Skip to main content
Erschienen in: Diabetology & Metabolic Syndrome 1/2016

Open Access 01.12.2016 | Research

Association of diabetic vascular complications with poor sleep complaints

verfasst von: Ling-Ling Meng, Ying Liu, Rui-Na Geng, Yun-Zhao Tang, Dai-Qing Li

Erschienen in: Diabetology & Metabolic Syndrome | Ausgabe 1/2016

Abstract

Background

Literatures reported that poor sleep complaints were associated with a great deal of health outcomes. However, there are few studies on the association of poor sleep complaints with diabetic vascular complications.

Methods

Aiming on the association, a cross-sectional survey was conducted among 1220 diabetic patients in this study. Poor sleep complaints were composed of difficulty falling asleep, early final awakening, short sleep and long sleep. The diabetic vascular complications involved in the study were diagnosed according to the Standards of Medical Care in Diabetes (ADA 2016).

Results

Our findings indicated that short sleep remained independently associated with diabetic kidney disease (DKD) (OR > 1, P < 0.05) after the adjustments; long sleep independently associated with diabetic retinopathy (DR) (OR > 1, P < 0.05); early final awakening and short sleep independently associated with cardiovascular disease (OR > 1, P < 0.05); short sleep independently associated with peripheral arterial disease (OR > 1, P < 0.05); there was no association between poor sleep complaints and neuropathy (P > 0.05).

Conclusions

The study suggests that the poor sleep complaints were distinguishably associated with diabetic vascular complications. Clinicians should take poor sleep complaints into account in diabetes treatment.
Abkürzungen
T2DM
type 2 diabetes mellitus
PSQI
Pittsburgh sleep quality index
DKD
diabetic kidney disease
DR
diabetic retinopathy
CVD
cardiovascular disease
PAD
peripheral arterial disease

Background

In recent years, evidences from experimental and epidemiologic studies have demonstrated that poor sleep quality is associated with a great deal of health outcomes such as diabetes, cardiovascular disease, hypertension and obesity [14]. Poor sleep or sleep disturbances are well-known symptoms in type 2 diabetes, which have been noted by many researchers [57]. Diabetic vascular complications covered macrovascular complications including cardiovascular disease (CVD), peripheral arterial disease (PAD) and stroke, and microvascular complications such as diabetic kidney diseases (DKD), neuropathy and retinopathy [8]. Some literatures reported that sleep disturbances or obstructive sleep apnea is one of the risk factors causing CVD [911]. One study demonstrated that abnormal sleep patterns could influence the diabetic microvascular complications, in particular diabetic neuropathy [12]. Another study described a novel independent association between diabetic peripheral neuropathy and obstructive sleep apnea (OSA) [13]. Some studies proposed that OSA may contribute to development of DKD [14, 15]. Nishimura et al. concluded that there was an independent relationship between severity of sleep disordered breathing and retinopathy in patients with diabetes [16]. In addition, diabetic vascular complications were considered to have important impact on sleep quality, especially retinopathy and neuropathy [17].
So far, most studies related to sleep disorders and diabetic vascular complications have focused mainly on OSA. There are few studies on various poor sleep complaints with the complications systematically. The aim of the present study was to investigate the association between poor sleep complaints with the diabetic vascular complications in a population-based cross-sectional study.

Methods

Materials and subjects

We conducted a population-based cross-sectional study in Chinese adults with type 2 diabetes. Patients were recruited between January 2013 and January 2016 from Metabolic Diseases Hospital of Tianjin Medical University. Inclusion criterion was those patients who were diagnosed with type 2 diabetes according to the 1999 WHO diagnostic criteria for diabetes. Exclusion criteria included type 1 diabetes mellitus, pre-diabetes, diabetes with snoring, acute complications, severe kidney dysfunction, decompensated liver cirrhosis, heart failure with an ejection fraction <30% or NYHA classification >II. The diseases affecting sleep quality were also excluded, including restless leg syndrome, pruritic skin disorders, mental illness and thyroid disease. Consent was obtained and this study design was approved by the local ethics committee and was in accordance with the Declaration of Helsinki. Demographic data such as age and gender were collected and physical examinations including body mass index (BMI) and blood pressure were performed in the subjects. Glycosylated hemoglobin (HbA1C) was measured using standard high-performance liquid chromatography.

Definitions

The poor sleep complaints included difficulty falling asleep, early final awakening, short sleep and long sleep in this study. The frequency of difficulty falling asleep more than three times a week was defined difficulty falling asleep. The definition of early final awakening was consistent with the above. Sleep duration <6 h/night was defined as short sleep, and sleep duration >9 h/night was defined as long sleep.
Diabetic vascular complications covered microangiopathy such as DKD, DR and diabetic neuropathy, and macroangiopathy such as CVD and lower extremity PAD. DKD was defined as the presence of albuminuria [urinary levels of 24-h microalbumin (UMA) >30 mg/24 h] and/or an estimated glomerular filtration rate (eGFR) <60 mL/min/1.73 m2 [15]. eGFR was calculated using the four-variable Modification of Diet in Renal Disease equation (MDRD). Diabetic neuropathy diagnosis based on the results of nerve conduction study, which is a reliable, accurate and sensitive method to evaluate peripheral nerve function [18]. Patients’ clinical symptoms included hyperesthesia, paresthesia, motor weakness or polyradiculopathy [17]. DR was determined by experienced ophthalmologists using dilated indirect ophthalmoscopy or retinal photographs. Retinopathy was defined as at least two microaneurysms and/or retinal hemorrhage and/or other signs of retinal damage [19]. In this study, CVD includes coronary artery disease, hypertensive heart disease, and congestive heart failure (an ejection fraction ≥30% or NYHA classification ≤II) [9]. PAD was diagnosed according to the four typical clinical staging of symptoms, including lower extremity arterial pulses weakening or disappearing found in physical examination and change in lower extremity nutrition disorder or pale, combined with related risk factors such as diabetes, dyslipidemia, hypertension, age and so on. Patients with PAD were confirmed to have different degree of lower extremity artery occlusion using Vascular Ultrasonography. Dyslipidemia was defined that TG, LDL or VLDL was higher than the upper limit of normal or HDL was lower than the lower limit of normal.

Statistical analysis

All parametrically distributed date are expressed as mean ± standard deviation (SD). Categorical variables are shown as frequencies; Chi square test was used to analyze these variables. Two-sided values of P < 0.05 were considered as statistically significant. Multivariate logistic regression analysis was performed to assess the association between poor sleep complaints with vascular complications using odds ratio (OR) and 95% confidence intervals (CI). We adjusted for major confounding factors expected to affect these relationships (i.e. gender, age, smoking history, BMI, SBP, duration of diabetes, HbA1C and dyslipidemia). SPSS (Statistical Package for Social Sciences) for Windows 18.0 program was used for statistical analysis.

Results

Table 1 shows the association of poor sleep complaints and baseline characteristics with complications in participants with diabetes. The frequency of early final awakening and short sleep were higher in patients with DKD (56.7 vs. 47.7%, P = 0.005; 51.7 vs. 45.3%, P = 0.043). The frequency of early final awakening and long sleep were higher in patients with DR (55.6 vs. 47.7%, P = 0.011; 6.0 vs.2.2%, P = 0.002). Subjects with diabetic neuropathy had higher prevalence of difficulty falling asleep (30.3 vs. 24.0%, P = 0.020), early final awakening (54.3 vs. 43.7%, P = 0.000) and short sleep (49.5 vs. 43.2%, P = 0.037), respectively. The frequency of early final awakening and short sleep were higher in the diabetic patients with CVD (56.4 vs. 41.5%, P = 0.000; 53.0 vs. 38.6%, P = 0.000, respectively). The frequency of early final awakening and short sleep were higher in the diabetic patients with PAD (52.5 vs. 46.0%, P = 0.043; 49.5 vs. 40.9%, P = 0.007). The patients with DKD had higher BMI, SBP, DBP and HbA1C (P < 0.05), longer diabetes duration (P < 0.05), and higher rate of male (60.9 vs. 51.9%, P < 0.05) compared to those without DKD. The patients with DR were older than those without DR, and had higher rate of female (51.7 vs. 42.0%, P < 0.05), longer diabetes duration (P < 0.05), higher SBP (P < 0.05). The patients with neuropathy were older (P < 0.05), and had longer diabetes duration (P < 0.05), higher SBP (P < 0.05) and lower HbA1C (P < 0.05), compared to those without neuropathy. The patients with CVD were older (P < 0.05), and had higher BMI, SBP (P < 0.05), lower HbA1C (P < 0.05), longer diabetes duration (P < 0.05) compared to those without CVD. The patients with PAD were older (P < 0.05), and higher rate of male (56.2 vs. 48.4%, P < 0.05), longer diabetes duration (P < 0.05), lower HbA1C (P < 0.05) compared to those without PAD.
Table 1
Associations of poor sleep complaints and baseline characteristics with complications in subjects with type 2 diabetes mellitus
Microangiopathies
DKD
Retinopathy
Neuropathy
Absent
Present
P value
Absent
Present
P value
Absent
Present
P value
Complaints of poor sleep
 Difficulty fall asleep
232 (28.1)
98 (27.2)
0.778
208 (26.8)
124 (30.0)
0.250
110 (24.0)
224 (30.3)
0.020
 Early awake
394 (47.7)
204 (56.7)
0.005
370 (47.7)
230 (55.6)
0.011
200 (43.7)
402 (54.3)
0.000
 Short sleep <6 h
374 (45.3)
186 (51.7)
0.043
372 (47.9)
186 (44.9)
0.330
198 (43.2)
366 (49.5)
0.037
 Long sleep >9 h
22 (2.8)
18 (5.2)
0.057
16 (2.2)
24 (6.0)
0.002
16 (3.6)
24 (3.5)
1.000
 Male (%)
402 (51.9%)
212 (60.9%)
0.005
420 (58.0%)
194 (48.3%)
0.002
362 (52.5%)
258 (58.1%)
0.067
 Age (years)
56.13 ± 11.20
57.21 ± 11.63
0.149
55.75 ± 11.72
57.78 ± 10.41
0.004
52.64 ± 12.63
58.91 ± 9.63
0.000
 BMI (kg/m2)
26.17 ± 3.95
27.34 ± 3.71
0.000
26.53 ± 4.01
26.43 ± 3.77
0.690
26.59 ± 4.06
26.47 ± 3.83
0.639
 Diabetes duration (years)
8.18 ± 7.26
10.68 ± 7.38
0.000
7.19 ± 6.75
12.13 ± 7.54
0.000
5.48 ± 6.27
11.20 ± 7.23
0.000
 SBP (mmHg)
130.63 ± 14.01
136.06 ± 17.57
0.000
131.29 ± 14.8
134.65 ± 16.2
0.005
130.94 ± 15.4
133.15 ± 15.27
0.019
 DBP (mmHg)
80.01 ± 8.51
81.57 ± 9.75
0.007
80.42 ± 8.70
80.52 ± 9.32
0.870
80.90 ± 9.23
80.22 ± 8.19
0.212
 HbA1C (%)
8.96 ± 1.79
9.23 ± 1.70
0.021
9.05 ± 1.89
9.06 ± 1.51
0.927
9.29 ± 1.94
8.88 ± 1.62
0.000
Macroangiopathies
CVD
PAD
Absent
Present
P value
Absent
Present
P value
Complaints of poor sleep
 Difficulty fall asleep
132 (26.8)
202 (28.8)
0.472
90 (25.6)
256 (29.5)
0.183
 Early awake
204 (41.5)
396 (56.4)
0.000
162 (46.0)
456 (52.5)
0.043
 Short sleep <6 h
190 (38.6)
372 (53.0)
0.000
144 (40.9)
430 (49.5)
0.007
 Long sleep >9 h
18 (3.9)
22 (3.3)
0.624
10 (4.1)
30 (3.4)
0.562
 Male (%)
264 (57.6%)
354 (52.7%)
0.101
118 (48.4%)
496 (56.2%)
0.030
 Age (years)
52.20 ± 11.96
59.33 ± 9.90
0.000
51.71 ± 12.95
57.79 ± 10.43
0.000
 BMI (kg/m2)
25.99 ± 3.87
26.87 ± 3.91
0.000
26.44 ± 4.12
26.51 ± 3.85
0.828
 Diabetes duration (years)
7.27 ± 6.99
10.07 ± 7.49
0.000
6.61 ± 6.40
9.61 ± 7.56
0.000
 SBP (mmHg)
129.80 ± 14.3
133.93 ± 15.5
0.000
131.93 ± 16.4
132.38 ± 15.1
0.699
 SBP (mmHg)
80.65 ± 8.52
80.35 ± 9.18
0.589
80.76 ± 9.52
80.38 ± 8.76
0.572
 HbA1C (%)
9.42 ± 1.99
8.80 ± 1.55
0.000
9.48 ± 1.98
8.93 ± 1.69
0.000
Italics values are statistically significant
DKD diabetic kidney disease; CVD cardiovascular disease; PAD peripheral arterial disease; BMI body mass index; SBP systolic blood pressure; DBP diastolic blood pressure; PSQI Pittsburgh Sleep Quality Index; HbAlc glycosylated hemoglobin type A1c
Table 2 describes the effect of the demographics (gender, age and BMI) on the poor sleep complaints. The complaints were individually saved as dependent variable, and the demographics were saved as independent variables. Older patients were more likely to have these complaints, difficulty fall asleep [OR 1.015, 95% CI (1.002–1.027) P = 0.020], early awake [OR 1.045, 95% CI (1.032–1.057) P = 0.000] and short sleep [OR 1.015, 95% CI (1.004–1.026) P = 0.006]. The female were more vulnerable to have difficulty fall asleep [OR 1.764, 95% CI (1.350–2.307) P = 0.000]. The fatter participants were less trouble in falling asleep [OR 0.955, 95% CI (0.922–0.990) P = 0.012].
Table 2
Effect of the demographics on the poor sleep complaints
Demographics
Difficulty fall asleep
Early awake
Short sleep
Long sleep
OR (95% of CI)
P value
OR (95% of CI)
P value
OR (95% of CI)
P value
OR (95% of CI)
P value
Gender
1.764 (1.350–2.307)
0.000
1.079 (0.844–1.378)
0.545
1.199 (0.943–1.523)
0.138
1.559 (0.807–3.013)
0.186
Age
1.015 (1.002–1.027)
0.020
1.045 (1.032–1.057)
0.000
1.015 (1.004–1.026)
0.006
0.965 (0.940–0.991)
0.008
BMI
0.955 (0.922–0.990)
0.012
0.997 (0.966–1.028)
0.832
1.022 (0.992–1.054)
0.153
1.029 (0.952–1.113)
0.471
The poor sleep complaints were individually saved as dependent variable, and the demographics were saved as independent variable
Italics values are statistically significant
BMI body mass index
Table 3 shows the multivariate analysis for impact of poor sleep complaints on diabetic complications in the populations (model 1). In this model, diabetic vascular complications were individually put into dependent variables, and poor sleep complaints were individually put into independent variables. We adjusted for possible factors (age, gender, duration of diabetes, BMI, SBP, HbA1C, smoking history and dyslipidemia) in the regression analysis. Subjects with short sleep had a higher risk of developing DKD [OR 1.317, 95% CI (1.006–1.723) P = 0.045]; participants with long sleep had a higher risk of developing DR [OR 3.409, 95% CI (1.671–6.995) P = 0.001]; the risk of CVD was higher among the subjects with final early awakening [OR 1.348,95% CI (1.042–1.745) P = 0.023] and/or short sleep [OR 1.589, 95% CI (1.232–2.049) P = 0.000); the risk of PAD was higher among the subjects with short sleep [OR 1.343, 95% CI (1.024–1.762) P = 0.033); after adjustment of potential confounders, poor sleep complaints have no association with the development of neuropathy (P > 0.05).
Table 3
Multiple logistic regression analysis for impact of poor sleep complaints on vascular complications in subjects with type 2 diabetes mellitus (model 1)
Microangiopathies
DKD
Retinopathy
Neuropathy
OR (95% of CI)
P value
OR (95% of CI)
P value
OR (95% of CI)
P value
Poor sleep complaints
 Difficulty fall asleep
1.015 (0.749–1.376)
0.924
0.970 (0.726–1.296)
0.835
1.134 (0.841–1.529)
0.410
 Early wake
1.275 (0.966–1.682)
0.086
1.084 (0.831–1.413)
0.554
1.009 (0.771–1.320)
0.948
 Short sleep <6 h
1.317 (1.006–1.723)
0.045
0.774 (0.597–1.004)
0.054
1.152 (0.886–1.499)
0.291
 Long sleep >9 h
1.829 (0.893–3.746)
0.099
3.409 (1.671–6.995)
0.001
1.342 (0.636–2.828)
0.440
Macroangiopathies
CVD
PAD
OR (95% of CI)
P value
OR (95% of CI)
P value
Poor sleep complaints
 Difficulty fall asleep
0.901 (0.678–1.197)
0.472
1.091 (0.803–1.483)
0.577
 Early wake
1.348 (1.042–1.745)
0.023
0.967 (0.733–1.277)
0.815
 Short sleep <6 h
1.589 (1.232–2.049)
0.000
1.343 (1.024–1.762)
0.033
 Long sleep >9 h
0.947 (0.438–1.976)
0.947
1.034 (0.466–2.294)
0.934
The complications of diabetes were individually put into dependent variables, poor sleep complaints were individually put into independent variables, logistic regression analysis was adjusted for gender, age, duration of diabetes, smoking history, BMI (body mass index), SBP (systolic blood pressure), HbA1C (glycosylated hemoglobin type A1c) and dyslipidemia
Italics values are statistically significant
DKD diabetic kidney disease; CVD cardiovascular disease; PAD peripheral arterial disease
Table 4 shows the multivariate analysis for impact of diabetic complications on poor sleep complaints in the studied-populations (model 2). In the model, poor sleep complaints were individually put into dependent variables, and diabetic vascular complications were individually put into independent variables. We also adjusted for possible factors (age, gender, duration of diabetes, BMI, SBP, HbA1C, smoking history and dyslipidemia) in the regression analysis. CVD (OR 1.364, 95% CI 1.055–1.765, P = 0.018) was independent variable for early final awakening; DKD (OR 1.322, 95% CI 1.011–1.730, P = 0.042), CVD (OR 1.599, 95% CI 1.239–2.063, P = 0.000) and PAD (OR 1.365, 95% CI 1.041–1.790, P = 0.025) were independent variables for short sleep; DR (OR 3.660, 95% CI 1.762–7.601, P = 0.001) was independent variable for long sleep.
Table 4
Multiple logistic regression analysis for impact of vascular complications on poor sleep complaints in subjects with type 2 diabetes mellitus (model 2)
Variables
Difficulty fall asleep
Early wake
Short sleep
Long sleep
OR (95% of CI)
P value
OR (95% of CI)
P value
OR (95% of CI)
P value
OR (95% of CI)
P value
DKD
1.052 (0.778–1.422)
0.741
1.300 (0.986–1.713)
0.063
1.322 (1.011–1.730)
0.042
1.892 (0.945–3.788)
0.072
Retinopathy
0.983 (0.738–1.310)
0.909
1.073 (0.822–1.399)
0.605
0.780 (0.601–1.011)
0.061
3.660 (1.762–7.601)
0.001
Neuropathy
1.149 (0.854–1.545)
0.359
1.022 (0.782–1.338)
0.871
1.160 (0.893–1.509)
0.267
1.511 (0.694–3.289)
0.298
CVD
0.896 (0.675–1.190)
0.450
1.364 (1.055–1.765)
0.018
1.599 (1.239–2.063)
0.000
1.008 (0.486–2.089)
0.948
PAD
1.110 (0.816–1.509)
0.507
0.982 (0.746–1.294)
0.899
1.365 (1.041–1.790)
0.025
1.063 (0.478–2.361)
0.881
Poor sleep complaints were individually put into dependent variables, the complications of diabetes were individually put into independent variables, logistic regression analysis was adjusted for gender, age, duration of diabetes, smoking history, BMI (body mass index), SBP (systolic blood pressure), HbA1C (glycosylated hemoglobin type A1c) and dyslipidemia
Italics values are statistically significant
DKD diabetic kidney disease; CVD cardiovascular disease; PAD peripheral arterial disease

Discussion

Sleep disturbances, a condition with important for hypertension, diabetes and cardiovascular disease [2022], has been less researched for diabetes-associated vascular diseases. In addition, current studies related to sleep and diabetic vascular complications have focused mainly on OSA [15, 2325]. Our work differs from previous studies by offering exploration of the association between various poor sleep complaints and vascular complications in diabetes. Such research is particularly important, which are showing rapidly increasing prevalence of poor sleep complaints and diabetes in populations.
In this study, we described the effect of demographics on sleep complaints of the recruited participants. As expected, older patients were more likely to have these sleep complaints, difficulty fall asleep, early awake and short sleep; the female have a harder time falling asleep; the fatter participants were less trouble in falling asleep. From our data (Table 1), we found that age, gender, BMI, SBP, DBP, diabetes duration and HbA1C have impact on vascular disease distinguishably. Therefore, these factors were all adjusted in logistic regressions.
Interestingly, we demonstrated that early final awakening and short sleep both were risk factors for DKD from Chi square test. However, only short sleep persisted after the adjustment for a wide range of demographic and clinically relevant confounders in logistic regression analysis (model 1). Even though sleep disturbances or OSA has been proved as risk factor for development and progression of DKD [15, 26], short sleep may play great role in pathogenesis of DKD from this research. Meanwhile, we found that diabetic patients with DKD had shorter sleep duration in logistic regression (model 2), demonstrating that DKD and short sleep were interrelated closely.
Our data revealed early final awakening and long sleep were risk factors for DR from Chi square test. But only long sleep still was risk factors for DR after the adjustment in logistic regression (model 1). There was a literature reporting that short and long sleep was associated with high prevalence of DR in men and they speculated sleep deprivation may be involved in the pathogenesis of DR development [27]. In model 2, we found that DR patients had longer sleep; however, one report said the presence of diabetic retinopathy impairs the sleep quality, sleep latency, sleep duration and diurnal function in diabetic patients [17]. The proportion of participants with long sleep was significantly minor in the study, so we did not consider that long sleep was related to DR.
Tahrani et al. provided evidence that OSA is independently associated with diabetic peripheral neuropathy [13]. There are literatures also reporting that pain due to peripheral neuropathy causes nighttime awakening and this leads to disturbed sleep [17, 28, 29]. But there was no association between poor sleep complaints and diabetic neuropathy from the above regression analysis.
From the previous studies, sleep disturbances and/or short sleep were risk factors for CVD [9, 3032]. One report proposed that frequent awakenings and early morning awakening were not associated with a significantly increased risk of CVD mortality in older populations [33]. Nevertheless, the prevalence of early final awakening was more in patients with CVD than those without CVD; similar was the trend with short sleep in this study. In the regression analysis model 1, early final awakening and short sleep remained independently associated with CVD after adjustment. In addition, association of CVD with early final awakening and short sleep was showed in the model 2, which have not been reported in diabetes patients to the best of our knowledge.
We tried to assess the association between poor sleep complaints with lower extremity PAD in the type 2 diabetes patients. There was great difference between the patients with and without PAD in the prevalence of early final wakening and short sleep from Chi square test. In the model 1, only short sleep was risk factor for PAD after the adjustment. Diabetic patients with PAD had shorter sleep duration in logistic regression model 2 after adjustment. Even though a few current literatures revealed that prevalence of OSA is high in patients with PAD [34, 35], there is little literature reporting the association between poor sleep complaints and PAD.
Mechanisms of poor sleep complaints impacting morbidity of diabetic vascular complications have been speculated. Pathogenesis of vascular diseases in diabetes ascribe to oxidative stress, low-grade inflammation, endothelial dysfunction and so on [36]. First, poor sleep complaints could activate the autonomic nervous system and elevate the secretion of catecholamine, which can stimulate production of inflammatory mediators and could lead to metabolic imbalance [37]. Second, sleep disturbances and sleep fragmentation could activate pro-inflammatory transcription factors such as nuclear factor kappa B (NF-κ B), which is a key player in inflammatory and innate immune responses and a master regulator of inflammatory gene expression, and genes such as TNF-α or IL-8 that are important to the atherosclerotic process. Sleep disturbances may also aggravate oxidative stress which could sharpen endothelial dysfunction and increase insulin resistance [38].
The strength of this study was that it is the first time to assess the relationship between diabetic complications and poor sleep complaints using validated questionnaire roundly. Secondly, the studied-population was large and representative, so the results were worthy to be trusted and extrapolated. However, some limitations of this study should be taken attention. First, the adjusted-confounders were identical in the regression analysis, and this may lead to inaccurate adjustment for each diabetic complication. Second, it is difficult to draw an exact causal relationship between complications of diabetes and poor sleep complaints due to cross-sectional design of the study. In addition, some sleep complaints such as daytime sleepiness and frequent awakening were not assessed in the study, and we should perfect it in future study.

Conclusions

Poor sleep complaints were distinguishably associated with diabetic vascular complications. Larger prospective trails using the objective assessment by polysomnography are warranted to investigate the underlying mechanisms. Clinicians should pay more attention to poor sleep complaints for improving diabetes patients life quality.

Authors’ contributions

LLM conceived of the study, analyzed the data, and drafted the manuscript. YL and RNG recruited the patients, collected the data, involved in the visiting of the patients. YZT and DQL conceived of the study, and participated in its design and coordination and helped to draft the manuscript. All authors read and approved the final manuscript.

Acknowledgements

We would like to thank Professor Jia-Rui Li for valuable suggestions to the study and revising the manuscript. We also thank Gang Wang for collecting part of the data.

Competing interests

We wish to confirm that there are no known competing interests associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.
We confirm that the manuscript has been read and approved by all named authors and that there are no other persons who satisfied the criteria for authorship but are not listed. We further confirm that the order of authors listed in the manuscript has been approved by all of us.
We confirm that we have given due consideration to the protection of intellectual property associated with this work and that there are no impediments to publication, including the timing of publication, with respect to intellectual property. In so doing we confirm that we have followed the regulations of our institutions concerning intellectual property.
We further confirm that any aspect of the work covered in this manuscript that has involved human patients has been conducted with the ethical approval of all relevant bodies and that such approvals are acknowledged within the manuscript.

Availability of data and materials

This is just a part of our research, other research results have not been published, the data is not available to provide.
Consents were obtained from theses participants to publish.
Consent was obtained and this study design was approved by the local ethics committee and was in accordance with the Declaration of Helsinki.

Funding

Natural Science Foundation of China (Grant No. 81270891/H0713) and the foundation of Tianjin Science and Technology commission (Grant No. 15ZXHLSY00460, 15ZCZDSY00500, 16JCYBJC25700).
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Grandner MA, Hale L, Moore M, Patel NP. Mortality associated with short sleep duration: the evidence, the possible mechanisms, and the future. Sleep Med Rev. 2010;14(3):191–203.CrossRefPubMed Grandner MA, Hale L, Moore M, Patel NP. Mortality associated with short sleep duration: the evidence, the possible mechanisms, and the future. Sleep Med Rev. 2010;14(3):191–203.CrossRefPubMed
2.
Zurück zum Zitat Lou P, Chen P, Zhang L, Zhang P, Chang G, Zhang N, Li T, Qiao C. Interaction of sleep quality and sleep duration on impaired fasting glucose: a population-based cross-sectional survey in China. BMJ Open. 2014;4(3):e004436.CrossRefPubMedPubMedCentral Lou P, Chen P, Zhang L, Zhang P, Chang G, Zhang N, Li T, Qiao C. Interaction of sleep quality and sleep duration on impaired fasting glucose: a population-based cross-sectional survey in China. BMJ Open. 2014;4(3):e004436.CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Cappuccio FP, Taggart FM, Kandala NB, Currie A, Peile E, Stranges S, Miller MA. Meta-analysis of short sleep duration and obesity in children and adults. Sleep. 2008;31(5):619–26.PubMedPubMedCentral Cappuccio FP, Taggart FM, Kandala NB, Currie A, Peile E, Stranges S, Miller MA. Meta-analysis of short sleep duration and obesity in children and adults. Sleep. 2008;31(5):619–26.PubMedPubMedCentral
4.
Zurück zum Zitat Hoevenaar-Blom MP, Spijkerman AM, Kromhout D, van den Berg JF, Verschuren WM. Sleep duration and sleep quality in relation to 12-year cardiovascular disease incidence: the MORGEN study. Sleep. 2011;34(11):1487–92.PubMedPubMedCentral Hoevenaar-Blom MP, Spijkerman AM, Kromhout D, van den Berg JF, Verschuren WM. Sleep duration and sleep quality in relation to 12-year cardiovascular disease incidence: the MORGEN study. Sleep. 2011;34(11):1487–92.PubMedPubMedCentral
5.
Zurück zum Zitat Sridhar GR, Madhu K. Prevalence of sleep disturbances in diabetes mellitus. Diabetes Res Clin Pract. 1994;23(3):183–6.CrossRefPubMed Sridhar GR, Madhu K. Prevalence of sleep disturbances in diabetes mellitus. Diabetes Res Clin Pract. 1994;23(3):183–6.CrossRefPubMed
6.
Zurück zum Zitat Chin K, Oga T, Takahashi K, Takegami M, Nakayama-Ashida Y, Wakamura T, Sumi K, Nakamura T, Horita S, Oka Y, et al. Associations between obstructive sleep apnea, metabolic syndrome, and sleep duration, as measured with an actigraph, in an urban male working population in Japan. Sleep. 2010;33(1):89–95.PubMedPubMedCentral Chin K, Oga T, Takahashi K, Takegami M, Nakayama-Ashida Y, Wakamura T, Sumi K, Nakamura T, Horita S, Oka Y, et al. Associations between obstructive sleep apnea, metabolic syndrome, and sleep duration, as measured with an actigraph, in an urban male working population in Japan. Sleep. 2010;33(1):89–95.PubMedPubMedCentral
7.
Zurück zum Zitat Tang Y, Meng L, Li D, Yang M, Zhu Y, Li C, Jiang Z, Yu P, Li Z, Song H, et al. Interaction of sleep quality and sleep duration on glycemic control in patients with type 2 diabetes mellitus. Chin Med J. 2014;127(20):3543–7.PubMed Tang Y, Meng L, Li D, Yang M, Zhu Y, Li C, Jiang Z, Yu P, Li Z, Song H, et al. Interaction of sleep quality and sleep duration on glycemic control in patients with type 2 diabetes mellitus. Chin Med J. 2014;127(20):3543–7.PubMed
8.
Zurück zum Zitat Chiniwala N, Jabbour S. Management of diabetes mellitus in the elderly. Curr Opin Endocrinol Diabetes Obes. 2011;18(2):148–52.CrossRefPubMed Chiniwala N, Jabbour S. Management of diabetes mellitus in the elderly. Curr Opin Endocrinol Diabetes Obes. 2011;18(2):148–52.CrossRefPubMed
9.
Zurück zum Zitat Meng LL, Tang YZ, Ni CL, Yang M, Song HN, Wang G, Li YZ, Zhang M, Li DQ. Impact of inflammatory markers on the relationship between sleep quality and incident cardiovascular events in type 2 diabetes. J Diabetes Complications. 2015;29(7):882–6.CrossRefPubMed Meng LL, Tang YZ, Ni CL, Yang M, Song HN, Wang G, Li YZ, Zhang M, Li DQ. Impact of inflammatory markers on the relationship between sleep quality and incident cardiovascular events in type 2 diabetes. J Diabetes Complications. 2015;29(7):882–6.CrossRefPubMed
10.
Zurück zum Zitat Seif F, Patel SR, Walia H, Rueschman M, Bhatt DL, Gottlieb DJ, Lewis EF, Patil SP, Punjabi NM, Babineau DC, et al. Association between obstructive sleep apnea severity and endothelial dysfunction in an increased background of cardiovascular burden. J Sleep Res. 2013;22(4):443–51.CrossRefPubMedPubMedCentral Seif F, Patel SR, Walia H, Rueschman M, Bhatt DL, Gottlieb DJ, Lewis EF, Patil SP, Punjabi NM, Babineau DC, et al. Association between obstructive sleep apnea severity and endothelial dysfunction in an increased background of cardiovascular burden. J Sleep Res. 2013;22(4):443–51.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Seif F, Patel SR, Walia HK, Rueschman M, Bhatt DL, Blumenthal RS, Quan SF, Gottlieb DJ, Lewis EF, Patil SP, et al. Obstructive sleep apnea and diurnal nondipping hemodynamic indices in patients at increased cardiovascular risk. J Hypertens. 2014;32(2):267–75.CrossRefPubMedPubMedCentral Seif F, Patel SR, Walia HK, Rueschman M, Bhatt DL, Blumenthal RS, Quan SF, Gottlieb DJ, Lewis EF, Patil SP, et al. Obstructive sleep apnea and diurnal nondipping hemodynamic indices in patients at increased cardiovascular risk. J Hypertens. 2014;32(2):267–75.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Raman R, Gupta A, Venkatesh K, Kulothungan V, Sharma T. Abnormal sleep patterns in subjects with type II diabetes mellitus and its effect on diabetic microangiopathies: Sankara Nethralaya Diabetic Retinopathy Epidemiology and Molecular Genetic Study (SN-DREAMS, report 20). Acta Diabetol. 2012;49(4):255–61.CrossRefPubMed Raman R, Gupta A, Venkatesh K, Kulothungan V, Sharma T. Abnormal sleep patterns in subjects with type II diabetes mellitus and its effect on diabetic microangiopathies: Sankara Nethralaya Diabetic Retinopathy Epidemiology and Molecular Genetic Study (SN-DREAMS, report 20). Acta Diabetol. 2012;49(4):255–61.CrossRefPubMed
13.
Zurück zum Zitat Tahrani AA, Ali A, Raymond NT, Begum S, Dubb K, Mughal S, Jose B, Piya MK, Barnett AH, Stevens MJ. Obstructive sleep apnea and diabetic neuropathy: a novel association in patients with type 2 diabetes. Am J Respir Crit Care Med. 2012;186(5):434–41.CrossRefPubMedPubMedCentral Tahrani AA, Ali A, Raymond NT, Begum S, Dubb K, Mughal S, Jose B, Piya MK, Barnett AH, Stevens MJ. Obstructive sleep apnea and diabetic neuropathy: a novel association in patients with type 2 diabetes. Am J Respir Crit Care Med. 2012;186(5):434–41.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Nannapaneni S, Ramar K, Surani S. Effect of obstructive sleep apnea on type 2 diabetes mellitus: a comprehensive literature review. World J Diabetes. 2013;4(6):238–44.CrossRefPubMedPubMedCentral Nannapaneni S, Ramar K, Surani S. Effect of obstructive sleep apnea on type 2 diabetes mellitus: a comprehensive literature review. World J Diabetes. 2013;4(6):238–44.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Tahrani AA, Ali A, Raymond NT, Begum S, Dubb K, Altaf QA, Piya MK, Barnett AH, Stevens MJ. Obstructive sleep apnea and diabetic nephropathy: a cohort study. Diabetes Care. 2013;36(11):3718–25.CrossRefPubMedPubMedCentral Tahrani AA, Ali A, Raymond NT, Begum S, Dubb K, Altaf QA, Piya MK, Barnett AH, Stevens MJ. Obstructive sleep apnea and diabetic nephropathy: a cohort study. Diabetes Care. 2013;36(11):3718–25.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Nishimura A, Kasai T, Tamura H, Yamato A, Yasuda D, Nagasawa K, Okubo M, Narui K, Mori Y. Relationship between sleep disordered breathing and diabetic retinopathy: analysis of 136 patients with diabetes. Diabetes Res Clin Pract. 2015;109(2):306–11.CrossRefPubMed Nishimura A, Kasai T, Tamura H, Yamato A, Yasuda D, Nagasawa K, Okubo M, Narui K, Mori Y. Relationship between sleep disordered breathing and diabetic retinopathy: analysis of 136 patients with diabetes. Diabetes Res Clin Pract. 2015;109(2):306–11.CrossRefPubMed
17.
Zurück zum Zitat Ozturk ZA, Yesil Y, Kuyumcu ME, Savas E, Uygun O, Sayiner ZA, Kepekci Y. Association of depression and sleep quality with complications of type 2 diabetes in geriatric patients. Aging clinical and experimental Res. 2015;27(4):533–8.CrossRef Ozturk ZA, Yesil Y, Kuyumcu ME, Savas E, Uygun O, Sayiner ZA, Kepekci Y. Association of depression and sleep quality with complications of type 2 diabetes in geriatric patients. Aging clinical and experimental Res. 2015;27(4):533–8.CrossRef
19.
Zurück zum Zitat Fong DS, Aiello L, Gardner TW, King GL, Blankenship G, Cavallerano JD, Ferris FL 3rd, Klein R. Diabetic retinopathy. Diabetes Care. 2003;26(1):226–9.CrossRefPubMed Fong DS, Aiello L, Gardner TW, King GL, Blankenship G, Cavallerano JD, Ferris FL 3rd, Klein R. Diabetic retinopathy. Diabetes Care. 2003;26(1):226–9.CrossRefPubMed
20.
Zurück zum Zitat Cho EH, Lee H, Ryu OH, Choi MG, Kim SW. Sleep disturbances and glucoregulation in patients with type 2 diabetes. J Korean Med Sci. 2014;29(2):243–7.CrossRefPubMedPubMedCentral Cho EH, Lee H, Ryu OH, Choi MG, Kim SW. Sleep disturbances and glucoregulation in patients with type 2 diabetes. J Korean Med Sci. 2014;29(2):243–7.CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Redline S, Foody J. Sleep disturbances: time to join the top 10 potentially modifiable cardiovascular risk factors? Circulation. 2011;124(19):2049–51.CrossRefPubMed Redline S, Foody J. Sleep disturbances: time to join the top 10 potentially modifiable cardiovascular risk factors? Circulation. 2011;124(19):2049–51.CrossRefPubMed
23.
Zurück zum Zitat Buyukaydin B, Akkoyunlu ME, Kazancioglu R, Karakose F, Ozcelik HK, Erkoc R, Kart L. The effect of sleep apnea syndrome on the development of diabetic nephropathy in patients with type 2 diabetes. Diabetes Res Clin Pract. 2012;98(1):140–3.CrossRefPubMed Buyukaydin B, Akkoyunlu ME, Kazancioglu R, Karakose F, Ozcelik HK, Erkoc R, Kart L. The effect of sleep apnea syndrome on the development of diabetic nephropathy in patients with type 2 diabetes. Diabetes Res Clin Pract. 2012;98(1):140–3.CrossRefPubMed
24.
Zurück zum Zitat Misra A, Shrivastava U. Obstructive sleep apnea and diabetic nephropathy. Diabetes Technol Ther. 2016;18(7):405–7.CrossRefPubMed Misra A, Shrivastava U. Obstructive sleep apnea and diabetic nephropathy. Diabetes Technol Ther. 2016;18(7):405–7.CrossRefPubMed
25.
Zurück zum Zitat Banerjee D, Leong WB, Arora T, Nolen M, Punamiya V, Grunstein R, Taheri S. The potential association between obstructive sleep apnea and diabetic retinopathy in severe obesity-the role of hypoxemia. PLoS ONE. 2013;8(11):e79521.CrossRefPubMedPubMedCentral Banerjee D, Leong WB, Arora T, Nolen M, Punamiya V, Grunstein R, Taheri S. The potential association between obstructive sleep apnea and diabetic retinopathy in severe obesity-the role of hypoxemia. PLoS ONE. 2013;8(11):e79521.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Turek NF, Ricardo AC, Lash JP. Sleep disturbances as nontraditional risk factors for development and progression of CKD: review of the evidence. Am J Kidney Dis. 2012;60(5):823–33.CrossRefPubMedPubMedCentral Turek NF, Ricardo AC, Lash JP. Sleep disturbances as nontraditional risk factors for development and progression of CKD: review of the evidence. Am J Kidney Dis. 2012;60(5):823–33.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Zelman DC, Brandenburg NA, Gore M. Sleep impairment in patients with painful diabetic peripheral neuropathy. Clin J Pain. 2006;22(8):681–5.CrossRefPubMed Zelman DC, Brandenburg NA, Gore M. Sleep impairment in patients with painful diabetic peripheral neuropathy. Clin J Pain. 2006;22(8):681–5.CrossRefPubMed
31.
Zurück zum Zitat Ryan S, Taylor CT, McNicholas WT. Systemic inflammation: a key factor in the pathogenesis of cardiovascular complications in obstructive sleep apnoea syndrome? Thorax. 2009;64(7):631–6.PubMed Ryan S, Taylor CT, McNicholas WT. Systemic inflammation: a key factor in the pathogenesis of cardiovascular complications in obstructive sleep apnoea syndrome? Thorax. 2009;64(7):631–6.PubMed
32.
Zurück zum Zitat Nagai M, Hoshide S, Kario K. Sleep duration as a risk factor for cardiovascular disease- a review of the recent literature. Curr Cardiol Rev. 2010;6(1):54–61.CrossRefPubMedPubMedCentral Nagai M, Hoshide S, Kario K. Sleep duration as a risk factor for cardiovascular disease- a review of the recent literature. Curr Cardiol Rev. 2010;6(1):54–61.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Newman AB, Spiekerman CF, Enright P, Lefkowitz D, Manolio T, Reynolds CF, Robbins J. Daytime sleepiness predicts mortality and cardiovascular disease in older adults. The Cardiovascular Health Study Research Group. J Am Geriatr Soc. 2000;48(2):115–23.CrossRefPubMed Newman AB, Spiekerman CF, Enright P, Lefkowitz D, Manolio T, Reynolds CF, Robbins J. Daytime sleepiness predicts mortality and cardiovascular disease in older adults. The Cardiovascular Health Study Research Group. J Am Geriatr Soc. 2000;48(2):115–23.CrossRefPubMed
34.
Zurück zum Zitat Utriainen KT, Airaksinen JK, Polo O, Raitakari OT, Pietila MJ, Scheinin H, Helenius HY, Leino KA, Kentala ES, Jalonen JR, et al. Unrecognised obstructive sleep apnoea is common in severe peripheral arterial disease. Eur Respir J. 2013;41(3):616–20.CrossRefPubMed Utriainen KT, Airaksinen JK, Polo O, Raitakari OT, Pietila MJ, Scheinin H, Helenius HY, Leino KA, Kentala ES, Jalonen JR, et al. Unrecognised obstructive sleep apnoea is common in severe peripheral arterial disease. Eur Respir J. 2013;41(3):616–20.CrossRefPubMed
35.
Zurück zum Zitat Pizarro C, Schaefer C, Kimeu I, Pingel S, Horlbeck F, Tuleta I, Nickenig G, Skowasch D. Underdiagnosis of obstructive sleep apnoea in peripheral arterial disease. Respiration. 2015;89:214–20.CrossRef Pizarro C, Schaefer C, Kimeu I, Pingel S, Horlbeck F, Tuleta I, Nickenig G, Skowasch D. Underdiagnosis of obstructive sleep apnoea in peripheral arterial disease. Respiration. 2015;89:214–20.CrossRef
36.
37.
Zurück zum Zitat Hakim F, Gozal D, Kheirandish-Gozal L. Sympathetic and catecholaminergic alterations in sleep apnea with particular emphasis on children. Front Neurol. 2012;3:7.CrossRefPubMedPubMedCentral Hakim F, Gozal D, Kheirandish-Gozal L. Sympathetic and catecholaminergic alterations in sleep apnea with particular emphasis on children. Front Neurol. 2012;3:7.CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Dumitrascu R, Heitmann J, Seeger W, Weissmann N, Schulz R. Obstructive sleep apnea, oxidative stress and cardiovascular disease: lessons from animal studies. Oxid Med Cell Longev. 2013;2013:234631.CrossRefPubMedPubMedCentral Dumitrascu R, Heitmann J, Seeger W, Weissmann N, Schulz R. Obstructive sleep apnea, oxidative stress and cardiovascular disease: lessons from animal studies. Oxid Med Cell Longev. 2013;2013:234631.CrossRefPubMedPubMedCentral
Metadaten
Titel
Association of diabetic vascular complications with poor sleep complaints
verfasst von
Ling-Ling Meng
Ying Liu
Rui-Na Geng
Yun-Zhao Tang
Dai-Qing Li
Publikationsdatum
01.12.2016
Verlag
BioMed Central
Erschienen in
Diabetology & Metabolic Syndrome / Ausgabe 1/2016
Elektronische ISSN: 1758-5996
DOI
https://doi.org/10.1186/s13098-016-0195-8

Weitere Artikel der Ausgabe 1/2016

Diabetology & Metabolic Syndrome 1/2016 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Umsetzung der POMGAT-Leitlinie läuft

03.05.2024 DCK 2024 Kongressbericht

Seit November 2023 gibt es evidenzbasierte Empfehlungen zum perioperativen Management bei gastrointestinalen Tumoren (POMGAT) auf S3-Niveau. Vieles wird schon entsprechend der Empfehlungen durchgeführt. Wo es im Alltag noch hapert, zeigt eine Umfrage in einem Klinikverbund.

Proximale Humerusfraktur: Auch 100-Jährige operieren?

01.05.2024 DCK 2024 Kongressbericht

Mit dem demographischen Wandel versorgt auch die Chirurgie immer mehr betagte Menschen. Von Entwicklungen wie Fast-Track können auch ältere Menschen profitieren und bei proximaler Humerusfraktur können selbst manche 100-Jährige noch sicher operiert werden.

Die „Zehn Gebote“ des Endokarditis-Managements

30.04.2024 Endokarditis Leitlinie kompakt

Worauf kommt es beim Management von Personen mit infektiöser Endokarditis an? Eine Kardiologin und ein Kardiologe fassen die zehn wichtigsten Punkte der neuen ESC-Leitlinie zusammen.

Strenge Blutdruckeinstellung lohnt auch im Alter noch

30.04.2024 Arterielle Hypertonie Nachrichten

Ältere Frauen, die von chronischen Erkrankungen weitgehend verschont sind, haben offenbar die besten Chancen, ihren 90. Geburtstag zu erleben, wenn ihr systolischer Blutdruck < 130 mmHg liegt. Das scheint selbst für 80-Jährige noch zu gelten.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.