Skip to main content

01.12.2018 | Research article | Ausgabe 1/2018 Open Access

BMC Medical Imaging 1/2018

Automatic brain tissue segmentation based on graph filter

BMC Medical Imaging > Ausgabe 1/2018
Youyong Kong, Xiaopeng Chen, Jiasong Wu, Pinzheng Zhang, Yang Chen, Huazhong Shu



Accurate segmentation of brain tissues from magnetic resonance imaging (MRI) is of significant importance in clinical applications and neuroscience research. Accurate segmentation is challenging due to the tissue heterogeneity, which is caused by noise, bias filed and partial volume effects.


To overcome this limitation, this paper presents a novel algorithm for brain tissue segmentation based on supervoxel and graph filter. Firstly, an effective supervoxel method is employed to generate effective supervoxels for the 3D MRI image. Secondly, the supervoxels are classified into different types of tissues based on filtering of graph signals.


The performance is evaluated on the BrainWeb 18 dataset and the Internet Brain Segmentation Repository (IBSR) 18 dataset. The proposed method achieves mean dice similarity coefficient (DSC) of 0.94, 0.92 and 0.90 for the segmentation of white matter (WM), grey matter (GM) and cerebrospinal fluid (CSF) for BrainWeb 18 dataset, and mean DSC of 0.85, 0.87 and 0.57 for the segmentation of WM, GM and CSF for IBSR18 dataset.


The proposed approach can well discriminate different types of brain tissues from the brain MRI image, which has high potential to be applied for clinical applications.
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2018

BMC Medical Imaging 1/2018 Zur Ausgabe