Skip to main content
Erschienen in: BMC Ophthalmology 1/2020

Open Access 01.12.2020 | Research article

Assessment of choriocapillary blood flow changes in response to half-dose photodynamic therapy in chronic central serous chorioretinopathy using optical coherence tomography angiography

verfasst von: Juejun Liu, Changzheng Chen, Lu Li, Yishuang Xu, Zuohuizi Yi, Lu He, Hongmei Zheng

Erschienen in: BMC Ophthalmology | Ausgabe 1/2020

Abstract

Background

Optical coherence tomography angiography (OCTA) is a newly developed imaging quantitative technique for analysis of choriocapillaris (CC) flow changes, thereby exploring the pathological mechanism of chronic central serous chorioretinopathy (CCSC) and the therapeutic effects of photodynamic therapy (PDT). In this study, we sought to quantify the blood flow changes in CC of CCSC patients receiving half-dose PDT using OCTA.

Methods

A total of 28 affected eyes and 24 unaffected eyes of 26 CCSC patients receiving half-dose PDT, and 40 eyes of 20 healthy gender- and age-matched subjects were retrospectively enrolled in this study. The proportion of total areas of flow signal voids (FSV, %) in CC level of OCTA was assessed in both eyes of the CCSC patients at baseline and repeated in multiple sections at 1-week, 1-month, 3-month and 6-month intervals after PDT. In addition, the CC patterns in response to PDT at early stage and the subsequent morphologic changes were qualitatively documented using OCTA.

Results

For affected eyes, FSV at 6-m follow-up was significantly lower than that at 1-m follow-up (p = 0.036). When compared to normal control eyes, FSV in affected eyes was significantly higher at 1-m, 3-m and 6-m follow-up (p < 0.05 for all), and FSV in unaffected eyes was significantly higher at baseline, 1-w, 1-m and 3-m follow-up (p < 0.05 for all). Three CC patterns of early response to PDT were identified, including signs of recovery with more even flow signals, transient appearance of worse ischemia and secondary neovascularization within CC level.

Conclusion

Abnormal CC flow attenuation remains in completely resolved eyes of CCSC patients treated with half-dose PDT.
Hinweise
A correction to this article is available online at https://​doi.​org/​10.​1186/​s12886-020-01700-w.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
OCTA
Optical coherence tomography angiography
CC
Choriocapillaris
CCSC
Chronic central serous chorioretinopathy
SRF
Subretinal fluid
RPE
Retinal pigment epithelial
PED
Pigment epithelial detachment
PDT
Photodynamic therapy
FSV
Flow signal voids
EDI-OCT
Enhanced depth imaging optical coherence tomography
SFCT
Subfoveal choroidal thickness
ICGA
Indocyanine green angiography
CNV
Choroidal neovascularization

Background

With the development of fundus imaging technology, the potential mechanism of choroidal hemodynamic changes in central serous chorioretinopathy (CSC) has been elucidated using indocyanine green angiography (ICGA) and enhanced depth imaging optical coherence tomography (EDI-OCT) [1]. Choriocapillaris (CC) ischemia processes, along with increasing hydrostatic pressure from choroidal pachyvessels, could result in focal or defused retinal pigment epithelium (RPE) barrier breakdown and subsequent serous retinal detachment (SRD) [13]. It has been reported that photodynamic therapy (PDT), with modified parameters, has a long-term efficacy and safety profile in chronic CSC (CCSC) therapy, with fewer complications and greater improvements in vision, subretinal fluid (SRF) and subfoveal choroidal thickness (SFCT) [1, 4]. As demonstrated by previous pathological and angiographic studies, PDT can cause short-term CC hypoperfusion and long-term choroidal vascular remodeling in the treatment of CSC [5]. Assessment of CC in vivo could greatly help understand the pathological mechanism of CSC and the therapeutic effects of PDT [6, 7].
Optical coherence tomography angiography (OCTA) is a newly developed imaging technique, which provides new insights into CC perfusion and vasculature patterns over the selected layers free from dye injection, and greatly compensates for the deficiencies of OCT and ICGA in the observation of CC [7, 8]. Several OCTA-related studies reported irregular flow patterns of CC in patients with CSC, including CC dilatation with increasing flow signals [9, 10], and focal or defused dark areas with flow signal voids (FSV) [7, 9], which were associated with the changes in ICGA. Various binary quantifications of OCTA imaging with objective data on various parameters further confirmed the attenuation of CC in CSC [8, 11, 12]. Previously, we have qualitatively documented that 97% (32/33) of eyes diagnosed with CCSC returned to exhibiting relatively normal distribution of fine particles in CC layer of OCTA at 3-m follow-up after half-dose PDT [13]. Nassisi M, et, al. reported that the CC vessel density at 1-m follow-up was even higher than the baseline value analyzed using an alternative binary approach [14], which however did not exclude the shadowing artifacts of SRF at enrollment. This present study was designed to assess CC blood flow changes in the affected eyes of CCSC patients in response to half-dose PDT assessed at early and long-term follow-ups using OCTA. The results were compared with those of the contralateral unaffected eyes as well as the healthy control eyes to explore the possible differences between them in response to half-dose PDT.

Methods

Patients with CCSC and healthy gender- and age-matched subjects, from November 2017 to November 2018, were retrospectively enrolled in this study, and all participants provided written informed consent. CCSC is defined [10] as exhibition of visual acuity symptoms for at least 6 months along with documented clinical features of CSC, including macular SRF, RPE changes of leakage and hyperfluorescent alterations detected by OCT and FFA/ICGA. All patients in this study were subjected to half-dose PDT with verteporfin infusion (3 mg/m2 of body surface area), and the laser light (689 nm; 50 J/cm2 for 83 s) was projected at the area of hyperpermeability in ICGA for 15 min after the start of verteporfin infusion. PDT was performed by an experienced ophthalmologist. The patients with eyes subjected to any previous treatment or exhibiting myopia more than 3.0 diopters, as well as those suffering from other diseases like PCV and neovascular maculopathy (eg, age-related macular degeneration, pathologic myopia, and idiopathic CNV) were excluded from the study upon clinical examination.
All patients had received thorough ophthalmic examinations prior to PDT treatment, including best-corrected visual acuity (BCVA) assessment, fundus fluorescein angiography (FFA), ICGA (HRA2; Heidelberg Engineering, Heidelberg, Germany), fundus photography (Zeiss, Oberkochen, Germany), spectral-domain OCT (SD-OCT) and OCTA (RTVue XR AngioVue Version 2017.1; Optovue Inc., Fremont, CA, USA). Quantitative assessments were performed at baseline and repeated in multiple sections at 1-week, 1-month, and 3-month and 6-month intervals after PDT treatment. These assessments included central macular thickness (CMT) in the mode of retina map of SD-OCT, subfoveal choroidal thickness (SFCT) in the mode of Enhanced HD Line (Enhanced HD-OCT) of SD-OCT, and the proportion of total areas of FSV (%) in OCTA using binary processing. Healthy gender- and age-matched subjects without ocular diseases were enrolled at a single visit and examinations of indirect ophthalmoscopy, BCVA, SD-OCT and OCTA were performed. Of those healthy subjects, those with systemic diseases like diabetes, hypertension, myopia more than 3.0 diopters and ocular media opacity that could affect the scan quality of OCTA were excluded from the study.
Enhanced HD-OCT was performed automatically focusing on the macular fovea with a horizontal single-line scanning, the scanning was repeated more than twice and the best one (the clearest image with a signal strength index of more than 70% and without eye movement artifacts) was selected. SFCT is defined as the vertical distance between the outside boundary of RPE and the choroidal-scleral interface determined by averaging the values obtained at three positions: the subfovea area, 750 μm nasal and 750 μm temporal to the fovea. OCTA, using a light source of 840 nm and an A-scan rate of 70,000 scans per second, was incorporated with split-spectrum amplitude-decorrelation angiography (SSADA) algorithm to extract angiographic information by quantifying the decorrelation of the OCT reflectance between the two consecutive B-scans, each containing 304 A-scans at each location on the retina [15]. 3 × 3 mm2 OCTA scanning was acquired centering on the fovea with eye tracking option setting on. Multiple scans (more than twice) were performed and images with quality score greater than or equal to 7/10 and without eye movement artifacts were preserved. The CC level is automatically defined as the distance between 10 μm of the upper-bruch’s membrane and 10 μm of the lower-bruch’s membrane. Manual adjustment was performed to ensure the scan was focused on the center of the macula and correct inaccurate automated segmentation. By referring to the reproducible automatic binarization methods reported previously [8, 11], we measured the percentage of black pixels representing absent or decreased flow signal within CC, known as FSV (%) [8, 11], using image J software (ImageJ 1.52a, https://​imagej.​nih.​gov/​ij/​ docs/​) (Fig. 1).
All statistical tests were performed using SPSS version 23.0 (https://​www.​ibm.​com/​a nalytics /spss-statistics-software). Categorized data are presented as frequency and percentage, and quantitative data are presented as mean ± standard deviation. Shapiro-Wilk test was used to evaluate distribution. Student’s t-test and one-way analysis of variance (ANOVA) were used for comparing variables between groups. Differences in proportions of gender were analyzed by X2 [2] test. Pearson or Spearman method was used to analyze the correlation between FSV and age, and between FSV and SFCT. A P-value < 0.05 was considered statistically significant.

Results

A total of 28 affected eyes and 24 unaffected eyes from 26 CCSC patients, and 40 eyes of 20 age- and gender-matched healthy individuals were enrolled in this study. The baseline characteristics of the CCSC patients were as follows: 19 (73.08%) males and 7 (26.92%) females with an average age of 45.14 ± 7.05 years, and there were no statistically significant differences in age and gender between healthy individuals and CCSC patients (p = 0.084, p = 0.899, respectively). OCTA imaging with SRF, pigment epithelial detachment (PED), or RPE clumping was excluded from quantitative analysis of FSV (Fig. 2).
FSV Measurement was performed on both eyes of CCSC patients with complete resolution of SRF during follow-ups (Table 1). At 6-m follow-up, 2 affected eyes showed signs of reoccurred SRF and the patients complained of visual problems, while 7 affected eyes and 5 unaffected eyes were lost to follow-up. Significant improvement of BCVA was found at the last follow-up visit (0.045 ± 0.074 LogMAR) compared to the initial (0.235 ± 0.137 LogMAR) assessment (p < 0.001).
Table 1
OCT and OCTA parameters of FSV and SFCT in patients with CCSC and healthy individuals
FSV
normal subjects
(mean ± SD) %
CCSC eyes (mean ± SD)%
p-value
Affected eyes
Unaffected eyes
Pa
Pb
Pc
0 M
51.56 ± 3.13% (n = 40eyes)
53.63 ± 3.09% (n = 24eyes)
0.020
1 M
51.56 ± 3.13%
55.98 ± 3.82% (n = 25eyes)
53.69 ± 2.67% (n = 24eyes)
< 0.001
0.010
0.005
3 M
51.56 ± 3.13%
54.75 ± 2.93% (n = 27eyes)
53.41 ± 2.38% (n = 24eyes)
< 0.001
0.025
0.042
6 M
51.56 ± 3.13%
53.56 ± 3.28% (n = 19eyes)
52.80 ± 2.13% (n = 19eyes)
0.035
0.098
0.758
SFCT
normal subjects
(mean ± SD)μm
CCSC eyes (mean ± SD)μm
p-value
 
Affected eyes
Unaffected eyes
Pa
Pb
Pc
0 M
267.73 ± 99.18 (n = 40eyes)
447.29 ± 82.28 (n = 28eyes)
397.33 ± 70.57 (n = 24eyes)
< 0.001
< 0.001
0.004
1 M
267.73 ± 99.18
387.50 ± 93.77 (n = 28eyes)
370.62 ± 74.63 (n = 24eyes)
< 0.001
< 0.001
0.484
3 M
267.73 ± 99.18
375.30 ± 95.45 (n = 28eyes)
356.46 ± 73.06 (n = 24eyes)
< 0.001
< 0.001
0.407
6 M
267.73 ± 99.18
375.76 ± 104.15 (n = 21eyes)
359.33 ± 69.66 (n = 19eyes)
< 0.001
< 0.001
0.494
CCSC chronic central serous chorioretinopathy, SFCT subretinal foveal choroidal thickness (μm); FSV (%), proportion of total areas of flow signal voids; Pa, p-values for healthy subjects versus affected eyes using Mann–Whitney U test; Pb, p-values for healthy eyes versus unaffected eyes using Mann–Whitney U test; Pc, p-values for affected eyes versus unaffected eyes using Wilcoxon test
The FSV values of affected eyes were greater at 1-m, 3-m and 6-m follow-ups (p < 0.05 for all), and the FSV values of unaffected eyes were significantly greater at baseline, 1-w, 1-m and 3-m follow-ups (p < 0.05 for all) than normal control eyes (Table 1). The FSV values in affected eyes were greater than those in unaffected eyes at 1-m and 3-m post-treatment (Table 1). The Wilcoxon test results showed that the FSV value of affected eyes at 6-m follow-up was significantly greater than that at 1-m follow-up (p = 0.036). The nonparametric Kruskal-Wallis test results showed that the FSV values of unaffected eyes showed no significant differences between all subgroups of follow-ups (0-m, 1-w, 1-m, 3-m, and 6-m) (p = 0.674).
The SFCT values of both eyes of CCSC patients were greater than normal control eyes throughout the follow-up period in this cohort (p < 0.05 for all), and significant difference was found between the affected and unaffected eyes of CCSC patients at baseline (p = 0.015) (Table 1). Nonparametric Kruskal-Wallis test results showed that the SFCT values of affected eyes in all subgroups (0-m, 1-w, 1-m, 3-m, and 6-m) were positive (p = 0.007), and the Post-hoc multiple comparisons within subgroups showed a significant difference in SFCT values between baseline and 3-m follow-up (p = 0.015). However, no statistically significant differences were observed in SFCT between all subgroups (0-m, 1-w, 1-m, 3-m, and 6-m) of the unaffected eyes (p = 0.196) using nonparametric Kruskal-Wallis test.
Due to the inevitable shadowing artifacts of SRF, the FSV values at baseline and early stage after PDT were not quantified. Qualitative observation of CC patterns, as a supplement, showed that all the affected eyes demonstrated local or diffused flow signal attenuation, and dilation and tortuosity of CC at baseline. One week after PDT, three CC patterns of early response to PDT were identified by OCTA. Signs of recovery with increased blood flow signals and decreased dark areas were observed in 21 (75.0%) eyes (Fig. 3), while worsening local CC ischemia was observed in 6 (21.4%) eyes (Fig. 5), and an extraordinarily dilated choriocapillary network or emerging dense network of neovascularization surrounded by foci of reduced flow signals within CC slab was observed in 1 (3.6%) eye (Fig. 4).
Spearman correlation analysis showed that the mean value of FSV was positively correlated with age in the unaffected eyes of CCSC patients at onset (r = 0.469, p = 0.021), 1-m (r = 0.470, p = 0.021) and 3-m follow-up (r = 0.414, p = 0.044) intervals and also in the eyes of healthy individuals (r = 0.715, p < 0.0001). However, no significant correlation was found between the values of FSV and SFCT.

Discussion

Using OCTA, quantitative analysis with automatic binarization method has been increasingly employed to analyze CC flow changes in some chorioretinal disorders, such as dry age-related macular degeneration and CSC, providing reproducible and objective data [7, 8, 11]. Excluding the masking artifacts of SRF and RPE clumping, PED could help increase the reliability of the quantitative assessment in resolved CSC [2, 11]. In previous studies, assessment of CC flow alterations in affected eyes showed a recovery after PDT [7, 13, 14, 16], which is consistent with our results of the decreased FSV at 6-m follow-up compared to that at 1-m follow-up. However, in this study, the FSA in affected eyes retained higher at 6-m follow-up compared with healthy controls, which indicated that CC attenuation might remain long after the treatment of half-dose PDT, contrary to previous OCTA studies which showed that CC flow returned to normal after half-dose PDT treatment [13, 14, 16]. A series of other follow-up investigations showed that reduced SFCT on EDI-OCT in affected eyes remained higher than healthy controls [1], and choroidal vascular hypermeability on ICGA persisted in some cases even after the SRF had been resolved completely [17, 18]. The remaining choroidopathy observed after half-dose PDT could potentially be attributed to the primary pathogenesis of CSC and/or the therapeutic effects of PDT.
It has been postulated that CSC may be an ocular condition caused by a systemic disease that involves choroidal circulation [1], which could be potentially supported by previous results of some systemic risk factors [1] and abnormalities of CC and SFCT in self-resolved CSC eyes and unaffected fellow eyes [11, 1921]. Similarly, our study demonstrated that the FSV values of unaffected eyes of CCSC were higher than those in healthy individuals, and remained unchanged over time. As proposed by Nicolo, M [19],. these CC alterations in asymptomatic eyes might be in the early stage of the same condition of CSC [2, 11, 19]. Previous studies also detected punctated hyperfluorescent spots using ICGA in most contralateral eyes of CSC and PCV, which might be a subclinical manifestation of increased choroidal hypermeability and intrachoroidal hydrostatic pressure [17, 22]. And these zones on OCTA with reduced CC flow have been found to be anatomically correlated with pathologically dilated Haller layer vessels on EDI-OCT. [2] In our study, the FSV values of affected eyes were significantly higher at 1-m and 3-m follow-ups, but not at 6-m follow-up than unaffected eyes. We speculated that the abnormal vascular situation in the CC layer in affected eyes of CCSC might recover to a subclinical condition equivalent to that of the contralateral unaffected eyes, which needs to be validated by longitudinal investigations with larger sample size.
In order to evaluate the early CC alterations in response to half-dose PDT in CCSC, qualitative observation was performed and three CC patterns at one week after PDT were documented in the present study. Among the affected eyes, 75.0% (21/28) showed recovering signs of increased flow signals and decreased dark areas (Fig. 3), while 21.4% (6/28) exhibited worse CC ischemia (Fig. 5), which we have previously documented as transient CC ischemia in another cohort [13]. Demircan et al. [16] showed that the transient CC ischemia may occur as early as three days after half-dose PDT. Furthermore, 3.6% (1/28) of the affected eyes demonstrated transient appearance of exuberant neovascularization network within CC level (Fig. 4). Using OCTA, the direct action of PDT on the CC occlusion could be visualized in vivo during follow-up [13, 14, 16]. Post-treatment choroidal hypoperfusion was largely reported with evidence of hypoperfusion on traditional angiography [23] in the treatment of neovascular age-related macular degeneration with full PDT, which might be related to the preferential aggregation of verteporfin in the lesions [23].
The repair mechanisms of surviving endothelial cells and the recanalization processes of novel channels within previously occluded capillaries after PDT treatment remain unclear [1]. In addition to the possibility that CC flow recovers from the released pressure of decreased SFCT owing to the therapeutic effect of PDT [2, 11], it can also be speculated that the damaged choroidal endothelial cells and RPE cells in PDT-treated areas may contribute to the release of VEGF [24, 25], and an imbalanced stimulatory and inhibitory condition for neovascularization formation could be compromised by PDT-related hypoxia and ischemia [25, 26]. However, the process of recanalization could, to some extent, contribute to the formation of CNV [26]. Particularly, two eyes with early CC ischemia, in this cohort, exhibited transient (Fig. 4) and persistent (Fig. 5) appearance of type I CNV, consisting with the morphologic characteristics of neovascularization networks within CC level in previous OCTA-related studies [20, 27, 28]. However, it is controversial that these suspected secondary CNV within CC level may contribute to the CC atrophy and the anterior displacement of medium-sized choroidal vessels with segmentation artifacts that masquerade as CNV [24]. Moreover, type I CNV has been well documented as the most common subtype of secondary CNV in the natural course of CSC [1, 6, 29], which should also be taken into account while studying PDT-related CNV [30]. What makes it more controversial is that most of the previous studies of CSC related CNV were based on patients with heterogeneous treatment histories of PDT or laser photocoagulation [20, 2830]. Longitudinal OCTA observation would thus help to comparatively follow these lesions to better understand how they behave.
There are some limitations in our study including its retrospective nature, the relatively small number of subjects. Considering the shortage of quantitative method of binarization that limited our ability to assess FSV in affected eyes at the time point of pre-PDT and at the early stage of post-PDT owing to the shadowing artifacts of unresolved subretinal fluid [7], we only compared the FSV values between the time points of 1 m and 6 m after PDT using Wilcoxon test. We ought to record the change terms of exact number of lines or letters in BCVA in this study, which may be more clinically relevant. Our results may underestimate the occurrence of these transient alterations of ischemia and neovascularization occurred within two intervals or outside the imaging area of OCTA. We believe that the actual value of FSV may be higher since patients with SRF were excluded in quantitative assessment, and the choriocapillaris in these patients was certainly abnormal. Although the FSV value was positively correlated with age in healthy controls in consistence with aging physiological changes of CC [8, 11], the dynamic nature of CC flow changes with time should also be taken into consideration in analysis. In addition, the correlation between SFCT and FSV has not been established in this cohort, nor in other reports [31]. It might be due to the relatively small sample size, or that SFCT generally assesses choroidal thickness and both pathologically dilated vessels and increased stromal contribute to the increase of SFCT. Future studies should further evaluate the correlation of FSV with other more specific indicators such as choroidal vascularity index (CVI) [3].

Conclusions

In summary, we observed that abnormal CC flow attenuation remained in clinically resolved eyes of CCSC patients treated with half-dose PDT. It is noteworthy that half-dose PDT, as a safe therapeutic method for CCSC, could potentially worsen choroidal ischemia, which is a pathophysiologic cause of neovascularization progressions in some cases, while OCTA is helpful in identifying these CC changes and following these lesions over time to better understand how they progress.

Acknowledgements

We would like to thank professor TH, CZC and HMZ for their support and help on our work.
This retrospective study was approved by the Renmin Hospital of Wuhan University and was conducted in compliance with the Declaration of Helsinki. All participants provided their written informed consent.
Not applicable.

Competing interests

Not applicable.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Daruich A, Matet A, Dirani A, et al. Central serous chorioretinopathy: recent findings and new physiopathology hypothesis. Prog Retin Eye Res. 2015;48:82–118.CrossRef Daruich A, Matet A, Dirani A, et al. Central serous chorioretinopathy: recent findings and new physiopathology hypothesis. Prog Retin Eye Res. 2015;48:82–118.CrossRef
2.
Zurück zum Zitat Gal-Or O, Dansingani KK, Sebrow D, Dolz-Marco R, Freund KB. Inner Choroidal Flow Signal Attenuation in Pachychoroid Disease: optical coherence tomography angiography. Retina. 2018;38(10):1984–92.CrossRef Gal-Or O, Dansingani KK, Sebrow D, Dolz-Marco R, Freund KB. Inner Choroidal Flow Signal Attenuation in Pachychoroid Disease: optical coherence tomography angiography. Retina. 2018;38(10):1984–92.CrossRef
3.
Zurück zum Zitat Wei X, Sonoda S, Mishra C, et al. Comparison of Choroidal vascularity markers on optical coherence tomography using two-image Binarization techniques. Invest Ophth Vis Sci. 2018;59(3):1206–11..CrossRef Wei X, Sonoda S, Mishra C, et al. Comparison of Choroidal vascularity markers on optical coherence tomography using two-image Binarization techniques. Invest Ophth Vis Sci. 2018;59(3):1206–11..CrossRef
4.
Zurück zum Zitat Lai FH, Ng DS, Bakthavatsalam M, et al. A multicenter study on the long-term outcomes of half-dose photodynamic therapy in chronic central serous Chorioretinopathy. Am J Ophthalmol. 2016;170:91–9.CrossRef Lai FH, Ng DS, Bakthavatsalam M, et al. A multicenter study on the long-term outcomes of half-dose photodynamic therapy in chronic central serous Chorioretinopathy. Am J Ophthalmol. 2016;170:91–9.CrossRef
5.
Zurück zum Zitat Schmidt-Erfurth U, Laqua H, Schlotzer-Schrehard U, Viestenz A, Naumann GO. Histopathological changes following photodynamic therapy in human eyes. Arch Ophthalmol. 2002;120(6):835–44.PubMed Schmidt-Erfurth U, Laqua H, Schlotzer-Schrehard U, Viestenz A, Naumann GO. Histopathological changes following photodynamic therapy in human eyes. Arch Ophthalmol. 2002;120(6):835–44.PubMed
6.
Zurück zum Zitat Borrelli E, Sarraf D, Freund KB, Sadda SR. OCT angiography and evaluation of the choroid and choroidal vascular disorders. Prog Retin Eye Res. 2018;67:30–55.CrossRef Borrelli E, Sarraf D, Freund KB, Sadda SR. OCT angiography and evaluation of the choroid and choroidal vascular disorders. Prog Retin Eye Res. 2018;67:30–55.CrossRef
7.
Zurück zum Zitat Lauermann JL, Eter N, Alten F. Optical coherence tomography angiography offers new insights into Choriocapillaris perfusion. Ophthalmologica. 2018;239(2–3):74–84.CrossRef Lauermann JL, Eter N, Alten F. Optical coherence tomography angiography offers new insights into Choriocapillaris perfusion. Ophthalmologica. 2018;239(2–3):74–84.CrossRef
8.
Zurück zum Zitat Spaide RF. Choriocapillaris flow features follow a power law distribution: implications for characterization and mechanisms of disease progression. Am J Ophthalmol. 2016;170:58–67.CrossRef Spaide RF. Choriocapillaris flow features follow a power law distribution: implications for characterization and mechanisms of disease progression. Am J Ophthalmol. 2016;170:58–67.CrossRef
9.
Zurück zum Zitat Teussink MM, Breukink MB, Grinsven MJ, Hoyng CB, Klevering BJ. OCT angiography compared to fluorescein and indocyanine green ngiography in chronic central serous chorioretinopathy. Invest Ophthalmol Vis Sci. 2015;56(9):5229–37.CrossRef Teussink MM, Breukink MB, Grinsven MJ, Hoyng CB, Klevering BJ. OCT angiography compared to fluorescein and indocyanine green ngiography in chronic central serous chorioretinopathy. Invest Ophthalmol Vis Sci. 2015;56(9):5229–37.CrossRef
10.
Zurück zum Zitat Quaranta-El Maftouhi M, El Maftouhi A, Eandi CM. Chronic central serous chorioretinopathy imaged by optical coherence tomographic angiography. Am J Ophthalmol. 2015;160(3):581–7 e581.CrossRef Quaranta-El Maftouhi M, El Maftouhi A, Eandi CM. Chronic central serous chorioretinopathy imaged by optical coherence tomographic angiography. Am J Ophthalmol. 2015;160(3):581–7 e581.CrossRef
11.
Zurück zum Zitat Rochepeau C, Kodjikian L, Garcia MA, et al. Optical coherence tomography angiography quantitative assessment of Choriocapillaris blood flow in central serous Chorioretinopathy. Am J Ophthalmol. 2018;194:26–34.CrossRef Rochepeau C, Kodjikian L, Garcia MA, et al. Optical coherence tomography angiography quantitative assessment of Choriocapillaris blood flow in central serous Chorioretinopathy. Am J Ophthalmol. 2018;194:26–34.CrossRef
12.
Zurück zum Zitat Ogawa Y, Maruko I, Koizumi H, Iida T. Quantification of Choroidal Vasculature by High-Quality Structure En Face Swept-Source Optical Coherence Tomography Images in Eyes with Central Serous Chorioretinopathy. Retina. 2018;40(3):529–36. Ogawa Y, Maruko I, Koizumi H, Iida T. Quantification of Choroidal Vasculature by High-Quality Structure En Face Swept-Source Optical Coherence Tomography Images in Eyes with Central Serous Chorioretinopathy. Retina. 2018;40(3):529–36.
13.
Zurück zum Zitat Xu Y, Su Y, Li L, Qi H, Zheng H, Chen C. Effect of photodynamic therapy on optical coherence tomography angiography in eyes with chronic central serous Chorioretinopathy. Ophthalmologica. 2017;237(3):167–72.CrossRef Xu Y, Su Y, Li L, Qi H, Zheng H, Chen C. Effect of photodynamic therapy on optical coherence tomography angiography in eyes with chronic central serous Chorioretinopathy. Ophthalmologica. 2017;237(3):167–72.CrossRef
14.
15.
Zurück zum Zitat Kraus MF, Liu JJ, Schottenhamml J, et al. Quantitative 3D-OCT motion correction with tilt and illumination correction, robust similarity measure and regularization. Biomed Opt Express. 2014;5(8):2591–613.CrossRef Kraus MF, Liu JJ, Schottenhamml J, et al. Quantitative 3D-OCT motion correction with tilt and illumination correction, robust similarity measure and regularization. Biomed Opt Express. 2014;5(8):2591–613.CrossRef
16.
Zurück zum Zitat Demircan A, Yesilkaya C, Alkin Z. Early choriocapillaris changes after half-fluence photodynamic therapy in chronic central serous chorioretinopathy evaluated by optical coherence tomography angiography: preliminary results. Photodiagn Photodyn Ther. 2018;21:375–8.CrossRef Demircan A, Yesilkaya C, Alkin Z. Early choriocapillaris changes after half-fluence photodynamic therapy in chronic central serous chorioretinopathy evaluated by optical coherence tomography angiography: preliminary results. Photodiagn Photodyn Ther. 2018;21:375–8.CrossRef
17.
Zurück zum Zitat Tsujikawa A, Ojima Y, Yamashiro K, et al. Punctate hyperfluorescent spots associated with central serous chorioretinopathy as seen on indocyanine green angiography. Retina. 2010;30(5):801–9.CrossRef Tsujikawa A, Ojima Y, Yamashiro K, et al. Punctate hyperfluorescent spots associated with central serous chorioretinopathy as seen on indocyanine green angiography. Retina. 2010;30(5):801–9.CrossRef
18.
Zurück zum Zitat Iida T, Kishi S, Hagimura N, Shimizu K. Persistent and bilateral choroidal vascular abnormalities in central serous chorioretinopathy. Retina. 1999;19(6):508–12.CrossRef Iida T, Kishi S, Hagimura N, Shimizu K. Persistent and bilateral choroidal vascular abnormalities in central serous chorioretinopathy. Retina. 1999;19(6):508–12.CrossRef
19.
Zurück zum Zitat Nicolo M, Rosa R, Musetti D, Musolino M, Saccheggiani M, Traverso CE. Choroidal vascular flow area in central serous Chorioretinopathy using swept-source optical coherence tomography angiography. Invest Ophth Vis Sci. 2017;58(4):2002–10.CrossRef Nicolo M, Rosa R, Musetti D, Musolino M, Saccheggiani M, Traverso CE. Choroidal vascular flow area in central serous Chorioretinopathy using swept-source optical coherence tomography angiography. Invest Ophth Vis Sci. 2017;58(4):2002–10.CrossRef
21.
Zurück zum Zitat Kang NH, Kim YT. Change in subfoveal choroidal thickness in central serous chorioretinopathy following spontaneous resolution and low-fluence photodynamic therapy. Eye (Lond). 2013;27(3):387–91.CrossRef Kang NH, Kim YT. Change in subfoveal choroidal thickness in central serous chorioretinopathy following spontaneous resolution and low-fluence photodynamic therapy. Eye (Lond). 2013;27(3):387–91.CrossRef
22.
Zurück zum Zitat Park S, Kim B, Park K, Woo S. Punctate hyperfluorescence spot as a common choroidopathy of central serous chorioretinopathy and polypoidal choroidal vasculopathy. Am J Ophthalmol. 2014;158(6):1155–63.CrossRef Park S, Kim B, Park K, Woo S. Punctate hyperfluorescence spot as a common choroidopathy of central serous chorioretinopathy and polypoidal choroidal vasculopathy. Am J Ophthalmol. 2014;158(6):1155–63.CrossRef
23.
Zurück zum Zitat Schmidt-Erfurth U, Kiss C, Sacu S. The role of choroidal hypoperfusion associated with photodynamic therapy in neovascular age-related macular degeneration and the consequences for combination strategies. Prog Retin Eye Res. 2009;28(2):145–54.CrossRef Schmidt-Erfurth U, Kiss C, Sacu S. The role of choroidal hypoperfusion associated with photodynamic therapy in neovascular age-related macular degeneration and the consequences for combination strategies. Prog Retin Eye Res. 2009;28(2):145–54.CrossRef
24.
Zurück zum Zitat Chhablani J, Pichi F, Silva R, et al. Antiangiogenics in Choroidal neovascularization associated with laser in central serous Chorioretinopathy. Retina. 2016;36(5):901–8.CrossRef Chhablani J, Pichi F, Silva R, et al. Antiangiogenics in Choroidal neovascularization associated with laser in central serous Chorioretinopathy. Retina. 2016;36(5):901–8.CrossRef
25.
Zurück zum Zitat Schmidt-Erfurth U, Schlotzer-Schrehard U, Cursiefen C, Michels S, Beckendorf A, Naumann GO. Influence of photodynamic therapy on expression of vascular endothelial growth factor (VEGF), VEGF receptor 3, and pigment epithelium-derived factor. Invest Ophthalmol Vis Sci. 2003;44(10):4473–80.CrossRef Schmidt-Erfurth U, Schlotzer-Schrehard U, Cursiefen C, Michels S, Beckendorf A, Naumann GO. Influence of photodynamic therapy on expression of vascular endothelial growth factor (VEGF), VEGF receptor 3, and pigment epithelium-derived factor. Invest Ophthalmol Vis Sci. 2003;44(10):4473–80.CrossRef
26.
Zurück zum Zitat Schlotzer-Schrehardt U, Viestenz A, Naumann GO, Laqua H, Michels S, Schmidt-Erfurth U. Dose-related structural effects of photodynamic therapy on choroidal and retinal structures of human eyes. Graefes Arch Clin Exp Ophthalmol. 2002;240(9):748–57.CrossRef Schlotzer-Schrehardt U, Viestenz A, Naumann GO, Laqua H, Michels S, Schmidt-Erfurth U. Dose-related structural effects of photodynamic therapy on choroidal and retinal structures of human eyes. Graefes Arch Clin Exp Ophthalmol. 2002;240(9):748–57.CrossRef
27.
Zurück zum Zitat Moussa M, Leila M, Khalid H, Lolah M. Detection of Silent Type I Choroidal Neovascular Membrane in Chronic Central Serous Chorioretinopathy Using En Face Swept-Source Optical Coherence Tomography Angiography. J Ophthalmol. 2017;2017:6913980. https://doi.org/10.1155/2017/6913980. Moussa M, Leila M, Khalid H, Lolah M. Detection of Silent Type I Choroidal Neovascular Membrane in Chronic Central Serous Chorioretinopathy Using En Face Swept-Source Optical Coherence Tomography Angiography. J Ophthalmol. 2017;2017:6913980. https://​doi.​org/​10.​1155/​2017/​6913980.
28.
Zurück zum Zitat Spaide RF. Optical coherence tomography angiography signs of vascular Abnormalization with Antiangiogenic therapy for Choroidal neovascularization. Am J Ophthalmol. 2015;160(1):6–16.CrossRef Spaide RF. Optical coherence tomography angiography signs of vascular Abnormalization with Antiangiogenic therapy for Choroidal neovascularization. Am J Ophthalmol. 2015;160(1):6–16.CrossRef
29.
Zurück zum Zitat Shiragami C, Takasago Y, Osaka R, et al. Clinical features of central serous Chorioretinopathy with type 1 Choroidal neovascularization. Am J Ophthalmol. 2018;193:80–6.CrossRef Shiragami C, Takasago Y, Osaka R, et al. Clinical features of central serous Chorioretinopathy with type 1 Choroidal neovascularization. Am J Ophthalmol. 2018;193:80–6.CrossRef
30.
Zurück zum Zitat Wu JS, Chen SN. Optical coherence tomography angiography for diagnosis of Choroidal neovascularization in chronic central serous Chorioretinopathy after photodynamic therapy. Sci Rep. 2019;9(1):9040.CrossRef Wu JS, Chen SN. Optical coherence tomography angiography for diagnosis of Choroidal neovascularization in chronic central serous Chorioretinopathy after photodynamic therapy. Sci Rep. 2019;9(1):9040.CrossRef
31.
Zurück zum Zitat Yun C, Huh J, Ahn SM, et al. Choriocapillaris flow features and choroidal vasculature in the fellow eyes of patients with acute central serous chorioretinopathy. Graefes Arch Clin Exp Ophthalmol. 2019;257(1):57–70.CrossRef Yun C, Huh J, Ahn SM, et al. Choriocapillaris flow features and choroidal vasculature in the fellow eyes of patients with acute central serous chorioretinopathy. Graefes Arch Clin Exp Ophthalmol. 2019;257(1):57–70.CrossRef
Metadaten
Titel
Assessment of choriocapillary blood flow changes in response to half-dose photodynamic therapy in chronic central serous chorioretinopathy using optical coherence tomography angiography
verfasst von
Juejun Liu
Changzheng Chen
Lu Li
Yishuang Xu
Zuohuizi Yi
Lu He
Hongmei Zheng
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
BMC Ophthalmology / Ausgabe 1/2020
Elektronische ISSN: 1471-2415
DOI
https://doi.org/10.1186/s12886-020-01674-9

Weitere Artikel der Ausgabe 1/2020

BMC Ophthalmology 1/2020 Zur Ausgabe

Neu im Fachgebiet Augenheilkunde

Ophthalmika in der Schwangerschaft

Die Verwendung von Ophthalmika in der Schwangerschaft und Stillzeit stellt immer eine Off-label-Anwendung dar. Ein Einsatz von Arzneimitteln muss daher besonders sorgfältig auf sein Risiko-Nutzen-Verhältnis bewertet werden. In der vorliegenden …

Operative Therapie und Keimnachweis bei endogener Endophthalmitis

Vitrektomie Originalie

Die endogene Endophthalmitis ist eine hämatogen fortgeleitete, bakterielle oder fungale Infektion, die über choroidale oder retinale Gefäße in den Augapfel eingeschwemmt wird [ 1 – 3 ]. Von dort infiltrieren die Keime in die Netzhaut, den …

Bakterielle endogene Endophthalmitis

Vitrektomie Leitthema

Eine endogene Endophthalmitis stellt einen ophthalmologischen Notfall dar, der umgehender Diagnostik und Therapie bedarf. Es sollte mit geeigneten Methoden, wie beispielsweise dem Freiburger Endophthalmitis-Set, ein Keimnachweis erfolgen. Bei der …

So erreichen Sie eine bestmögliche Wundheilung der Kornea

Die bestmögliche Wundheilung der Kornea, insbesondere ohne die Ausbildung von lichtstreuenden Narben, ist oberstes Gebot, um einer dauerhaften Schädigung der Hornhaut frühzeitig entgegenzuwirken und die Funktion des Auges zu erhalten.   

Update Augenheilkunde

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.