Skip to main content
Erschienen in: Radiological Physics and Technology 3/2019

13.07.2019

Biological polymeric shielding design for an X-ray laboratory using Monte Carlo codes

verfasst von: Suffian M. Tajudin, F. Tabbakh

Erschienen in: Radiological Physics and Technology | Ausgabe 3/2019

Einloggen, um Zugang zu erhalten

Abstract

Photon irradiation facilities are often shielded using lead despite its toxicity and high cost. In this study, three Monte Carlo codes, EGS5, MCNPX, and Geant4, were utilized to investigate the efficiency of a relatively new polymeric base compound (CnH2n), as a radiation shielding material for photons with energies below 150 keV. The proposed compound with the densities of 6 and 8 g cm−3 were doped with the weight percentages of 8.0 and 15.0% gadolinium. The probabilities of photoelectric effect and Compton scattering were relatively equal at low photon energies, thus the shielding design was optimized using three Monte Carlo codes for the conformity of calculation results. Consequently, 8% Gd-doped polymer with thickness less than 2 cm and density of 6 g cm−3 was adequate for X-ray room shielding to attenuate more than 95% of the 150-keV incident photons. An average dose rate reduction of 88% can be achieved to ensure safety of the radiation area.
Literatur
1.
Zurück zum Zitat McCaffrey JP, Mainegra-Hing E, Shen H. Optimizing non-Pb radiation shielding materials using bilayers. Med Phys. 2009;36:5586–94.CrossRefPubMed McCaffrey JP, Mainegra-Hing E, Shen H. Optimizing non-Pb radiation shielding materials using bilayers. Med Phys. 2009;36:5586–94.CrossRefPubMed
2.
Zurück zum Zitat Yue Kun, Luo Wenyun, Dong Xiaoqing, Wang Chuanshan, Guohua Wu, Jiang Mawei, Zha Yuanzi. A new lead-free radiation shielding material for radiotherapy. Radiat Prot Dosim. 2009;133:256–60.CrossRef Yue Kun, Luo Wenyun, Dong Xiaoqing, Wang Chuanshan, Guohua Wu, Jiang Mawei, Zha Yuanzi. A new lead-free radiation shielding material for radiotherapy. Radiat Prot Dosim. 2009;133:256–60.CrossRef
3.
Zurück zum Zitat Soylu HM, Lambrecht FY, Ersöz OA. Gamma radiation shielding efficiency of a new lead-free composite material. J Radioanal Nucl Chem. 2015;305:529.CrossRef Soylu HM, Lambrecht FY, Ersöz OA. Gamma radiation shielding efficiency of a new lead-free composite material. J Radioanal Nucl Chem. 2015;305:529.CrossRef
4.
Zurück zum Zitat Scuderi GJ, et al. Evaluation of non-lead-based protective radiological material in spinal surgery. Spine J. 2006;6(5):577–82.CrossRefPubMed Scuderi GJ, et al. Evaluation of non-lead-based protective radiological material in spinal surgery. Spine J. 2006;6(5):577–82.CrossRefPubMed
5.
Zurück zum Zitat Atxaga A, et al. Radiation shielding of composite space enclosures. In: Proceedings of 63rd international astronaustical congress, Italy, 2012, October. Naples: ORBi; 2012. pp. 1–10. Atxaga A, et al. Radiation shielding of composite space enclosures. In: Proceedings of 63rd international astronaustical congress, Italy, 2012, October. Naples: ORBi; 2012. pp. 1–10.
6.
Zurück zum Zitat Bhowmik S, Benedictus R. Performance of space durable polymeric nano composite under electromagnetic radiation at low earth orbit. In: IEEE applied electromagnetic conference; 2007. pp. 1–4. Bhowmik S, Benedictus R. Performance of space durable polymeric nano composite under electromagnetic radiation at low earth orbit. In: IEEE applied electromagnetic conference; 2007. pp. 1–4.
7.
Zurück zum Zitat Odano N, Konnai A, Asami M. Development of high-performance gel-type radiation shielding material using polymer resin. Prog Nucl Sci Technol. 2014;4:639–42.CrossRef Odano N, Konnai A, Asami M. Development of high-performance gel-type radiation shielding material using polymer resin. Prog Nucl Sci Technol. 2014;4:639–42.CrossRef
8.
Zurück zum Zitat Hu H. Composite material for shielding mixed radiation. In: Advances in composite materials for medicine and nanotechnology. Shanghai: InTech; 2011. pp. 565–592. ISBN: 978-953-307-235-7. Hu H. Composite material for shielding mixed radiation. In: Advances in composite materials for medicine and nanotechnology. Shanghai: InTech; 2011. pp. 565–592. ISBN: 978-953-307-235-7.
9.
Zurück zum Zitat Haruvy Y. Radiation durability and functional reliability of polymeric materials in space systems. Int J Radiat Appl Instrum Part C. 1990;35:204–12. Haruvy Y. Radiation durability and functional reliability of polymeric materials in space systems. Int J Radiat Appl Instrum Part C. 1990;35:204–12.
10.
Zurück zum Zitat Amato E, Lizio D. Plastic materials as a radiation shield for beta sources: a comparative study through Monte Carlo calculation. J Radiol Prot. 2009;29:239–50.CrossRefPubMed Amato E, Lizio D. Plastic materials as a radiation shield for beta sources: a comparative study through Monte Carlo calculation. J Radiol Prot. 2009;29:239–50.CrossRefPubMed
11.
Zurück zum Zitat Tabbakh F. MCNPX and GEANT4 simulation of gamma-ray polymeric shields. Pramana J Phys. 2016;86(4):939–44.CrossRef Tabbakh F. MCNPX and GEANT4 simulation of gamma-ray polymeric shields. Pramana J Phys. 2016;86(4):939–44.CrossRef
12.
Zurück zum Zitat Tabbakh F, Babaee V, Naghsh-Nezhad Z. Carbohydrate based materials for gamma radiation shielding. IOP J Phys Conf Ser. 2015;611:012015.CrossRef Tabbakh F, Babaee V, Naghsh-Nezhad Z. Carbohydrate based materials for gamma radiation shielding. IOP J Phys Conf Ser. 2015;611:012015.CrossRef
13.
Zurück zum Zitat Hughes HG, et al. Monte Carlo N-particle code system for multi particle and high energy application. New Mexico: Los Alamos National Laboratory; 2002. Hughes HG, et al. Monte Carlo N-particle code system for multi particle and high energy application. New Mexico: Los Alamos National Laboratory; 2002.
14.
Zurück zum Zitat Osei-Mensah W, Fletcher JJ, Danso KA. Assessment of radiation shielding properties of polyester steel composite using MCNP5. Int J Sci Technol. 2012;2(7):455–61. Osei-Mensah W, Fletcher JJ, Danso KA. Assessment of radiation shielding properties of polyester steel composite using MCNP5. Int J Sci Technol. 2012;2(7):455–61.
15.
Zurück zum Zitat Sharapov EI, et al. The upscattering of ultracold neutrons from the polymer [C6H12]n. Phys Rev C. 2013;88:064605-1–4. Sharapov EI, et al. The upscattering of ultracold neutrons from the polymer [C6H12]n. Phys Rev C. 2013;88:064605-1–4.
16.
Zurück zum Zitat Enger SA, Rosenschold PM, Rezaei A, Lundqvist H. Monte Carlo calculation of thermal neutron capture in gadolinium: a comparison of GEANT4 and MCNP with measurements. Med Phys. 2006;33(2):337–41.CrossRefPubMed Enger SA, Rosenschold PM, Rezaei A, Lundqvist H. Monte Carlo calculation of thermal neutron capture in gadolinium: a comparison of GEANT4 and MCNP with measurements. Med Phys. 2006;33(2):337–41.CrossRefPubMed
17.
Zurück zum Zitat Geant4 Collaboration. Geant4-a simulation toolkit. Nucl Instrum Methods A. 2003;506(3):250–303.CrossRef Geant4 Collaboration. Geant4-a simulation toolkit. Nucl Instrum Methods A. 2003;506(3):250–303.CrossRef
18.
Zurück zum Zitat Allison J, et al. Geant4 developments and application. IEEE Trans Nucl Sci. 2006;53(1):270–8.CrossRef Allison J, et al. Geant4 developments and application. IEEE Trans Nucl Sci. 2006;53(1):270–8.CrossRef
19.
Zurück zum Zitat Aguayo E, et al. Monte Carlo simulation tool installation and operation guide. Oak Ridge: U.S. Department of Energy; 2013.CrossRef Aguayo E, et al. Monte Carlo simulation tool installation and operation guide. Oak Ridge: U.S. Department of Energy; 2013.CrossRef
20.
Zurück zum Zitat Hirayama H, et al. EGS5 code system, vol. 8. SLAC Report SLAC-R-730 & KEK Report 2005; 2010. Hirayama H, et al. EGS5 code system, vol. 8. SLAC Report SLAC-R-730 & KEK Report 2005; 2010.
21.
Zurück zum Zitat Gerward L, et al. WinXCom-a program for calculating X-ray attenuation coefficients. Radiat Phys Chem. 2004;71:653–4.CrossRef Gerward L, et al. WinXCom-a program for calculating X-ray attenuation coefficients. Radiat Phys Chem. 2004;71:653–4.CrossRef
22.
Zurück zum Zitat Waters LS. MCNPX user's manual, version 2.4.0 (LA-CP-02-408); 2002. Waters LS. MCNPX user's manual, version 2.4.0 (LA-CP-02-408); 2002.
Metadaten
Titel
Biological polymeric shielding design for an X-ray laboratory using Monte Carlo codes
verfasst von
Suffian M. Tajudin
F. Tabbakh
Publikationsdatum
13.07.2019
Verlag
Springer Singapore
Erschienen in
Radiological Physics and Technology / Ausgabe 3/2019
Print ISSN: 1865-0333
Elektronische ISSN: 1865-0341
DOI
https://doi.org/10.1007/s12194-019-00522-w

Weitere Artikel der Ausgabe 3/2019

Radiological Physics and Technology 3/2019 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.