugo-Fagundo C, Vogelstein B, Yuille A, Fishman EK (2018) Deep learning in radiology: now the real work begins. J Am Coll Radiol 15(2):364–367CrossRefPubMed
Metadaten
Titel
Are we at a crossroads or a plateau? Radiomics and machine learning in abdominal oncology imaging
verfasst von
Ronald M. Summers
Publikationsdatum
05.05.2018
Verlag
Springer US
Erschienen in
Abdominal Radiology / Ausgabe 6/2019
Print ISSN: 2366-004X
Elektronische ISSN: 2366-0058
DOI
https://doi.org/10.1007/s00261-018-1613-1

Weitere Artikel der Ausgabe 6/2019

Abdominal Radiology 6/2019 Zur Ausgabe

Screening-Mammografie offenbart erhöhtes Herz-Kreislauf-Risiko

26.04.2024 Mammografie Nachrichten

Routinemäßige Mammografien helfen, Brustkrebs frühzeitig zu erkennen. Anhand der Röntgenuntersuchung lassen sich aber auch kardiovaskuläre Risikopatientinnen identifizieren. Als zuverlässiger Anhaltspunkt gilt die Verkalkung der Brustarterien.

S3-Leitlinie zu Pankreaskrebs aktualisiert

23.04.2024 Pankreaskarzinom Nachrichten

Die Empfehlungen zur Therapie des Pankreaskarzinoms wurden um zwei Off-Label-Anwendungen erweitert. Und auch im Bereich der Früherkennung gibt es Aktualisierungen.

Fünf Dinge, die im Kindernotfall besser zu unterlassen sind

18.04.2024 Pädiatrische Notfallmedizin Nachrichten

Im Choosing-Wisely-Programm, das für die deutsche Initiative „Klug entscheiden“ Pate gestanden hat, sind erstmals Empfehlungen zum Umgang mit Notfällen von Kindern erschienen. Fünf Dinge gilt es demnach zu vermeiden.

„Nur wer sich gut aufgehoben fühlt, kann auch für Patientensicherheit sorgen“

13.04.2024 Klinik aktuell Kongressbericht

Die Teilnehmer eines Forums beim DGIM-Kongress waren sich einig: Fehler in der Medizin sind häufig in ungeeigneten Prozessen und mangelnder Kommunikation begründet. Gespräche mit Patienten und im Team können helfen.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.