Skip to main content
Erschienen in:

02.05.2023

Automatic Spine Segmentation and Parameter Measurement for Radiological Analysis of Whole-Spine Lateral Radiographs Using Deep Learning and Computer Vision

verfasst von: Yong-Tae Kim, Tae Seok Jeong, Young Jae Kim, Woo Seok Kim, Kwang Gi Kim, Gi Taek Yee

Erschienen in: Journal of Imaging Informatics in Medicine | Ausgabe 4/2023

Einloggen, um Zugang zu erhalten

Abstract

Radiographic examination is essential for diagnosing spinal disorders, and the measurement of spino-pelvic parameters provides important information for the diagnosis and treatment planning of spinal sagittal deformities. While manual measurement methods are the golden standard for measuring parameters, they can be time consuming, inefficient, and rater dependent. Previous studies that have used automatic measurement methods to alleviate the downsides of manual measurements showed low accuracy or could not be applied to general films. We propose a pipeline for automated measurement of spinal parameters by combining a Mask R-CNN model for spine segmentation with computer vision algorithms. This pipeline can be incorporated into clinical workflows to provide clinical utility in diagnosis and treatment planning. A total of 1807 lateral radiographs were used for the training (n = 1607) and validation (n = 200) of the spine segmentation model. An additional 200 radiographs, which were also used for validation, were examined by three surgeons to evaluate the performance of the pipeline. Parameters automatically measured by the algorithm in the test set were statistically compared to parameters measured manually by the three surgeons. The Mask R-CNN model achieved an average precision at 50% intersection over union (AP50) of 96.2% and a Dice score of 92.6% for the spine segmentation task in the test set. The mean absolute error values of the spino-pelvic parameters measurement results were within the range of 0.4° (pelvic tilt) to 3.0° (lumbar lordosis, pelvic incidence), and the standard error of estimate was within the range of 0.5° (pelvic tilt) to 4.0° (pelvic incidence). The intraclass correlation coefficient values ranged from 0.86 (sacral slope) to 0.99 (pelvic tilt, sagittal vertical axis).
Literatur
4.
Zurück zum Zitat Smith JS, Bess S, Shaffrey CI, Burton DC, Hart RA, Hostin R, Klineberg E, International Spine Study Group. Dynamic changes of the pelvis and spine are key to predicting postoperative sagittal alignment after pedicle subtraction osteotomy: a critical analysis of preoperative planning techniques. Spine. 2012 May 1;37(10):845–53. https://doi.org/10.1097/BRS.0b013e31823b0892 Smith JS, Bess S, Shaffrey CI, Burton DC, Hart RA, Hostin R, Klineberg E, International Spine Study Group. Dynamic changes of the pelvis and spine are key to predicting postoperative sagittal alignment after pedicle subtraction osteotomy: a critical analysis of preoperative planning techniques. Spine. 2012 May 1;37(10):845–53. https://​doi.​org/​10.​1097/​BRS.​0b013e31823b0892​
9.
Zurück zum Zitat Carman DL, Browne RH, Birch JG. Measurement of scoliosis and kyphosis radiographs. Intraobserver and interobserver variation. JBJS. 1990 Mar 1;72(3):328-33. Carman DL, Browne RH, Birch JG. Measurement of scoliosis and kyphosis radiographs. Intraobserver and interobserver variation. JBJS. 1990 Mar 1;72(3):328-33.
10.
Zurück zum Zitat Chen YL. Vertebral centroid measurement of lumbar lordosis compared with the Cobb technique. Spine. 1999 Sep 1;24(17):1786.CrossRefPubMed Chen YL. Vertebral centroid measurement of lumbar lordosis compared with the Cobb technique. Spine. 1999 Sep 1;24(17):1786.CrossRefPubMed
11.
Zurück zum Zitat Harrison DE, Harrison DD, Cailliet R, Troyanovich SJ, Janik TJ, Holland B. Cobb method or Harrison posterior tangent method: which to choose for lateral cervical radiographic analysis. Spine. 2000 Aug 15;25(16):2072-8.CrossRefPubMed Harrison DE, Harrison DD, Cailliet R, Troyanovich SJ, Janik TJ, Holland B. Cobb method or Harrison posterior tangent method: which to choose for lateral cervical radiographic analysis. Spine. 2000 Aug 15;25(16):2072-8.CrossRefPubMed
12.
Zurück zum Zitat Harrison DE, Cailliet R, Harrison DD, Janik TJ, Holland B. Reliability of centroid, Cobb, and Harrison posterior tangent methods: which to choose for analysis of thoracic kyphosis. Spine. 2001 Jun 1;26(11):e227-34.CrossRefPubMed Harrison DE, Cailliet R, Harrison DD, Janik TJ, Holland B. Reliability of centroid, Cobb, and Harrison posterior tangent methods: which to choose for analysis of thoracic kyphosis. Spine. 2001 Jun 1;26(11):e227-34.CrossRefPubMed
14.
Zurück zum Zitat Shea KG, Stevens PM, Nelson M, Smith JT, Masters KS, Yandow S. A comparison of manual versus computer-assisted radiographic measurement: intraobserver measurement variability for Cobb angles. Spine. 1998 Mar 1;23(5):551-5.CrossRefPubMed Shea KG, Stevens PM, Nelson M, Smith JT, Masters KS, Yandow S. A comparison of manual versus computer-assisted radiographic measurement: intraobserver measurement variability for Cobb angles. Spine. 1998 Mar 1;23(5):551-5.CrossRefPubMed
23.
Zurück zum Zitat Xie S, Girshick R, Dollár P, Tu Z, He K. Aggregated residual transformations for deep neural networks. InProceedings of the IEEE conference on computer vision and pattern recognition 2017 (pp. 1492–1500). Xie S, Girshick R, Dollár P, Tu Z, He K. Aggregated residual transformations for deep neural networks. InProceedings of the IEEE conference on computer vision and pattern recognition 2017 (pp. 1492–1500).
27.
Zurück zum Zitat Lin TY, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollár P, Zitnick CL. Microsoft coco: Common objects in context. InEuropean conference on computer vision 2014 Sep 6 (pp. 740-755). Springer, Cham. Lin TY, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollár P, Zitnick CL. Microsoft coco: Common objects in context. InEuropean conference on computer vision 2014 Sep 6 (pp. 740-755). Springer, Cham.
34.
Metadaten
Titel
Automatic Spine Segmentation and Parameter Measurement for Radiological Analysis of Whole-Spine Lateral Radiographs Using Deep Learning and Computer Vision
verfasst von
Yong-Tae Kim
Tae Seok Jeong
Young Jae Kim
Woo Seok Kim
Kwang Gi Kim
Gi Taek Yee
Publikationsdatum
02.05.2023
Verlag
Springer International Publishing
Erschienen in
Journal of Imaging Informatics in Medicine / Ausgabe 4/2023
Print ISSN: 2948-2925
Elektronische ISSN: 2948-2933
DOI
https://doi.org/10.1007/s10278-023-00830-z

Neu im Fachgebiet Radiologie

Stumme Schlaganfälle − ein häufiger Nebenbefund im Kopf-CT?

In 4% der in der Notfallambulanz initiierten zerebralen Bildgebung sind „alte“ Schlaganfälle zu erkennen. Gar nicht so selten handelt es sich laut einer aktuellen Studie dabei um unbemerkte Insulte. Bietet sich hier womöglich die Chance auf ein effektives opportunistisches Screening?

Stören weiße Wände und viel Licht die Bildqualitätskontrolle?

Wenn es darum geht, die technische Qualität eines Mammogramms zu beurteilen, könnten graue Wandfarbe und reduzierte Beleuchtung im Bildgebungsraum von Vorteil sein. Darauf deuten zumindest Ergebnisse einer kleinen Studie hin. 

PMBCL mit CMR: Radiatio kann ohne Risiko weggelassen werden

Patienten mit primär mediastinalem B-Zell-Lymphom (PMBCL), die nach der Induktionstherapie eine komplette metabolische Remission (CMR) erreichen und keine konsolidierende Bestrahlung erhalten, müssen offenbar keine Überlebensnachteile fürchten.

Hypoxisch-ischämische Enzephalopathie: Indikatoren für eine ungünstige Prognose

Eine US-amerikanische Studie widmete sich der Identifizierung prognostischer Parameter bei Neugeborenen mit mittelschwerer oder schwerer hypoxisch-ischämischer Enzephalopathie (HIE), die mittels induzierter Hypoxie behandelt wurden. Besonders im 24-Stunden-EEG und der MRT konnten relevante Hinweise gefunden werden.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.